

Program Analysis (week 6)

2/307

INF4140 - Models of concurrency

Program Analysis, lecture 6

Hgsten 2013

30.9.2013

3/307

@ PL lets us express and prove properties about programs

@ Formulas are on the form

{PyS{Q}

S: program statement(s)

P and Q: assertions over program states
P: Precondition

Q: Postcondition

If we can use PL to prove some property of a program, then this
property will hold for all executions of the program J

4 /307

Sequential composition Consequence

{P} S1; {R} {R} %: {Q} PP=P {P}S{Q} Q=
{P} 51: 5 {Q} {P'}S{Q"}
Conditional while loop
{PAB}S; {Q} (PA-B)=Q {INB}S; {I}
{P}if(B)S; {Q} {I} while (B) S; {I A—=B}
e Blue: proof obligations the while rule needs a
o for loop: exercise 2.22! loop invariant!

5/307

@ Cannot control the execution in the same manner as for if
statements

e Cannot tell from the code how many times the loop body will
be executed
{y >0} while (y > 0) y =y - 1;

o Cannot speak about the state after the first, second, third
iteration

@ Solution: Find some assertion / that is maintained by the loop

body

o Loop invariant: express properties that are preserved by the
loop

@ Often hard to find suitable loop invariants
o This course is not an exercise in finding complicated invariants

6 /307

{INB}S; {I}
{I} while (B) S; {I AN—=B}

Can use this rule to reason about the more general case:

{P} while (B) S {Q}

where
@ P need not be the loop invariant
@ Q need not match (/ A —=B) syntactically
Combine While rule with Consequence rule to prove:
o Entry: P=1
e Loop: {/ A B}s{l}
e Exit: IN-B= Q@

7/307

{0<n} k=0; {k <n}while (k <n)k =k + 1;{k == n}

Composition rule splits a proof in two: assignment and loop.
Let kK < n be the loop invariant

@ Entry: k < n follows from itself

e Loop:
k<n=k+1<n
{k<nAnk<ntk=k+ 1{k < n}

o Exit: (k<nA-(k<n))=k==n

8 /307

{P A B}S;{Q}
{P}< await (B);S; >{Q}

Remember that we are reasoning about safety properties
e Termination is assumed
@ Nothing bad will happen

@ The rule does not speak about waiting or progress

9/307

Concurrent execution

Assume two statements S; and S, such that:

{P1}<81;>{Q1}
{P2}< 89, >{ o}

First attempt for a co..oc rule in PL:

{P1}<84;>{ 1} {Po}< 8g; >{Qo}
{P1 A Py}co <81;> 1] <83;> oc{@Q1 N}

Example (Problem with this rule)

{x==0}<x=x+1,>{x==1}
{x==0}<zx=x+2;>{x==2}

{x==0}co <x=x+1;>||<x=x+2,> oc{x==1Ax==2}

but this conclusion is not true: the postcondition should be x == 3!

y

10 /307

S1: {x==0<x=x+1,>{x==1}
So: {x==0}<x=x+2,>{x==2}

@ The execution of S, interferes with the pre- and postconditions

for 51
o The assertion x == 0 need not hold when S; starts execution

@ The execution of S interferes with the pre- and postconditions
for S,

o The assertion x == 0 need not hold when S, starts execution

Solution: weaken the assertions to account for the other process:

Si: {x==0vx=2}<x=x+1;>{x==1Vx==3}
So: {x==0Vx==1}<x=x+2;>{x==2Vx==3}

11 /307

Now we can try to apply the rule:

{x==0Vvx==2}<x=x+1>{x==1Vx==3}
{x==0Vx==1}<x=x4+2;>{x==2Vx==3}
{PRE}co <x=x+1;>||<x=x+2;> 0oc{POST}

where:
PRE :(x==0Vx==2)A(x==0Vx==1)
POST : (x ==1Vx==3)A(x ==2V x == 3)
which gives:

{x==0}co <x=x+1;>||<x=x+2;> oc{x ==3}

12 /307

Assume {P;}S;{Q;} for all &,...,S,

{Pi}8:1:{Qi} are interference free
{P1 Ao APrtcoSai|] .. |[Sn; oc{ @i A ... A Qp}

o Critical conditions are assertions outside critical sections
(Pi, Qi)

@ Interference freedom: The value of a critical condition is not
changed by execution of other processes

13/307

Interference freedom
{C A pre(S)}s{C}

C: critical condition
S: statement in some other process with precondition pre(S)

The critical condition “survives” execution of the other process

{P1}81;{Qu1} {P2}82i{ @2}
{Pl A PQ}CO Sq; || So; OC{Ql A Q2}

Four interference freedom requirements:

{Pz/\Pl} 51 {Pz} {Pl/\Pz} S5 {Pl}
{@APL} S {Q} {@QiA P} S {Q1}

14 /307

Si: {x==0<x=x+1,>{x==1}
So: {x==0}<x=x+2,>{x==2}

Here we have interference, for instance the precondition of Sy is not
maintained by execution of S;:

{(x==0A(x==0)}x=x+2;{x ==0}
is not true
However, after weakening:

S1: {x==0Vvx==2}<x=x+1;>{x==1Vx==3}
S {x==0Vx==1}<x=x+2;>{x==2Vx==3}

{x==0Vx==2)A(x==0Vx==1)}lx=x+2{x==0Vx==2}
(Correspondingly for the other three critical conditions)

15 /307

@ V set: global variables referred (i.e. read or written) to by a
process

@ W set: global variables written to by a process

@ Reference set: global variables in a critical condition of one
process

No interference if:
o W set of S is disjoint from reference set of S,

o W set of S, is disjoint from reference set of S;

However, variables in a critical condition of one process will often
be among the written variables of another

16 /307

Global invariants are:
@ Some conditions that only refer to global (shared) variables
@ Holds initially

@ Preserved by all assignments

We avoid interference if critical conditions are on the form {/ A L}
where:

@ / is a global invariant

@ L only refers to local variables of the considered process

17 /307

o Hide critical conditions
o MUTEX to critical sections

co..;S ... :51,{C}Sy; ... oc

S might interfere with C
Hide the critical condition by a critical region:

co...;S || <51;{C}Sy; > ... oc

18 /307

Let Producer be a process that delivers data to a Consumer

process

PC:c<p<c+1AN(p==c+1)= (buf == a[p—1])

Let PC be a global invariant of the program:

int buf, p =0, c =

process Producer {
int aln];
while (p < n) {

< await (p == c¢) ; >

buf = alp]
P = ptl;
¥
by

process Consumer {
int b[n];
while (¢ < n) {
< await (p > ¢c) ; >
blc] = buf
c = ctl;

19 /307

Loop invariant of Producer:
Ip: PCAp<=n

process Producer {

int aln];
{lp} // entering loop
while (p < n) { {lp N\ p < n}

< await (p ==c); > {lpAp<nAp==c}
{IP}p<—p+1,buf<—a[p]

buf = alpl; {lp}pept1
P=p+1; {Ip}
} {lIpA=(p<n)} // exit loop

< {PCAp==n}
}

Proof Obligation:
{lp Ap<nAp== c} = {IP}pep+1,buf<—a[p]

20/307

Loop invariant of Consumer:
Ic:PCAc<=nAbl0:c—1]==al0:c—1]

process Consumer {

int b[n];
{Ic} // entering loop
while (¢ < n) { {lc Nc < n}

< await (p > c) ; > {lcAhc<nAp>c}
{IC}C<—c+1,b[c]<—buf

blc] = buf; {/C}c%chl
c=c+1; {Ic}
} {le AN=(c < n)} // exit loop

& {PCANc==nAbl0:c—1]==a0:c—1]}
X

Proof Obligation:
{/C ANc<nAp> C} = {/C}cec+1,b[c]%buf

21/307

The final state of the program satisfies:
PCAp==nAc==nAbl0:c—1]==a[0:c—1]

which ensures that all elements in a are received and occur in the

same order in b

Interference freedom is ensured by the global invariant and await

statements

If we combine the two assertions after the await statements, we
get:
IpAp<nAp==cAlchNc<nAp>c

which gives false!
At any time, only one process can be after the await statement!

22 /307

monitor name {

monitor variable # shared global variable
initialization # for the monitor’s procedure
procedures

}

@ A monitor invariant (/) is used to describe the monitor’s inner
state
@ Express relationship between monitor variables
@ Maintained by execution of procedures:
e Must hold after initialization
e Must hold when a procedure terminates
e Must hold when we suspend execution due to a call to wait

e Can assume that the invariant holds after wait and when a
procedure starts

@ Should be as strong as possible!

23 /307

Assume that the monitor invariant / and predicate P does not
mention cv. Then we can set up the following axioms:

{I}wait(cv){/}
{P}signal(cv){P} for arbitrary P
{P}signal all(cv){P} for arbitrary P

24 /307

Verification of the invariant over request_read

I:(nr==0Vnw==0)Anw<1

procedure request_read() {
[}
while (nw > 0) { {I A nw > 0}
{I} wait(oktoread); {/}
Y {/Anw==0}
{Inr<—(nr+1) }
nr = nr + 1;
0!
}
(INnw>0)=1
(/ A nw == 0) = Iy «—(nr+1)

25 /307

Assume that the invariant can mention the number of processes in
the queue to a condition variable.

o Let #cv be the number of processes waiting in the queue to
cv.

@ The test empty(cv) is then identical to #cv ==

wait(cv) is modelled as an extension of the queue followed by
processor release:

wait(cv) : {7} #cv = #cv + 1; {1} sleep{/}
by assignment axiom:

wait(cv) : {lucy (#evi1)) #ev = Fcv + 1; {1} sleep{!}

26 /307

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : {7} if (#cv!= 0) #cv =#cv — 1 {P}

signal(cv) - {((#cv ==0) = P) A ((#cev # 0) = Pyoy e (ev—1))}
if (#cv!=0) #cv=H#cv -1
{P}

o signal _all(cv): {Pycv<o} #cv=0{P}

27 /307

Together this gives:

{l#cv e(#cv+1)}wait(cv){l}
{((#tcv ==0) = P) A ((#cv #0) = Pyey + (#cv—1)) }signal(cv){P}
{P4cyo}signal all(cv){P}

If we know that #cv # 0 whenever we signal, then the axiom for
signal(cv) be simplified to:

{'D#cv e(#cv—l)}Signal(cv){P}

Note! #cv is not allowed in statements!

@ Only used for reasoning

28 /307

monitor FIFO_semaphore {

int s = 0; # value of semaphore
cond pos; # signalled only when #pos>0
procedure Psem() { procedure Vsem() {
if (s==0) if empty(pos)
wait(pos); s=s+1;
else else
s = s-1; signal(pos);
} }

¥

Consider the following monitor invariant:
s>0A(s>0= #pos ==0)

No process is waiting if the semaphore value is positive

29 /307

Example: FIFO semaphore verification (2)

I: s>0A(s>0= #pos==0)

procedure Psem() {
{1}
if (s==0) {/ As==0}
{/#pose(#pos+1)} wait(pos); {/}
else {/ Ns# 0}
{Is<—(s—1)} s = s-1; {l}
{/}
}

30/307

I: s>0A(s>0= #pos==0)

This gives two proof obligations:

If branch:
(INs==0)= I#pos «—(#pos+1)
s == =5>0A(s>0= #pos+1==0)
s== =s>0
Else branch:
(I Ns# 0) = I —(s—1)
(s>0A#pos==0)=s5s—1>0A(s—1>0= #pos ==0)

(s >0A#pos==0)=s5s>0A#pos==0

31/307

Example: FIFO semaphore verification (4)

I: s>0A(s>0= #pos==0)

procedure Vsem() {
{1}
if empty(pos) {/ A #pos == 0}
{ls e(s+1)}s=3+1; {/}
else {/ A #pos # 0}
{I#pos <—(#pos—1)} signal (pOS) > {I}

{1}

32/307

I: s>0A(s>0= #pos==0)

As above, this gives two proof obligations:
If branch:

(I N #pos == 0) = s« (s41)
(s>0A#pos==0)=s+1>0A(s+1>0= #pos==0)
(s> 0A#pos==0)=s+1>0A#pos ==

Else branch:
(/ N #pos # 0) = l#pos «—(#pos—1)
(s==0A#pos#0)=s>0A(s>0= #pos—1==0)
S —— 0 :> S Z 0

33/307

[And00] Gregory R. Andrews.

Foundations of Multithreaded, Parallel, and Distributed
Programming.

Addison-Wesley, 2000.

34 /307

	Intro
	Warming up
	The await language
	Semantics and properties

	Locks & barriers (week 2)
	Critical sections
	Liveness and fairness
	Barriers

	Semaphores (week 3)
	Semaphore as sync. construct
	Producer/consumer
	Dining philosophers
	Readers/writers

	Monitors (week 4)
	Semaphores & signalling disciplines
	Bounded buffer
	Readers/writers problem
	Time server
	Shortest-job-next scheduling
	Sleeping barber

	Program Analysis (week 5)
	Program Analysis (week 6)

