

Monitors

2 / 44

INF4140 - Models of concurrency
Monitors, lecture 4

Høsten 2014

19. Sep 2014

3 / 44

INF4140 - Models of concurrency
Monitors, lecture 4

Høsten 2014

19. Sep 2014

4 / 44

Overview

Concurrent execution of different processes
Communication by shared variables

Processes may interfere
x = 0; co x = x + 1 || x = x + 2 oc

final value of x will be 1, 2, or 3

await language – atomic regions
x = 0; co <x = x + 1> || <x = x + 2> oc

final value of x will be 3

special tools for synchronization:
Last week: semaphores
Today: monitors

5 / 44

Outline

Semaphores: review

Monitors:
Main ideas

Syntax and Semantics
Condition Variables
Signaling disciplines for monitores

Synchronization problems:
Bounded buffer
Readers/writers
Interval timer
Shortest-job next scheduling
Sleeping barber

6 / 44

Semaphores

Used as synchronization variables

Declaration: sem s = 1;

Manipulation: Only two operations, P(s) and V (s)

Advantage: Separation of business and synchronization code

Disadvantage: Programming with semaphores can be tricky:

Forgotten P or V operations
Too many P or V operations
They are shared between processes

Global knowledge
May need to examine all processes to see how a semaphore
works

7 / 44

Monitors

Monitor
“Abstract data type + synchronization”

program modules with more structure than semaphores
monitor encapsulates data, which can only be observed and
modified by the monitor’s procedures.

contains variables that describe the state
variables can be changed only through the available procedures

implicit mutex: only a procedure may be active at a time.
A procedure: mutex access to the data in the monitor
2 procedures in the same monitor: never executed concurrently

Condition synchronization:1 is given by condition variables
At a lower level of abstraction: monitors can be implemented
using locks or semaphores

1block a process until a particular condition holds.
8 / 44

Usage

Processes = active ⇔ Monitor: = passive/re-active
A procedure is active if a statement in the procedure is
executed by some process

all shared variables: inside the monitor
Processes communicate by calling monitor procedures
Processes do not need to know all the implementation details

Only the visible effects of the called procedure are important

the implementation can be changed. if visible effect remains
the same
Monitors and processes can be developed relatively
independent ⇒ Easier to understand and develop parallel
programs

9 / 44

Syntax & semantics

monitor name {
mon . v a r i a b l e s # sha r ed g l o b a l v a r i a b l e s
i n i t i a l i z a t i o n
p r o c edu r e s

}

monitor: a form of abstract data type:
only the procedures’ names visible from outside the monitor:

call name.opname(arguments)

statements inside a monitor: no access to variables outside the
monitor
monitor variables: initialized before the monitor is used

monitor invariant: used to describe the monitor’s inner states
10 / 44

Condition variables

monitors contain special type of variable: cond (condition)
Used to delay processes
each such variable is associated with a wait condition
value of a condition variable: queue of delayed processes
value: not directly accessible by programmer
Instead, manipulate it by special operations

cond cv; # declares a condition variable cv
empty(cv); # asks if the queue on cv is empty
wait(cv); # causes the process to wait in the queue to cv
signal(cv); # wakes up a process in the queue to cv
signal_all(cv); # wakes up all processes in the queue to cv

11 / 44

entry queue inside monitor

cv queue

call

call

mon. free

sw

wait
sw

sc

12 / 44

Implementation of semaphores

A monitor with P and V operations:

monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
i n t s := 0 # va l u e o f the semaphore
cond pos ; # wai t c o n d i t i o n

procedure Psem () {
whi le (s=0) { wait (pos) } ;
s := s − 1

}

procedure Vsem () {
s := s+1;
s i g n a l (pos) ;

}
}

13 / 44

Signaling disciplines

A signal on a condition variable cv has the following effect:
empty queue: no effect
the process at the head of the queue to cv is woken up

wait and signal constitute a FIFO signaling strategy

When a process executes signal(cv) then it is inside the
monitor. If a waiting process is woken up, there will then be
two active processes in the monitor.

There are two solutions which provide mutex:
Signal and Wait (SW): the signaller waits, and the signalled
process gets to execute immediately
Signal and Continue (SC): the signaller continues, and the
signalled process executes later

14 / 44

Signalling disciplines

Is this a FIFO semaphore assuming SW or SC?

monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
i n t s := 0 # va l u e o f the semaphore
cond pos ; # wai t c o n d i t i o n

procedure Psem () {
whi le (s=0) { wait (pos) } ;
s := s − 1

}

procedure Vsem () {
s := s+1;
s i g n a l (pos) ;

}
}

15 / 44

Signalling disciplines

FIFO semaphore for SW

monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
i n t s := 0 # va l u e o f the semaphore
cond pos ; # wai t c o n d i t i o n

procedure Psem () {
whi le (s=0) { wait (pos) } ;
s := s − 1

}

procedure Vsem () {
s := s+1;
s i g n a l (pos) ;

}
}

16 / 44

Signalling disciplines

FIFO semaphore for SW

monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
i n t s := 0 # va l u e o f the semaphore
cond pos ; # wai t c o n d i t i o n

procedure Psem () {
i f (s=0) { wait (pos) } ;
s := s − 1

}

procedure Vsem () {
s := s+1;
s i g n a l (pos) ;

}
}

17 / 44

FIFO semaphore

FIFO semaphore with SC: can be achieved by explicit transfer of
control inside the monitor (forward the condition).

monitor Semaphore_f i fo { # moni to r i n v a r i a n t : s ≥ 0
i n t s := 0 ; # va l u e o f the semaphore
cond pos ; # wai t c o n d i t i o n

procedure Psem () {
i f (s=0) wait (pos) ;
e l s e s := s − 1

}

procedure Vsem () {
i f empty (pos) s := s + 1
e l s e s i g n a l (pos) ;

}
}

18 / 44

Bounded buffer synchronization (1)

buffer of size n (“channel”, “pipe”)
producer: performs put operations on the buffer.
consumer: performs get operations on the buffer.
count: number of items in the buffer
two access operations (“methods”)

put operations must wait if buffer full
get operations must wait if buffer empty

assume SC discipline2

2It’s the commonly used one in practical languages/OS.
19 / 44

Bounded buffer synchronization (2)

When a process is woken up, it goes back to the
monitor’s entry queue

Competes with other processes for entry to the monitor
Arbitrary delay between awakening and start of execution
Must therefore test the wait condition again when execution
starts
E.g.: put process wakes up when the buffer is not full

Other processes can perform put operations before the
awakened process starts up
Must therefore check again that the buffer is not full

20 / 44

Bounded buffer synchronization monitors (3)

monitor Bounded_Buffer {
typeT buf[n]; int count = 0;
cond not_full, not_empty;

procedure put(typeT data){
while (count == n) wait(not_full);
Put element into buf
count = count + 1; signal(not_empty);

}

procedure get(typeT &result) {
while (count == 0) wait(not_empty);
Get element from buf
count = count - 1; signal(not_full);

}
}

21 / 44

Bounded buffer synchronization: client-sides

process Producer[i = 1 to M]{
while (true){

. . .
call Bounded_Buffer.put(data);

}
}
process Consumer[i = 1 to N]{

while (true){
. . .

call Bounded_Buffer.get(result);
}

}

22 / 44

Readers/writers problem

Reader and writer processes share a common resource
(database)
Reader’s transactions can read data from the DB
Write transactions can read and update data in the DB
Assume:

DB is initially consistent and that
Each transaction, seen in isolation, maintains consistency

To avoid interference between transactions, we require that
writers: exclusive access to the DB.
No writer: an arbitrary number of readers can access
simultaneously

23 / 44

Monitor solution to the reader/writer problem (2)

database cannot be encapsulated in a monitor, as the readers
will not get shared access
monitor instead used to give access to the processes
processes don’t enter the critical section (DB) until they have
passed the RW_Controller monitor

Monitor procedures:
request_read: requests read access
release_read: reader leaves DB
request_write: requests write access
release_write: writer leaves DB

24 / 44

Invariants and signalling

Assume that we have two counters as local variables in the monitor:
nr — number of readers
nw — number of writers

Invariant

We want RW to be a monitor invariant

chose carefully condition variables for “communication”
(waiting/signaling)

Let two condition variables oktoread og oktowrite regulate
waiting readers and waiting writers, respectively.

25 / 44

Invariants and signalling

Assume that we have two counters as local variables in the monitor:
nr — number of readers
nw — number of writers

Invariant
RW: (nr = 0 or nw = 0) and nw ≤ 1

We want RW to be a monitor invariant

chose carefully condition variables for “communication”
(waiting/signaling)

Let two condition variables oktoread og oktowrite regulate
waiting readers and waiting writers, respectively.

26 / 44

monitor RW_Control ler { # RW (nr = 0 or nw = 0) and nw ≤ 1
i n t nr :=0 , nw:=0
cond oktoread ; # s i g n a l l e d when nw = 0
cond oktowr i te ; # s ig ’ ed when nr = 0 and nw = 0

procedure r eques t_read () {
whi le (nw > 0) wait (oktoread) ;
nr := nr + 1 ;

}
procedure r e l e a s e_ r e ad () {

nr := nr − 1 ;
i f nr = 0 s i g n a l (oktowr i te) ;

}

procedure r e que s t_wr i t e () {
whi le (nr > 0 or nw > 0) wait (oktowr i te) ;
nw := nw + 1 ;

}

procedure r e l e a s e_w r i t e () {
nw := nw −1;
s i g n a l (oktowr i te) ; # wake up 1 w r i t e r
s i g n a l_a l l (oktoread) ; # wake up a l l r e a d e r s

}
}

27 / 44

Invariant

monitor invariant I : describe the monitor’s inner state
Express relationship between monitor variables
Maintained by execution of procedures:

Must hold: after initialization
Must hold: when a procedure terminates
Must hold: when we suspend execution due to a call to wait

⇒ can assume that the invariant holds after wait and when a
procedure starts

Should be as strong as possible!

28 / 44

Monitor solution to reader/writer problem (6)

RW: (nr = 0 or nw = 0) and nw ≤ 1

procedure request_read() {
May assume that the invariant holds here
while (nw > 0) {

the invariant holds here
wait(oktoread);
May assume that the invariant holds here

}
Here, we know that nw = 0...
nr := nr + 1;
...thus: invariant also holds after increasing nr

}

29 / 44

Time server

Monitor that enables sleeping for a given amount of time
Resource: a logical clock (tod)
Provides two operations:

delay(interval) the caller wishes to sleep for interval
time
tick increments the logical clock with one tick
Called by the hardware, preferably with high execution priority

Each process which calls delay computes its own time for
wakeup: wake_time = tod + interval;
Waits as long as tod < wake_time

Wait condition is dependent on local variables

Covering condition:
all processes are woken up when it is possible for some to
continue
Each process checks its condition and sleeps again if this does
not hold

30 / 44

Time server: covering condition

Invariant: CLOCK : tod ≥ 0 ∧ tod increases monotonically by 1

monitor Timer { int tod = 0; # Time Of Day
cond check; # signalled when tod is increased

procedure delay(int interval) {
int wake_time;
wake_time = tod + interval;
while (wake_time > tod) wait(check);

}

procedure tick() {
tod = tod + 1;
signal_all(check);

}
}

Not very effective if many processes will wait for a long time
Can give many false alarms

31 / 44

Prioritized waiting

Can also give additional argument to wait: wait(cv, rank)
Process waits in the queue to cv in ordered by the argument
rank.
At signal:
Process with lowest rank is awakened first

Call to minrank(cv) returns the value of rank to the first
process in the queue (with the lowest rank)

The queue is not modified (no process is awakened)

Allows more efficient implementation of Timer

32 / 44

Time server: Prioritized wait

Uses prioritized waiting to order processes by check

The process is awakened only when tod >= wake_time

Thus we do not need a while loop for delay

monitor Timer {
int tod = 0; # Invariant: CLOCK
cond check; # signalled when minrank(check) <= tod

procedure delay(int interval) {
int wake_time;
wake_time := tod + interval;
if (wake_time > tod) wait(check, wake_time);

}

procedure tick() {
tod := tod + 1;
while (!empty(check) && minrank(check) <= tod)
signal(check);

}
}

33 / 44

Shortest-Job-Next allocation

Competition for a shared resource
A monitor administrates access to the resource
Call to request(time)

Caller needs access for time interval time
If the resource is free: caller gets access directly

Call to release
The resource is released
If waiting processes: The resource is allocated to the waiting
process with lowest value of time

Implemented by prioritized wait

34 / 44

Shortest-Job-Next allocation (2)

monitior Shortest_Job_Next {
bool free = true;
cond turn;

procedure request(int time) {
if (free)

free = false;
else

wait(turn,time);
}

procedure release() {
if (empty(turn))

free = true;
else

signal(turn);
}

}

35 / 44

36 / 44

The story of the sleeping barber

barbershop: with two doors and some chairs.
customers: come in through one door and leave through the
other. Only one customer sit it he barber chair at a time.
Without customers: barber sleeps in one of the chairs.
When a customer arrives and the barber sleeps ⇒ barber is
woken up and the customer takes a seat.
barber busy ⇒ the customer takes a nap
Once served, barber lets customer out the exit door.
If there are waiting customers, one of these is woken up.
Otherwise the barber sleeps again.

37 / 44

Interface

Assume the following monitor procedures
Client: get_haircut: called by the customer, returns when haircut is

done
Server: barber calls:

get_next_customer: called by the barber to serve a customer
finish_haircut: called by the barber to let a customer out
of the barbershop

Rendez-vous
Similar to a two-process barrier: Both parties must arrive before
either can continue.

The barber must wait for a customer
Customer must wait until the barber is available

The barber can have rendezvous with an arbitrary customer.

38 / 44

Organize the synch.: Identify the synchronization needs

1. barber must wait until
1.1 customer sits in chair
1.2 customer left barbershop

2. customer must wait until
2.1 the barber is available
2.2 the barber opens the exit door

client perspective:
two phases (during get_haircut)
1. “entering”

trying to get hold of barber,
sleep otherwise

2. “leaving”:

between the phases: suspended
Processes signal when one of the wait conditions is satisfied.

39 / 44

Organize the synchronization: state

3 var’s to synchronize the processes:
barber, chair and open (initially 0)

binary variables, alternating between 0 and 1:
for entry-rendevouz
1. barber = 1 : the barber is ready for a new customer
2. chair = 1: the customer sits in a chair, the barber hasn’t

begun to work
for exit-sync
3. open = 1: exit door is open, the customer has not yet left

40 / 44

Sleeping barber

monitor Barber_Shop {
i n t ba rbe r := 0 , c h a i r := 0 , open := 0 ;
cond b a r b e r_a v a i l a b l e ; # s i g n a l l e d when ba rbe r > 0
cond cha i r_occup i ed ; # s i g n a l l e d when c h a i r > 0
cond door_open ; # s i g n a l l e d when open > 0
cond cu s t ome r_ l e f t ; # s i g n a l l e d when open = 0

procedure get_haircut () {
whi le (ba rb e r = 0) wait (b a r b e r_a v a i l a b l e) ; # RV with ba rb e r
ba rbe r := ba rb e r − 1 ;
c h a i r := c h a i r + 1 ; s i g n a l (cha i r_occup i ed) ;

whi le (open = 0) wait (door_open) ; # l e a v e shop
open := open − 1 ; s i g n a l (cu s t ome r_ l e f t) ;

}
procedure get_next_customer () { # RV with c l i e n t

ba rbe r := ba rb e r + 1 ; s i g n a l (b a r b e r_a v a i l a b l e) ;
whi le (c h a i r = 0) wait (cha i r_occup i ed) ;
c h a i r := c h a i r − 1 ;

}
procedure f in i shed_cut () {

open := open + 1 ; s i g n a l (door_open) ; # get r i d o f customer
whi le (open > 0) wait (cu s t ome r_ l e f t) ;

}

41 / 44

Sleeping barber

monitor Barber_Shop {
i n t ba rbe r := 0 , c h a i r := 0 , open := 0 ;
cond b a r b e r_a v a i l a b l e ; # s i g n a l l e d when ba rbe r > 0
cond cha i r_occup i ed ; # s i g n a l l e d when c h a i r > 0
cond door_open ; # s i g n a l l e d when open > 0
cond cu s t ome r_ l e f t ; # s i g n a l l e d when open = 0

procedure get_haircut () {
whi le (ba rb e r = 0) wait (b a r b e r_a v a i l a b l e) ; # RV with ba rb e r
ba rbe r := ba rb e r − 1 ;
c h a i r := c h a i r + 1 ; s i g n a l (cha i r_occup i ed) ;

whi le (open = 0) wait (door_open) ; # l e a v e shop
open := open − 1 ; s i g n a l (cu s t ome r_ l e f t) ;

}
procedure get_next_customer () { # RV with c l i e n t

ba rbe r := ba rb e r + 1 ; s i g n a l (b a r b e r_a v a i l a b l e) ;
whi le (c h a i r = 0) wait (cha i r_occup i ed) ;
c h a i r := c h a i r − 1 ;

}
procedure f in i shed_cut () {

open := open + 1 ; s i g n a l (door_open) ; # get r i d o f customer
whi le (open > 0) wait (cu s t ome r_ l e f t) ;

}

42 / 44

Sleeping barber

monitor Barber_Shop {
i n t ba rbe r := 0 , c h a i r := 0 , open := 0 ;
cond b a r b e r_a v a i l a b l e ; # s i g n a l l e d when ba rbe r > 0
cond cha i r_occup i ed ; # s i g n a l l e d when c h a i r > 0
cond door_open ; # s i g n a l l e d when open > 0
cond cu s t ome r_ l e f t ; # s i g n a l l e d when open = 0

procedure get_haircut () {
whi le (ba rb e r = 0) wait (b a r b e r_a v a i l a b l e) ; # RV with ba rb e r
ba rbe r := ba rb e r − 1 ;
c h a i r := c h a i r + 1 ; s i g n a l (cha i r_occup i ed) ;

whi le (open = 0) wait (door_open) ; # l e a v e shop
open := open − 1 ; s i g n a l (cu s t ome r_ l e f t) ;

}
procedure get_next_customer () { # RV with c l i e n t

ba rbe r := ba rb e r + 1 ; s i g n a l (b a r b e r_a v a i l a b l e) ;
whi le (c h a i r = 0) wait (cha i r_occup i ed) ;
c h a i r := c h a i r − 1 ;

}
procedure f in i shed_cut () {

open := open + 1 ; s i g n a l (door_open) ; # get r i d o f customer
whi le (open > 0) wait (cu s t ome r_ l e f t) ;

}

43 / 44

References I

[Andrews, 2000] Andrews, G. R. (2000).
Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

44 / 44

	Monitors
	Semaphores & signalling disciplines
	Bounded buffer
	Readers/writers problem
	Time server
	Shortest-job-next scheduling
	Sleeping barber

