

Active Objects

2 / 29

INF4140 - Models of concurrency
Active Objects, lecture 12

Høsten 2013

18.11.2013

3 / 29

Aims for this lecture

About distributed object-oriented systems and introduction to Creol

Consider the combination of OO, concurrency, and distribution
Understanding active objects

interacting by asynchronous method calls

A short introduction into (a variant of) Creol using small
example programs

Note: Inheritance and dynamic object creation not considered here.

4 / 29

Open Distributed Systems

Consider systems of communicating software units

Distribution: geographically spread components
Networks may be asynchronous and unstable
Component availability may vary over time

Openness : encapsulation
Implementation of other objects is not
necessary known.
Interaction with other objects is
through interfaces.

ODS dominate critical infrastructure in society:
bank systems, air traffic control, etc.
ODS: complex, error prone, and robustness is poorly
understood

Network

5 / 29

Challenges with OO languages for modern systems

Modern systems are often large and complex, with distributed,
autonomous units connected through different kinds of networks.

OO + concurrency
synchronization, blocking, deadlock
OO + asynchronous communication
messages on top of OO or method-based communication?
problems with RPC/RMI
OO + distribution
efficient interaction (passive/active waiting),
OO + openness
restricted knowledge of other objects
OO + scalability
management of large systems

6 / 29

Active and Passive Objects

Passive objects
Execute their methods in the caller’s thread of control (e.g.,
Java)
In multithreaded applications, must take care of
synchronization

Shared variable interference for non-synchronized methods

If two objects call the same object, race condition may occur

Active (or concurrent) objects
Execute their methods in their own thread of control (e.g.,
Actors)
Communication is asynchronous
Call and return are decoupled (future variables)
Cooperative multitasking, specified using schedulers

7 / 29

Creol: A Concurrent Object Model

OO modeling language that targets open distributed systems

All objects are active (or concurrent), but may receive
requests

Need easy way to combine active and passive/reactive behavior

We don’t always know how objects are implemented
Separate specification (interface) from implementation (class)
Object variables are typed by interface, not by class

No assumptions about the (network) environment
Communication may be unordered
Communication may be delayed
Execution should adapt to possible delays in the environment

Synchronization decided by the caller
Method invocations may be synchronous or asynchronous

8 / 29

Interfaces as types

Object variables (pointers) are typed by interfaces
(other variables are typed by data types)

Mutual dependency: An interface may require a cointerface
Only objects of cointerface type may call declared methods
Explicit keyword caller (identity of calling object)
Supports callbacks to the caller through the cointerface

All object interaction is controlled by interfaces
No explicit hiding needed at the class level
Interfaces provide behavioral specifications
A class may implement a number of interfaces

Type safety: no “method not understood” errors

9 / 29

Interfaces

Declares a set of method signatures
With cointerface requirement

interface I inherits I begin
with J MtdSig // cointerface J

end

Method signatures (MtdSig) of the form:

op m (in x : I out y : I)

method name m with in-parameters x and out-parameters y
Parameter types may also range over data types (Bool , Int,
String . . .)

10 / 29

Interfaces: Example

Consider the mini bank example from last week

We have Client, MiniBank, and CentralBank objects

Clients may support the following interface:

interface Client begin
with MiniBank

op pin(out p : Int)
op amount(out a : Int)

end

only MiniBank objects may call the pin and amount methods

11 / 29

Interfaces: Example (cont.)

MiniBank and CentralBank interfaces:

interface MiniBank begin
with Client

op withdraw(in name : String out result : Bool)
end

interface CentralBank begin
with MiniBank

op request(in name : String, pin : Int, amount : Int
out result : Bool)

end

12 / 29

Asynchronous Communication Model

o1 o2
Object o1 calls some
method on object o2

In o2: Arbitrary delay
after invocation arrival
and method startup

In o1: Arbitrary delay
after completion arrival
and reading the return

13 / 29

Main ideas of Creol: Programming perspective

Main ideas:
Asynchronous communication
Avoid undesired inactivity

Other processes may execute while some process waits for a
reply

Combine active and reactive behavior
In the language, this is achieved by statements for

asynchronous method calls and
processor release points

Note: Relase points enable interleaving of active and reactive code
Note: No need for signaling / notification

14 / 29

Execution inside a Creol Object

Concurrent objects encapsulate a processor
Execution in objects should adapt to environment delays
At most one active process at a time
Implicit scheduling between internal processes inside an object

Object

STATE

15 / 29

Internal Processes in Concurrent Objects

Process (method activation): code + local variable bindings
(local state)
Object: state + active process + suspended processes
Asynchronous invocation: t!o.m(In)

The label t identifies the call

Reading the result: t?(Out)
Processor release points

Declared by await statements: await guard
Guards can be

t?
Boolean condition
and also method call

If a guard evaluates to false the active process is suspended
If no process is active, any suspended process may be
activated if its guard evaluates to true.

16 / 29

Statements for object communication

Objects communicate through method invocations only
Different ways to invoke a method m
Decided by caller — not at method declaration site
Guarded invocation:

t!o.m(In); . . . ; await t?; t?(Out)

Label free abbreviations for standard patterns:
o.m(In;Out) = t!o.m(In); t?(Out) — synchronous call
await o.m(In;Out) = t!o.m(In); await t?; t?(Out)
!o.m(In) — no reply needed

Internal calls: m(In;Out), t!m(In), !m(In)
Internal calls may also be asynchronous/guarded

17 / 29

Creol syntax

Syntactic categories. Definitions.

t in Label
g in Guard
p in MtdCall
S in ComList
s in Com
x in VarList
e in ExprList
m in Mtd
o in ObjExpr
b in BoolExpr

g ::= φ | t? | g1 ∧ g2
p ::= o.m |m
S ::= s | s; S
s ::= skip | begin S end | S1�S2
| x := e | x := new classname(e)
| if b then S1 else S2 end
| while b do S end
| !p(e) | t!p(e) | t?(x) | p(e; x)
| await g | await p(e; x)
| release

Omit the functional language for expressions e here:
this, caller, strings, integers, lists, sets, maps, etc

18 / 29

Example: CentralBank implementation

class Bank implements CentralBank begin
var pin -- pin codes, indexed by name
var bal -- balances, indexed by name

with MiniBank
op request(in name : String, pin : Int, amount : Int

out result : Bool) ==
if (pin[name] = pin && bal[name] >= amount)

then result := true
else result := false end

end

19 / 29

Example: MiniBank implementation

class MiniBank(bank : CentralBank) implements MiniBank begin
with Client

op withdraw(in name : String out result : Bool) ==
var amount : Int, pin : Int;
caller.pin(;pin); caller.amount(;amount)
await bank.request(name, pin, amount; result)

end

method calls caller.pin(...) and caller.amount(...)
are type safe by cointerface requirements
await statement: passive waiting for reply from CentralBank

20 / 29

Example: Client implementation

Optimistic client:

class Person(m : MiniBank) implements Client begin
var name : String, pin : Int;

op run == success : Bool;
await m.withdraw(name;success);
if (success == false) then !run end

with MiniBank
op pin(out p : Int) == p := pin
op amount(out a : Int) == a := 1000

end

Assuming communication with a fixed minibank m

21 / 29

Main ideas of Creol: Programming perspective

concurrent objects (each with its own virtual processor)

a notion of asynchronous methods calls, avoids blocking,
using processor release points

high level process control
no explicit signaling/notification
busy waiting avoided!

openness by a notion of multiple interfacing

type safe call-backs due to cointerfaces

Remark: abstraction by behavioral interfaces

22 / 29

Example: Buffer

interface Buffer begin
with Producer op put(in x : Int)
with Consumer op get(out x : Int)

end

class OneSlotBuffer implements Buffer begin
var value : Int, full : Bool;
op init == full := false
with Producer

op put(in x : Int) == await ¬full; value := x; full := true
with Consumer

op get(out x : Int) == await full; x := value; full := false
end

init: initialization code executed at object creation

23 / 29

Example: Buffer (cont.)

Illustrating alternation between active and reactive behavior

class Consumer(buf: Buffer) implements Consumer begin
var sum : Int := 0;
op run == var j : Int;

while true do await buf.get(;j); sum := sum + j end
with Any op getSum(out s : Int) == s := sum

end

Call to buf.get:
Asynchronous
await: processor release
Incoming calls to getSum can be served while waiting for reply
from buf

Interface Any: supertype of all interfaces
Any object can call getSum

24 / 29

Readers/Writers example (Simple implementation)

interface RW
begin with RWClient

op OR — open read
op OW — open write
op CR — close read
op CW — close write

end

class RW implements RW
begin var r: Int:=0; var w: Int:=0;
with RWClient

op OR == await w=0; r:= r+1
op OW == await w=0 and r=0; w:= w+1
op CR == r:= r-1
op CW == w:= w-1

end
Note: A client may do asynchronous calls to OR/OW and
synchronous calls to CR/CW.

25 / 29

Readers/Writers example (version 2)

class RW(db : DataBase) implements RW begin
var readers : Set[Reader] := ∅, writer : Writer := null,
pr : Int := 0; // number of pending calls to db.read

with Reader
op OR == await writer = null; readers := readers ∪ caller
op CR == readers := readers \ caller
op read(in key : Int out result : Int) ==

await caller ∈ readers;
pr := pr + 1; await db.read(key;result); pr := pr - 1;

with Writer
op OW == await (writer = null && readers = ∅ && pr = 0);
writer := caller

op CW == await caller = writer; writer := null
op write(in key : Int, value : Int) ==

await caller = writer; db.write(key,value);
end

26 / 29

RW example, remarks (version 2)

read and write operations on database may be declared with
cointerface RW
Weaker assumptions about Reader and Writer behavior than
in the first version

Here we actually check that only registered readers/writers do
read/write operations on the database

The database is assumed to store integer values indexed by key
Counting the number of pending calls to db.read (variable pr)
A reader may call CR before all read invocations are completed
For writing activity, we know that there are no pending calls to
db.write when writer is null. Why?
The solution is unfair: writers may starve
Still, after completing OW, we assume that writers will
eventually call CW. Correspondingly for readers

27 / 29

Summary: Active Objects

Passive objects usually execute their methods in the thread of
control of the caller (Java)
In multithreaded applications, we must take care of proper
synchronisation
Active objects execute their methods in their own thread of
control
Communication is asynchronous
synchronous communication possible by means of
asynchronous communication primitives
Call and return are decoupled by the use of labels
Usually, active objects use cooperative multitasking.
Cooperative multitasking is specified using schedulers. Our
scheduler will just randomly pick a next process.

28 / 29

PMA Group Courses

Spring:

INF3230 - Formal modeling and analysis of communicating systems
rewriting logic - language and tool Maude

INF5140/INF9140 - Specification and verification of parallel systems. (’11, ’13,
’15, ...)
Automatic verification using model checking techniques

INF5906/INF9906 - Selected topics in static analysis. (’10, ’12, ’14, ...)
analysis of programs at compile time

Fall:

INF5130/INF9130 - Selected topics in rewriting logic (’11, ’13, ’15, ...)

Each semester:

INF5160 - Seminar in Computer Science ("Formal methods seminar")

29 / 29

	Active Objects

