

Locks & barriers

2 / 47

INF4140 - Models of concurrency
Locks & barriers, lecture 2

Høsten 2014

5. 9. 2014

3 / 47

Practical Stuff

Mandatory assignment 1 (“oblig”)
Deadline: Friday September 26 at 18.00
Possible to work in pairs
Online delivery (Devilry): https://devilry.ifi.uio.no

4 / 47

Introduction

Central to the course are general mechanisms and issues
related to parallel programs
Previous class: await language and a simple version of the
producer/consumer example

Today
Entry- and exit protocols to critical sections

Protect reading and writing to shared variables
Barriers

Iterative algorithms:
Processes must synchronize between each iteration
Coordination using flags

5 / 47

Remember: await-example: Producer/Consumer

i n t buf , p := 0 ; c := 0 ;

process Producer { process Consumer {
i n t a [N] ; . . . i n t b [N] ; . . .
whi le (p < N) { whi le (c < N) {

< await (p = c) ; > < await (p > c) ; >
buf := a [p] ; b [c] := buf ;

p := p+1; c := c+1;
} }

} }

Invariants
An invariant holds in all states in all histories of the program.

global invariant: c ≤ p ≤ c + 1
local (in the producer): 0 ≤ p ≤ N

6 / 47

Critical section

Fundamental for concurrency
Immensely intensively researched, many solutions
Critical section: part of a program that is/needs to be
“protected” agains interference by other processes
Execution under mutual exclusion
Related to “atomicity”

Main question we are discussing today:
How can we implement critical sections / conditional critical
sections?

Various solutions and properties/guarantees
Using locks and low-level operations
SW-only solutions? HW or OS support?
Active waiting (later semaphores and passive waiting)

7 / 47

Access to Critical Section (CS)

Several processes compete for access to a shared resource
Only one process can have access at a time:
“mutual exclusion” (mutex)

Possible examples:
Execution of bank transactions
Access to a printer

A solution to the CS problem can be used to implement
await-statements

8 / 47

Critical section: First approach to a solution

Operations on shared variables happen inside the CS.
Access to the CS must then be protected to prevent interference.

process p [i=1 to n] {
whi le (t rue) {

CSentry # en t r y p r o t o c o l to CS
CS
CSex i t # e x i t p r o t o c o l from CS
non−CS

}
}

General pattern for CS

Assumption: A process which enters the CS will eventually
leave it.

⇒ Programming advice: be aware of exceptions inside CS!

9 / 47

Naive solution

i n t i n = 1 # p o s s i b l e v a l u e s i n {1, 2}

process p1 { process p2 {
whi le (t rue) { whi le (t rue) {

whi le (i n =2) { s k i p } ; whi le (i n =1) { s k i p } ;
CS ; CS ;
i n := 2 ; i n := 1
non−CS non−CS

}

entry protocol: active/busy waiting
exit protocol: atomic assignment

Good solution? A solution at all? What’s good, what’s less so?
More than 2 processes?
Different execution times?

10 / 47

Desired properties

Mutual exclusion (Mutex): At any time, at most one
process is inside CS.
Absence of deadlock: If all processes are trying to enter CS,
at least one will succeed.
Absence of unnecessary delay: If some processes are trying
to enter CS, while the other processes are in their non-critical
sections, at least one will succeed.
Eventual entry: A process attempting to enter CS will
eventually succeed.

NB: The three first are safety properties,1

The last a liveness property.
(SAFETY: no bad state
LIVENESS: something good will happen.)

1point 2 and 3 are slightly up-to discussion/standpoint!
11 / 47

Safety: Invariants (review)

A safety property expresses that a program does not reach a “bad”
state. In order to prove this, we can show that the program will
never leave a “good” state:

Show that the property holds in all initial states
Show that the program statements preserve the property

Such a (good) property is often called a global invariant.

12 / 47

Atomic sections

Used for synchronization of processes

General form:
< await (B) S; >

B: Synchronization condition
Executed atomically when B is true

Unconditional critical section (B is true):
< S; >

S executed atomically

Conditional synchronization:2

< await (B); >

2We also use then just await (B) or maybe await B. But also in this case
we assume that B is evaluated atomically.

13 / 47

Critical sections using locks

bool l o c k = f a l s e ;

process [i=1 to n] {
whi le (t rue) {

< await (¬ l o c k) l o c k := t rue >;
CS ;
l o c k := f a l s e ;
non CS ;

}
}

Safety properties:
Mutex
Absence of deadlock
Absence of unnecessary waiting

What about taking away the angle brackets <...>?

14 / 47

“Test & Set”

Test & Set is a method/pattern for implementing
conditional atomic action:

TS(l o c k) {
< bool i n i t i a l := l o c k ;
l o c k := t rue >;
re tu rn i n i t i a l

}

Effect of TS(lock)
side effect: The variable lock will always have value true
after TS(lock),
returned value: true or false , depending on the original
state of lock
exists as an atomic HW instruction on many machines.

15 / 47

Critical section with TS and spin-lock

Spin lock:

bool l o c k := f a l s e ;

process p [i=1 to n] {
whi le (t rue) {

whi le (TS(l o c k)) { s k i p } ; # en t r y p r o t o c o l
CS
l o c k := f a l s e ; # e x i t p r o t o c o l
non−CS

}
}

NB:
Safety: Mutex, absence of deadlock and of unnecessary delay.

Strong fairness needed to guarantee eventual entry for a process

Variable lock becomes a hotspot!

16 / 47

A puzzle: “paranoid” entry protocol

Better safe than sorry?
What about double-checking in the entry protocol whether it is
really, really safe to enter?

bool l o c k := f a l s e ;

process p [i = i to n] {
whi le (t rue) {

whi le (l o c k) { s k i p } ; # a d d i t i o n a l s p i n l o c k check
whi le (TS(l o c k)) {

whi le (l o c k) { s k i p }} ; # + more i n s i d e the TAS loop
CS ;
l o c k := f a l s e ;
non−CS

}
}

Does that make sense?

17 / 47

Multiprocessor performance under load (contention)

time

number of threads

TTASLock

TASLock

ideal lock

18 / 47

A glance at HW for shared memory

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

19 / 47

Test and test & set

Test-and-set operation:
(Powerful) HW instruction for synchronization
Accesses main memory (and involves “cache synchronization”)
Much slower than cache access

Spin-loops: faster than TAS loops

“Double-checked locking”: important design
pattern/programming idiom for efficient CS (under certain
architectures)3

3depends on the HW architecture/memory model. In some architectures:
does not guarantee mutex! in which case it’s an anti-pattern . . .

20 / 47

Implementing await-statements

Let CSentry and CSexit implement entry- and exit-protocols to the
critical section.

Then the statement < S;> can be implemented by

CSentry; S; CSexit;

Implementation of conditional critical section < await (B) S;> :

CSentry ;
whi le (!B) {CSexit ; CSentry } ;
S ;

CSexit ;

The implementation can be optimized with Delay between the exit
and entry in the body of the while statement.

21 / 47

Liveness properties

So far: no(!) solution for “Eventual Entry”-property, except the
very first (which did not satisfy “Absence of Unnecessary Delay”).

Liveness: Something good will happen
Typical example for sequential programs: (esp. in our context)
Program termination4

Typical example for parallel programs:
A given process will eventually enter the critical section

Note: For parallel processes, liveness is affected by the
scheduling strategies.

4In the first version of the slides of lecture 1, termination was defined
misleadingly.

22 / 47

Scheduling and fairness

A command is enabled in a state if
the statement can in principle be executed next
Concurrent programs: often more than 1 statement enabled!

bool x := t rue ;

co whi le (x){ s k i p } ; | | x := f a l s e co

Scheduling: resolving non-determinism
A strategy such that for all points in an execution: if there is more
than one statement enabled, pick one of them.

Fairness
Informally: enabled statements should not systematically be
neglected by the scheduling strategy.

23 / 47

Fairness notions

Fairness: how to pick among enabled actions without being
“passed over” indefinitely

Which actions in our language are potentially non-enabled? 5

Possible status changes:
disabled → enabled (of course),
but also enabled → disabled

Differently “powerful” forms of fairness: guarantee of progress
1. for actions that are always enabled
2. for those that stay enabled
3. for those whose enabledness show “on-off” behavior

5provided the control-flow/program pointer stands in front of them.
24 / 47

Unconditional fairness

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen, will eventually be chosen.

Example:
bool x := t rue ;

co whi le (x){ s k i p } ; | | x := f a l s e co

x := false is unconditional
⇒ The action will eventually be chosen

This guarantees termination

Example: “Round robin” execution

Note: if-then-else, while (b) ; are not conditional atomic
statements!

25 / 47

Weak fairness

Weak fairness
A scheduling strategy is weakly fair if

it is unconditionally fair
every conditional atomic action will eventually be chosen,
assuming that the condition becomes true and thereafter
remains true until the action is executed.

Example:
bool x = true , i n t y = 0 ;

co whi le (x) y = y + 1 ; | | < await y ≥ 10 ; > x = f a l s e ; oc

When y ≥ 10 becomes true, this condition remains true
This ensures termination of the program
Example: Round robin execution

26 / 47

Strong fairness

Example
bool x := t rue ; y := f a l s e ;

co
whi le (x) {y := t rue ; y := f a l s e }

| |
< await (y) x := f a l s e >

oc

Definition (Strongly fair scheduling strategy)
unconditionally fair and
each conditional atomic action will eventually be chosen, if the
condition is true infinitely often.

For the example:
under strong fairness: y true ∞-often ⇒ termination
under weak fairness: non-termination possible

27 / 47

Fairness for critical sections using locks

The CS solutions shown need to assume strong fairness to
guarantee liveness, i.e., access for a given process (i):

Steady inflow of processes which want the lock
value of lock alternates
(infinitely often) between true and false
Weak fairness:
Process i can read lock only when the value is false
Strong fairness:
Guarantees that i eventually sees that lock is true

Difficult: to make a scheduling strategy that is both practical and
strongly fair.

We look at CS solutions where access is guaranteed for weakly fair
strategies

28 / 47

Fair solutions to the CS problem

Tie-Breaker Algorithm
Ticket Algorithm
The book also describes the bakery algorithm

29 / 47

Tie-Breaker algorithm

Requires no special machine instruction (like TS)

We will look at the solution for two processes

Each process has a private lock
Each process sets its lock in the entry protocol

The private lock is read, but is not changed by the other
process

30 / 47

Naive solution

i n t i n = 1 # p o s s i b l e v a l u e s i n {1, 2}

process p1 { process p2 {
whi le (t rue) { whi le (t rue) {

whi le (i n =2) { s k i p } ; whi le (i n =1) { s k i p } ;
CS ; CS ;
i n := 2 ; i n := 1
non−CS non−CS

}

entry protocol: active/busy waiting
exit protocol: atomic assignment

Good solution? A solution at all? What’s good, what’s less so?
More than 2 processes?
Different execution times?

31 / 47

Tie-Breaker algorithm: Attempt 1

i n 1 := f a l s e , i n 2 := f a l s e ;

p roce s s p1 { p roce s s p2 {
wh i l e (t r ue){ wh i l e (t r ue) {

wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
i n1 := t r ue ; i n 2 := t r ue ;
CS CS ;
i n1 := f a l s e ; i n 2 := f a l s e ;
non−CS non−CS

} }
} }

What is the global invariant here?

Problem: No mutex

32 / 47

Tie-Breaker algorithm: Attempt 2

i n 1 := f a l s e , i n 2 := f a l s e ;

p roce s s p1 { p roce s s p2 {
wh i l e (t r ue){ wh i l e (t r ue) {

i n1 := t r ue ; i n 2 := t r ue ;
wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
CS CS ;
i n1 := f a l s e ; i n 2 := f a l s e ;
non−CS non−CS

} }
} }

Deadlock6 :-(

6Technically, it’s more of a live-lock, since the processes still are doing
“something”, namely spinning endlessly in the empty while-loops, never leaving
the entry-protocol to do real work. The situation though is analogous to a
“deadlock” conceptually.

33 / 47

Tie-Breaker algorithm: Attempt 3 (with await)

Problem: both half flagged their wish to enter ⇒ deadlock
Avoid deadlock: “tie-break”
Be fair: Don’t always give priority to one specific process
Need to know which process last started the entry protocol.
Add new variable: last

in1 := false , in2 := false ; int last

process p1 {
whi le (t rue){

i n1 := t rue ;
l a s t := 1 ;
< await ((not i n 2) or

l a s t = 2);>
CS
in1 := f a l s e ;
non−CS

}
}

process p2 {
whi le (t rue){

i n2 := t rue ;
l a s t := 2 ;
< await ((not i n 1) or

l a s t = 1);>
CS
in2 := f a l s e ;
non−CS

}
}

34 / 47

Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value
while a wait-condition evaluates to true, the wait condition will
remain true.

p1 sees that the wait-condition is true:
in2 == false

in2 can eventually become true,
but then p2 must also set last to 2
Then the wait-condition to p1 still holds

last == 2
Then last == 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

35 / 47

Tie-Breaker algorithm (4)

process p1 {
whi le (t rue){

i n1 := t rue ;
l a s t := 1 ;
whi le (i n2 and l a s t = 2){ s k i p }
CS
in1 := f a l s e ;
non−CS

}
}

Generalizable to many processes (see book)

36 / 47

Ticket algorithm

Scalability: If the Tie-Breaker algorithm is scaled up to n processes,
we get a loop with n − 1 2-process Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution to the CS problem
for n processes.

Works like the “take a number” queue at the post office (with
one loop)
A customer (process) which comes in takes a number which is
higher than the number of all others who are waiting
The customer is served when a ticket window is available and
the customer has the lowest ticket number.

37 / 47

Ticket algorithm: Sketch (n processes)

i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;

process [i = 1 to n] {
whi le (t rue) {

< tu rn [i] := number ; number := number +1 >;
< await (tu rn [i] = next)>;
CS
<next = next + 1>;
non−CS

}
}

The first line in the loop must be performed atomically!
await-statement: can be implemented as while-loop
Some machines have an instruction fetch-and-add (FA):
FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

38 / 47

Ticket algorithm: Implementation

i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;

process [i = 1 to n] {
whi le (t rue) {

tu rn [i] := FA(number , 1) ;
whi le (tu rn [i] != next) { s k i p } ;
CS
next := next + 1 ;
non−CS

}
}

FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

Without this instruction, we use an extra CS:7

CSentry; turn [i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm
(see book).

7Why?
39 / 47

Ticket algorithm: Invariant

Invariants
What is the global invariant for the ticket algorithm?

0 < next≤number

What is the local invariant for process i :
turn [i] < number
if p[i] is in the CS then turn [i] == next.

for pairs of processes i 6= j :
if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

40 / 47

Barrier synchronization

Computation of disjoint parts in parallel (e.g. array elements).
Processes go into a loop where each iteration is dependent on
the results of the previous.

process Worker [i=1 to n] {
whi le (t rue) {

t a s k i ;
wait u n t i l a l l n t a s k s a r e done # b a r r i e r

}
}

All processes must reach the barrier (“join”)
before any can continue.

41 / 47

Shared counter

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter :

i n t count := 0 ;
process Worker [i=1 to n] {
whi le (t rue) {

t a s k i ;
< count := count+1>;
< await (count=n)>;

}
}

Can be implemented using the FA instruction.
Disadvantages:

count must be reset between each iteration.
Must be updated using atomic operations.
Inefficient: Many processes read and write count concurrently.

42 / 47

Coordination using flags

Goal: Avoid too many read- and write-operations on one variable!!

Divides shared counter into several local variables.

Worker [i] :
a r r i v e [i] = 1 ;
< await (cont inue [i] == 1);>

Coo rd i n a t o r :
f o r [i=1 to n] < await (a r r i v e [i]==1);>
f o r [i=1 to n] cont inue [i] = 1 ;

NB: In a loop, the flags must be cleared before the next iteration!

Flag synchronization principles:
1. The process waiting for a flag is the one to reset that flag
2. A flag will not be set before it is reset

43 / 47

Synchronization using flags

Both arrays continue and arrived are initialized to 0.

process Worker [i = 1 to n] {
whi le (t rue) {

code to implement task i ;
a r r i v e [i] := 1 ;
< await (cont inue [i] := 1>;
cont inue := 0 ;

}
}

process Coo rd i n a t o r {
whi le (t rue) {

f o r [i = 1 to n] {
<await (a r r i v e d [i] = 1)>;
a r r i v e d [i] := 0
} ;

f o r [i = 1 to n] {
cont inue [i] := 1

}
}

}

44 / 47

Combined barriers

The roles of the Worker and Coordinator processes can be
combined.
In a combining tree barrier the processes are organized in a
tree structure. The processes signal arrive upwards in the tree
and continue downwards in the tree.

45 / 47

Implementation of Critical Sections

bool lock = false;
Entry: <await (!lock) lock = true>

Critical section
Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:
Busy waiting protocols are often complicated
Inefficient if there are fever processors than processes

Should not waste time executing a skip loop!

No clear distinction between variables used for synchronization
and computation!

Desirable to have a special tools for synchronization protocols

Next week we will do better: semaphores !!

46 / 47

References I

[Andrews, 2000] Andrews, G. R. (2000).
Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

47 / 47

	Locks & barriers
	Critical sections
	Liveness and fairness
	Barriers

