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Asynchronous Communication:
Semantics, specification and reasoning

Where are we?
part one: shared variable systems

programming
synchronization
reasoning by invariants and Hoare logic

part two: communicating systems
message passing
channels
rendezvous

What is the connection?
What is the semantic understanding of message passing?
How can we understand concurrency?
How to understand a system by looking at each component?
How to specify and reason about asynchronous systems?
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Overview

Clarifying the semantic questions above, by means of histories:
describing interaction
capturing interleaving semantics for concurrent systems
Focus: asynchronous communication systems without channels

Plan today
Histories from the outside view of components

describing overall understanding of a (sub)system
Histories from the inside view of a component

describing local understanding of a single process
The connection between the inside and outside view

the composition rule
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What kind of system? Agent network systems

Two kinds of settings for concurrent systems, based on the notion
of:

process — without self identity, but with named channels.
Channels are usually FIFO.
object (agent) — with self identity, but without channels,
sending messages to named objects through a network. In
general, a network gives no FIFO guarantee, nor guarantee of
successful transmission.

We use the latter here, since it is a very general setting. The
process/channel setting may be obtained by representing each
combination of object and message kind as a channel.
So, in the following we consider agent/network systems!
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Programming asynchronous agent systems

Standard sequential language extended with statements for sending
and receiving:

send statement: send B : m(e)
means that the current agent sends message m to agent B
where e is an (optional) list of actual parameters.
fixed receive statement: await B : m(w)
wait for a message m from a specific agent B , and receive
parameters in the variable list w . We say that the message is
then consumed.
open receive statement: await X ?m(w)
wait for a message m from any agent X and receive
parameters in w (consuming the message).
The variable X will be set to the agent that sent the message.
We may use a choice operator [] to select between
alternative statement lists, starting with receive statements.

Here m is a message name, B and e expressions, X and w variables.
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Example: Coin Machine

Consider an agent C which changes “5 krone” coins and “1 krone”
coins into “10 krone” coins. It receives five and one messages and
sends out ten messages as soon as possible, in the sense that the
number of messages sent out should equal the total amount of
kroner received divided by 10.

We imagine here a fixed user agent U, both producing the five and
one messages and consuming the ten messages. The code of the
agent C is given below, using b (balance) as a local variable
initialized to 0.
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Example: Coin Machine (Cont)

loop
while b<10 do

(await U:five; b:=b+5)
[](await U:one; b:=b+1)

od
send U:ten; b:=b-10

end

Here, the choice operator, [], selects the first enabled branch, (and
makes a non-deterministic choice if both branches are enabled).
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Interleaving semantics of concurrent systems

a concurrent system may be described semantically by a set of
executions,
where each execution is captured by the sequence of atomic
interaction events, often called trace.

This is called interleaving semantics, because in each interaction
sequence, all interactions are ordered sequentially, and there is no
concurrency (for a given sequence).
Concurrency is expressed by the set of all possible interleavings.
Example: If interactions a and b are concurrent, the regular
expression

[[a; b] | [b; a]]

expresses the two possible interleavings.

The parallel composition of a∗ and b∗ is [a | b]∗

10 / 37



Safety and liveness considerations: Traces

We may let each interaction sequence reflect all interactions in an
execution, called the trace, and the set of all possible traces is then
called the trace set.

terminating systems give rise to finite traces
non-terminating systems may give rise to infinite traces (if the
interaction goes on)

Thus the trace set semantics of a system with both terminating
and non-terminating processes, contain both finite and infinite
traces. This kind of semantics expresses both

safety (“nothing wrong will happen”)
liveness (“something good will happen”)
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Safety and liveness considerations: Histories

For practical specification, it is convenient to deal with finite traces,
and the notion of a trace up to a given execution point, often called
a history, is useful.
Note: In contrast to the book, histories are here finite initial parts
of a trace (prefixes).
Note: The set of histories for all possible choices of execution
consists of finite sequences, and is

prefix closed, i.e. if a history h is in the set, then any prefix
(initial part) of h is also in the set.

Sets of histories express safety, but not liveness.
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Simple example: histories and trace set

Consider the system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).

Trace set: {[hi − B]∞}, {[hi − B]+ [hi − A]}
Histories: {[hi − B]∗}, {[hi − B]+ [hi − A]}

a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hi-A” after finitely many
“hi-B” ’s.

Trace set: {[hi − B]+ [hi − A]}
Histories: {[hi − B]∗}, {[hi − B]+ [hi − A]}

an “eager” B will reply within a fixed number of “hi-B” ’s, for instance
before A says “hi-B” three times.

Trace set: {[hi − B] [hi − A]}, {[hi − B] [hi − B] [hi − A]}
Histories:
∅, {[hi − B]}, {[hi − B] [hi − A]}, {[hi − B] [hi − B]}, {[hi − B] [hi − B] [hi − A]}
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Prefix closure and history functions
A history is a finite sequence of events. We use the following
functions:

ε : → Hist — the empty history (constructor)
_;_ : Hist ∗ Event → Hist — append right (constructor)
#_ : Hist → Nat — length
_/_ : Hist ∗ Set → Hist — projection by set of events
_ ≤ _ : Hist ∗ Hist → Bool — prefix relation
_ < _ : Hist ∗ Hist → Bool — strict prefix relation

where _ gives argument positions. Definitions (inductive wrt. ε and _;_):

#ε = 0
#(h; x) = (#h) + 1
ε/s = ε
(h; x)/s = if x ∈ s then (h/s); x else (h/s) fi
h ≤ h′ = (h = h′) ∨ h < h′

h < ε = false
h < (h′; x) = h ≤ h′

where x is an event, s a set of events, and h a sequence of events.
< and ≤ denote strict and non-strict prefix-relations:
h ≤ h′ expresses that sequence h is a prefix (initial part) of h′.
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Invariants and Prefix Closed Trace Sets

May use invariants to define trace sets:
An invariant I (h) is a predicate over a history h, supposed to hold at all
times:

“At any point in an execution h the property I (h) is satisfied”

It defines the following set:

{h | I (h)}
which is prefix closed if I is historically monotonic:

h ≤ h′ ⇒ (I (h′)⇒ I (h))

Remark:
A non-monotonic predicate I may be strengthened to a monotonic one I ′:

I ′(ε) = I (ε)
I ′(h′; x) = I (h′) ∧ I (h′; x)

Thus, a monotonic invariant I ′ defines the following prefix closed trace
set:

{h | I ′(h)} 21 / 37



Semantics: Outside view: global histories over events

Consider asynchronous communication by messages from one agent
to another: Since message passing may take some time, the
sending and receiving of a message m are semantically seen as two
distinct atomic interaction events of type Event:

A↑B : m denotes that A sends message m to B
A↓B : m denotes that B receives (consumes) message m from
A

A global history, H, is a finite sequence of such events, requiring
that it is legal, i.e. each reception is preceded by a corresponding
send-event.
For instance, the history

[(A↑B : hi), (A↑B : hi), (A↓B : hi), (A↑B : hi), (B ↑A : hi)]

is legal and expresses that A has sent “hi” three times and that B
has received one of these and has replied “hi”.
Note: a concrete message may also have parameters, say

messagename(parameterlist)

where the number and types of the parameters are statically checked.
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Coin Machine Example: Events

U ↑C : five −− U sends the message “five” to C
U ↓C : five −− C consumes the message “five”

U ↑C : one −− U sends the message “one to C
U ↓C : one −− C consumes the message “one”

C ↑U : ten −− C sends the message “ten”
C ↓U : ten −− U consumes the message “ten”
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Legality and other functions on histories

Legality (sometimes called well-definedness) can be defined by the
following function on histories:

legal : Hist → Bool — all reception is legal

Definition (inductive wrt. ε and _;_):

legal(ε) = true
legal(h; (A↑B : m)) = legal(h)
legal(h; (A↓B : m)) = legal(h) ∧#(h/{A↓B : m}) < #(h/{A↑B : m})

where m is message and h a history.
A received message has been sent but not yet consumed.
Note: when m includes parameters, legality ensures that the values
received are the same as those sent.
Example of a legal history (coin machine C user U):

[(U ↑C : five), (U ↑C : five), (U ↓C : five), (U ↓C : five), (C ↑U : ten)]
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Outside view: logging the global history

How to calculate the global history at run-time:
introduce a global variable H, initialized to the empty
sequence,
for each execution of a send statement in A, update H by

H := H; (A↑B : m)

where B is the destination and m is the actual message
for each execution of a receive statement in B , update H by

H := H; (A↓B : m)

where m is the message and A the sender. The message must
be of the kind requested by B .
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Outside View: Global Properties

Global invariant: By a predicate I on the global history, we may
specify desired system behavior:

“at any point in an execution H the property I (H) is
satisfied”

By logging the history at run-time, as above, we may monitor
an executing system. When I (H) is violated we may

report it
stop the system, or
interact with the system (for inst. through fault handling)

How can we prove such properties by analysing the program
text?
How can we monitor, or prove correctness properties,
component-wise ?
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Semantics: Inside view: Local histories

Definition (αA): The events visible to an agent A, denoted αA,
are the events local to A, i.e.

A↑B : m — any send-events from A. (output relative to A)
B ↓A : m — any reception by A. (input relative to A)

Definition (hA): The local history of A , denoted hA, is the
subsequence of all events in an execution which are visible to A .
Conjecture: Correspondence between global and local view:

hA = H/αA

i.e. at any point in an execution the history observed locally in A is
the same as the projection to A -events of the history observed
globally.

Note: Each event is visible to one, and only one, agent!
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Coin Machine Example: Local Events

The events visible to C are:

U ↓C : five −− C consumes the message “five”
U ↓C : one −− C consumes the message “one”
C ↑U : ten −− C sends the message “ten”

The events visible to U are:

U ↑C : five −− U sends the message “five” to C
U ↑C : one −− U sends the message “one to C
C ↓U : ten −− U consumes the message “ten”
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How to relate Local and Global Views

From global specification to implementation:
First, set up the goal of a system: by one or more global histories.
Then implement it. For each component: use the global histories to
obtain a local specification, guiding the implementation work.
“construction from specifications”

From implementation to global specification:
First, make or reuse components.
Use the local knowledge for the desired components to obtain
global knowledge.

Working with invariants:
The specifications may be given as invariants over the history.

Global invariant: in terms of all events in the system
Local invariant (for each agent): in terms of events visible to
the agent

Need composition rules connecting local and global invariants.
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Example revisited: Coin Machine

The code of the agent C is given below, using b as a local variable
initialized to 0.

loop
while b<10 do

(await U:five; b:=b+5)
[](await U:one; b:=b+1)

od
send U:ten; b:=b-10

end

Local invariants may refer to the local history h, which is the
sequence of events visible to C that have occurred so far. The
events visible to C are:

U ↓C : five −− C consumes the message “five”
U ↓C : one −− C consumes the message “one”
C ↑U : ten −− C sends the message “ten”
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Coin Machine Example: Loop Invariants

Loop invariant for the outer loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 5

where sum (the sum of values in the messages) is defined as
follows:

sum(ε) = 0
sum(h; (... : five)) = sum(h) + 5
sum(h; (... : one)) = sum(h) + 1
sum(h; (... : ten)) = sum(h) + 10

Loop invariant for the inner loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 15
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Histories: inside to outside view

From local histories to global history: if we know all the local
histories hAi in a system (i = 1...n), we have

legal(H) ∧i hAi = H/αAi

i.e. the global history H must be legal and correspond to all the
local histories. This may be used to reason about the global history.
Local invariant: a local specification of Ai is given by a predicate
on the local history IAi (hAi ) describing a property which holds
before all local interaction points.

I may have the form of an implication, expressing the output events
from Ai depends on a condition on its input events.
From local invariants to a global invariant:
if each agent satisfies IAi (hAi ), the total system will satisfy:

legal(H) ∧i IAi (H/αAi )
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Coin machine example: from Local to Global Invariant

before each send/receive:

sum(h/↓) = sum(h/↑) + b ∧ 0 ≤ b < 15

Local Invariant of C in terms of h alone:

IC (h) = ∃b. (sum(h/↓) = sum(h/↑) + b ∧ 0 ≤ b < 15)

IC (h) = 0 ≤ sum(h/↓)− sum(h/↑) < 15

For a global history H (h = H/αC ):

IC (H/αC ) = 0 ≤ sum(H/αC/ ↓)− sum(H/αC/↑) < 15

Shorthand notation:

IC (H/αC ) = 0 ≤ sum(H/↓C )− sum(H/C ↑) < 15
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Coin machine example: from Local to Global Invariant

Local Invariant of a careful user U (with exact change):

IU(h) = 0 ≤ sum(h/U ↑)− sum(h/↓U) ≤ 10

IU(H/αU) = 0 ≤ sum(H/U ↑)− sum(H/↓U) ≤ 10

Global Invariant of the system U and C :

I (H) = legal(H) ∧ IC (H/αC ) ∧ IU(H/αU)

implying:

0 ≤sum(H/U ↓C )−sum(H/C ↑U)≤sum(H/U ↑C )−sum(H/C ↓U)≤10

since legal(H) gives:
sum(H/U ↓C ) ≤ sum(H/U ↑C ) and
sum(H/C ↓U) ≤ sum(H/C ↑U).
So in this system the coin machine will have balance ≤ 10.
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Coin Machine Example: Loop Invariants (Alternative)

Loop invariant for the outer loop:

rec(h) = sent(h) + b ∧ 0 ≤ b < 5

where rec (the total amount received) and sent (the total amount
sent) are defined as follows:

rec(ε) = 0
rec(h; (U ↓C : five)) = rec(h) + 5
rec(h; (U ↓C : one)) = rec(h) + 1
rec(h; (C ↑U : ten)) = rec(h)
sent(ε) = 0
sent(h; (U ↓C : five)) = sent(h)
sent(h; (U ↓C : one)) = sent(h)
sent(h; (C ↑U : ten)) = sent(h) + 10

Loop invariant for the inner loop:

rec(h) = sent(h) + b ∧ 0 ≤ b < 15
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Legality

The above definition of legality reflects networks where you may
not assume that messages sent will be delivered, and where the
order of messages sent need not be the same as the order received.
Perfect networks may be reflected by a stronger concept of legality
(see next slide).

Remark: In “black-box” specifications, we consider observable
events only, abstracting away from internal events. Then, legality of
sending may be strengthened:

legal(h; (A↑B : m)) = legal(h) ∧ A 6= B
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Using Legality to Model Network Properties

If the network delivers messages in a FIFO fashion, one could
capture this by strengthening the legality-concept suitably, requiring

sendevents(h/ ↓) ≤ h/↑
where the projections h/↑ and h/ ↓ denote the subsequence of
messages sent and received, respectively, and sendevents converts
receive events to the corresponding send events.

sendevents(ε) = ε
sendevents(h; (A↑B : m)) = sendevents(h)
sendevents(h; (A↓B : m)) = sendevents(h); (A↑B : m)

Channel-oriented systems can be mimicked by requiring FIFO
ordering of communication for each pair of agents:

sendevents(h/A ↓ B) ≤ h/A↑B

where A ↓ B denotes the set of receive-events with A as source and
B as destination, and similarly for A↑B .
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