

Program Analysis (week 5)

2 / 36

INF4140 - Models of concurrency
Program Analysis, lecture 5

Høsten 2013

23.9.2013

3 / 36

Program correctness

Is my program correct?
Central question for this and the next lecture.

Does the program behave as intended?
Surprising behavior?

x = 5; {x == 5} < x = x + 1;> {x ==?}

Know that x == 5 immediately after first assignment
Will this still hold when the second assignment is executed?

Depends on other processes

What will be the final value of x?

Today: Basic machinery for program reasoning
Next week: Extending this machinery to the concurrent setting

4 / 36

Concurrent executions

Concurrent program: Several threads operating on shared
variables
Parallel updates to x and y :

co < x = x ∗ 3;> || < y = y ∗ 2;> oc

Every concurrent execution can be written as a sequence of
atomic operations (gives one history)
Two possible histories for the above program
Generally, if n processes executes m atomic operations each:

(n ∗m)!

m!n
If n=3 and m=4:

(3 ∗ 4)!
4!3

= 34650

5 / 36

How to verify program properties?

Testing or Debugging increases confidence in the program
correctness, but does not guarantee correctness

Program testing can be an effective way to show the presence
of bugs, but not their absence

Operational reasoning (exhaustive case analysis) tries all
possible executions of a program
Formal analysis (assertional reasoning) allows to deduce the
correctness of a program without executing it

Specification of program behavior
Formal argument that the specification is correct

6 / 36

States

A state of a program consists of the values of the program
variables at a point in time, example: {x == 2 ∧ y == 3}
The state space of a program is given by the different values
that the declared variables can take
Sequential program: one execution thread operates on its own
state space
The state may be changed by assignments

Example

{x == 5 ∧ y == 5}x = x ∗ 2;{x == 10 ∧ y == 5}y = y ∗ 2;{x == 10 ∧ y == 10}

7 / 36

Executions

Given the program S : S1; S2; . . . ;Sn;, starting in a state p0:

where p1, p2, . . . pn are the different states during execution
Can be documented by: {p0}S1{p1}S2{p2} . . . {pn−1}Sn{pn}
p0, pn gives an external specification of the program:
{p0}S{pn}
We often refer to p0 as the initial state and pn as the final
state

Example (from previous slide)

{x == 5 ∧ y == 5} x = x ∗ 2; y = y ∗ 2; {x == 10 ∧ y == 10}

8 / 36

Assertions

Want to express more general properties of programs, like

{x == y}x = x ∗ 2;y = y ∗ 2;{x == y}

If the assertion x == y holds when the program starts,
x == y will also hold when the program terminates
Does not talk about particular values of x and y , but about
relations between their values
Assertions characterise sets of states

Example
The assertion x == y describes all states where the values of x and
y are equal, like {x == −1 ∧ y == −1}, {x == 1 ∧ y == 1}, . . .

9 / 36

Assertions

An assertion P can be viewed as a set of states where P is
true:

x == y : All states where x has the same value as y
x ≤ y : All states where the value of x is less or equal to the
value of y
x == 2 ∧ y == 3: Only one state (if x and y are the only
variables)
true: All states
false: No state

Example

{x == y}x = x ∗ 2;{x == 2 ∗ y}y = y ∗ 2;{x == y}

Then this must also hold for particular values of x and y satisfying
the initial assertion, like x == y == 5

10 / 36

Formal analysis of programs

Establish program properties by means of a system for formal
reasoning
Help in understanding how a program behaves
Useful for program construction
Look at logics for formal analysis

Formal system
Axioms: Defines the meaning of individual program statements
Rules: Derive the meaning of a program from the individual
statements in the program

11 / 36

Logic and Formal Systems

Our formal system consists of:
A set of symbols (constants, variables,...)
A set of formulas (meaningful combination of symbols)
A set of axioms (assumed to be true)
A set of inference rules of the form:

H1 H2 . . . Hn

C

Where each Hi is an assumption, and C is the conclusion
The conclusion is true if all the assumptions are true
The inference rules specify how to derive additional true
formulas from axioms and other true formulas.

12 / 36

Symbols

Program variables: x , y , z , ...
Relation symbols: ≤,≥, . . .
Function symbols: +,−, . . ., and constants
0, 1, 2, . . . , true, false
Equality: ==

13 / 36

Formulas in First-order logic

Meaningful combination of symbols

Assume that A and B are formulas, then the following are also
formulas:

¬A means “not A”
A ∨ B means “A or B”
A ∧ B means “A and B”
A⇒ B means “A implies B”

If x is a variable and A is a formula containing x , the following are
formulas:
∀x : A(x) means “A is true for all values of x”
∃x : A(x) means “there is (at least) one value of x such that A is true”

14 / 36

Examples of axioms and rules

Typical axioms:
A ∨ ¬A
A⇒ A

Typical rules:

A B

A ∧ B

A A⇒ B

B

A

A ∨ B

Example

x == 5 y == 5
x == 5 ∧ y == 5

x ≥ 0 x ≥ 0⇒ y ≥ 0
y ≥ 0

x == 5
x == 5 ∨ y == 5

15 / 36

Important terms

Interpretation: describe each formula as either true or false
Proof: derivation where all leaf nodes are axioms
Theorems: all lines in a proof
Soundness (of the logic): If we can prove some formula P (in
the logic) then P is true
Completeness: If a formula P is true, it can be proven

16 / 36

Program Logic (PL)

PL lets us express and prove properties about programs
Formulas are of the form

{P} S {Q}

S : program statement(s)
P and Q: assertions over program states (including
¬,∧,∨,∃,∀)
P: Precondition
Q: Postcondition

Example

{x == y} x = x ∗ 2;y = y ∗ 2; {x == y}

17 / 36

The proof system PL (Hoare logic)

Express and prove program properties
{P} S {Q}

P,Q may be seen as a specification of the program S
Code analysis by proving the specification (in PL)
No need to execute the code in order to do the analysis
An interpretation maps triples to true or false

{x == 0} x = x + 1; {x == 1} should be true
{x == 0} x = x + 1; {x == 0} should be false

18 / 36

Reasoning about programs

Basic idea: Specify what the program is supposed to do (pre-
and postconditions)
Pre- and postconditions are given as assertions over the
program state
Use PL to find a mathematical argument that the program
satisfies its specification

19 / 36

Interpretation

Interpretation of triples is related to code execution

{P} S {Q} is true if
• the initial state of S satisfies P
• S terminates

then Q is true in the final state of S

Expresses partial correctness (termination of S is assumed)

Example
{x == y} x = x ∗ 2;y = y ∗ 2; {x == y} is true
if the initial state satisfies x == y and the execution terminates,
then the final state will satisfy x == y

20 / 36

Examples

Some true formulas:

{x == 0} x = x + 1; {x == 1}
{x == 4} x = 5; {x == 5}
{true} x = 5; {x == 5}
{y == 4} x = 5; {y == 4}
{x == 4} x = x + 1; {x == 5}

{x == a ∧ y == b} x = x + y ; {x == a+ b ∧ y == b}
{x == 4 ∧ y == 7} x = x + 1; {x == 5 ∧ y == 7}
{x == y} x = x + 1; y = y + 1; {x == y}

Some formulas that are not true:

{x == 0} x = x + 1; {x == 0}
{x == 4} x = 5; {x == 4}

{x == y} x = x + 1; y = y − 1; {x == y}
{x > y} x = x + 1; y = y + 1; {x < y}

21 / 36

Partial correctness

The interpretation assumes termination of {P}S{Q}, but
termination is not proven.
The assertions (P , Q) express safety properties
The pre- and postconditions restrict possible states

The assertion true can be viewed as all states. The assertion false
can be viewed as no state. What does each of the following triple
express?

{P} S ; {false} S does not terminate
{P} S ; {true} does not say much...
{true} S ; {Q} Q holds after S in any case

(provided S terminates)
{false} S ; {Q} S can not start

22 / 36

Proof system PL

The proof system consists of axioms and rules
Axioms for basic statements:

x = e, skip,...
Rules for composed statements:

S1;S2, if, while, await, co...oc, ...

Theorems in PL

On triple form
All axioms are theorems
The conclusion of a rule is a theorem, given that all the
assumptions are theorems:

H1 H2 . . . Hn

C

23 / 36

Soundness

If a triple {P}S{Q} is a theorem in PL, the triple is interpreted as
true!

Example: we want

{x == 0}x = x+ 1{x == 1}

to be a theorem (since it was interpreted as true),
but

{x == 0}x = x+ 1{x == 0}

should not be a theorem (since it was interpreted as false)

Soundness: All theorems in PL are true

If we can use PL to prove some property of a program, then this
property will hold for all executions of the program

24 / 36

Textual substitution

Textual substitution:
Px←e means: All occurrences of x in P are replaced by expression e.

Example

(x == 1)x ←(x+1) ⇔ x + 1 == 1
(x + y == a)y ←(y+x) ⇔ x + (y + x) == a
(y == a)x ←(x+y) ⇔ y == a

Substitution propagates into formulas:

(¬A)x ←e ⇔ ¬(Ax ←e)
(A ∧ B)x ←e ⇔ Ax ←e ∧ Bx ←e

(A ∨ B)x ←e ⇔ Ax ←e ∨ Bx ←e

25 / 36

Remark on textual substitution

Px←e

Only free occurrences of x are substituted
Variables may be bound by quantifiers (then that variable is
not free)

Example

(∃y : x + y > 0)x ←1 ⇔ ∃y : 1+ y > 0
(∃x : x + y > 0)x ←1 ⇔ ∃x : x + y > 0
(∃x : x + y > 0)y ←x ⇔ ∃z : z + x > 0

Correspondingly for ∀

26 / 36

The assignment axiom – Motivation

Given by backward construction over the assignment:

Given the postcondition to the assignment, we may derive the
precondition!

What is the precondition?

{?}x = e{x == 5}

If the assignment x = e should terminate in a state where x has
the value 5, the expression e must have the value 5 before the
assignment:

{e == 5} x = e {x == 5}
{(x == 5)x←e} x = e {x == 5}

27 / 36

Axiom of assignment

Given the postcondition, we may construct the precondition:

Axiom for the assignment statement

{Px←e} x = e; {P}

If the assignment x = e should lead to a state that satisfies P , the
state before the assignment must satisfy P where x is replaced by e.

28 / 36

Proving an assignment

In order to prove the triple {P}x = e{Q} in PL, we must show
that the precondition P implies Qx ←e

P ⇒ Qx ←e {Qx ←e}x = e{Q}
{P}x = e{Q}

The blue implication is a logical proof obligation. In this course we
only convince ourself that these are true (we do not prove them
formally).

Qx ←e is the largest set of states such that the assignment is
guaranteed to terminate with Q

We must show that the set of states P is within this set

29 / 36

Examples

true ⇒ 1 == 1
{true} x = 1; {x == 1}

x == 0⇒ x + 1 == 1
{x == 0} x = x + 1; {x == 1}

(x == a ∧ y == b)⇒ x + y == a+ b ∧ y == b
{x == a ∧ y == b} x = x + y ; {x == a+ b ∧ y == b}

x == a⇒ 0 ∗ y + x == a
{x == a} q = 0; {q ∗ y + x == a}

y > 0⇒ y ≥ 0
{y > 0} x = y ; {x ≥ 0}

30 / 36

Axiom of skip

The skip statement does nothing

Axiom:
{P} skip; {P}

31 / 36

PL inference rules

Sequential composition Consequence

{P} S1; {R} {R} S2; {Q}
{P} S1;S2; {Q}

P ′ ⇒ P {P} S ; {Q} Q ⇒ Q ′

{P ′} S {Q ′}

Conditional while loop

{P ∧ B} S ; {Q} (P ∧ ¬B)⇒ Q
{P} if (B) S ; {Q}

{I ∧ B} S ; {I}
{I} while (B) S ; {I ∧ ¬B}

• Blue: proof obligations the while rule needs a
• for loop: exercise 2.22! loop invariant!

32 / 36

Sequential composition and Consequence

Backward construction over assignments:

x == y ⇒ 2 ∗ x == 2 ∗ y
{x == y}x = x ∗ 2{x == 2 ∗ y} {(x == y)y ←2∗y}y = y ∗ 2{x == y}

{x == y}x = x ∗ 2; y = y ∗ 2{x == y}

Usually we don’t bother to write down the assignment axiom:

(q ∗ y) + x == a⇒ ((q + 1) ∗ y) + x − y == a

{(q ∗ y) + x == a}x = x− y;{((q + 1) ∗ y) + x == a}
{(q ∗ y) + x == a}x = x− y; q = q+ 1{(q ∗ y) + x == a}

33 / 36

Logical variables

Do not occur in program text
Used only in assertions
May be used to freeze initial values of variables
May then talk about these values in the postcondition

Example
{x == x0} if (x < 0) x = −x {x ≥ 0 ∧ (x == x0 ∨ x == −x0)}

where (x == x0 ∨ x == −x0) states that
the final value of x equals the initial value, or
the final value of x is the negation of the initial value

34 / 36

Example: if statement

Verification of:

{x == x0} if (x < 0) x = −x {x ≥ 0 ∧ (x == x0 ∨ x == −x0)}

{P ∧ B} S {Q} (P ∧ ¬B)⇒ Q

{P} if (B) S {Q}

{P ∧ B}S{Q}:
{x == x0 ∧ x < 0}x = −x{x ≥ 0 ∧ (x == x0 ∨ x == −x0)}
Backward construction (assignment axiom) gives the
implication:
x == x0 ∧ x < 0⇒ (−x ≥ 0 ∧ (−x == x0 ∨ −x == −x0))

P ∧ ¬B ⇒ Q:
x == x0 ∧ x ≥ 0⇒ (x ≥ 0 ∧ (x == x0 ∨ x == −x0))

35 / 36

[And00] Gregory R. Andrews.
Foundations of Multithreaded, Parallel, and Distributed
Programming.
Addison-Wesley, 2000.

36 / 36

	Program Analysis (week 5)

