Message passing and channels

INF4140 - Models of concurrency

Message passing and channels

Hgsten 2014

17. Oct. 2014

Course overview:

@ Part |: concurrent programming; programming with shared
variables

@ Part Il: distributed programming,

Outline: asynchronous and synchronous message passing

Concurrent vs. distributed programming
Asynchronous message passing: channels, messages, primitives

Example: filters and sorting networks

°
°

@ From monitors to client—server applications

@ Comparison of message passing and monitors
°

About synchronous message passing

3/42

more traditional system architectures have one shared memory:
@ many processors access the same physical memory

@ example: fileserver with many processors on one motherboard

Distributed memory architectures:

@ Processor has private memory and communicates over a
“network” (inter-connect)

@ Examples:
e Multicomputer: asynchronous multi-processor with distributed
memory (typically contained inside one case)
Workstation clusters: PC's in a local network
Grid system: machines on the Internet, resource sharing
cloud computing: cloud storage service
NUMA-architectures
cluster computing ...

4/42

(rreede) (renen) @ the memory architecture does not reflect
reality

@ out-of-order executions:

e modern systems: complex memory
hierarchies, caches, buffers. ..

shared memory o compiler optimizations,

5/42

CPUp

8

|CPU1|

|CPU2|

|CPU3|

H = E RS e
S | S | N S
[
shared memory I I shared memory
CPU; cPU, H Mem.
CPU, cPU; H Mem.

6 /42

Concurrent programming:
@ Processors share one memory

@ Processors communicate via reading and writing of shared
variables

Distributed programming:

@ Memory is distributed
= processes cannot share variables (directly)

@ Processes communicate by sending and receiving messages via
shared channels

or (in future lectures): communication via RPC and rendezvous

7/42

Channel: abstraction of a physical communication network
@ One-way from sender(s) to receiver(s)
@ Unbounded FIFO (queue) of waiting messages
@ Preserves message order
@ Atomic access
@ Error—free
°

Typed

Variants: errors possible, untyped, ...

8/42

Channel declaration
chan c(type;idy, ..., type,id,); J

Messages: n-tuples of values of the respective types

communication primitives:

@ send c(exprq,...,expr,);

Non-blocking, i.e. asynchronous
e receive c(vary,...,varp);

Blocking: receiver waits until message is sent on the channel
o empty (c);

True if channel is empty

C .
P1 send —_— receive P2

9/42

Example: message passing

(xy) =

foo .
send —_ receive
A " — — B
chan foo(int);
process B {

process A { receive foo(x);

send foo(1); receive foo(y);

send foo (2); i

}

10/ 42

Example: message passing

(xy) = (1.2)
foo .
send —_ receive
A > —> _ > B
chan foo(int);
process B {
process A { receive foo(x);
send foo(1); receive foo(y);
send foo (2); i

}

11/42

Example: shared channel

[]
- send

process Al {
send foo (1);

(xy) =

foo

; e

process A2 {
send foo (2);

process B {

¥

receive foo(x);
receive foo(y);

12/42

Example: shared channel

(xyy) =(1,2) or (2,1)

send
foo .
; e
- send

process Al { process A2 { process B {

send foo (1); send foo (2); receive foo(x);
receive foo(y);

¥

13/42

Asynchronous message passing and semaphores

Comparison with general semaphores:

channel ~ semaphore
send ~ 4
receive ~ P

Number of messages in queue = value of semaphore

(Ignores content of messages)

14 /42

HaC

Filter F = process which

@ receives messages on input channels,

@ sends messages on output channels, and

@ output is a function of the input (and the initial state).

receive ny
_— —>
: F
receive Ny
—_— —

o A filter is specified as a predicate.

@ Some computations can naturally be seen as a composition of

filters.

o cf. stream processing/programming (feedback loops) and

dataflow programming

out,
—>

out

send

send

15 /42

Problem: Sort a list of n numbers into ascending order.

Process Sort with input channels input and output channel
output.

Define:
n : number of values sent to output.
sent[i] : i'th value sent to output.

Sort predicate

Vi:1<i<n. (sent[i] < sent[i+1])
A values sent to output
are a permutation of values from input.

16 /42

Problem: Merge two sorted input streams into one sorted stream.
Process Merge with input channels in; and iny and output channel
out:

ing: 1 49 ...
out: 1 2 4589 ...
in: 258 ...

Special value EOS marks the end of a stream.

Define:
n : number of values sent to out.
sent[i] : i'th value sent to out.

The following shall hold when Merge terminates:
iny and iny are empty A\ sent[n+ 1] = EOS
A Vi:1<i<n(sent[i] < sent[i +1])
A values sent to out are a permutation of values from
iny and ino

17 /42

chan inl(int), in2(int), out(int);

process Merge {

int vl, v2;
receive inl(vl); # read the first two
receive in2(v2); # input values

while (vl != EOS and v2 != EOS) {
if (vl <= v2)
{ send out(vl); receive inl(vl); }
else # (vl > v2)
{ send out(v2); receive in2(v2); }

consume the rest
of the non—empty input channel
while (v2 != EOS)
{ send out(v2); receive in2(v2); }
while (vl != EOS)
{ send out(vl); receive inl(vl); }
send out(EOS); # add special value to out

18 /42

We now build a network that sorts n numbers.

We use a collection of Merge processes with tables of shared input
and output channels.

Value —_

value, — T
: : T Sorted

v > stream

Value 4

Value , > /

(Assume: number of input values n is a power of 2)

19 /42

Server: process, repeatedly handling requests from client processes.

Goal: Programming client and server systems
with asynchronous message passing.

chan request(int clientlD, ...),
reply [n](...);

client nr. i server
int id; # client id.

while (true) { # server loop

send request(i,args); — receive request(id,vars);

receive reply[i](vars); <«— send reply[id](results);

20/ 42

Classical monitor:
@ controlled access to shared resource

@ Permanent variables (monitor variables): safeguard the
resource state

@ access to a resource via procedures

@ procedures: executed with mutual exclusion

o Condition variables for synchronization

also implementable by server process + message passing
Called “active monitor” in the book: active process (loop), instead
of passive procedures.!

YIn practice: server may spawn local threads, one per request.
21/42

Multiple—unit resource: a resource consisting of multiple units

Examples: memory blocks, file blocks.
Users (clients) need resources, use them, and return them to the
allocator (“free” the resources).

@ here simplification: users get and free one resource at a time.

@ two versions:

e monitor
e server and client processes, message passing

22/42

Allocator as monitor

Uses “passing the condition” = simplifies later translation to a
server process

Unallocated (free) units are represented as a set,
type set, with operations insert and remove.

23/42

Recap: “semaphore monitor’ with “passing the condition”

monitor FIFOSemaphore {
int s = 0; # s >=0
cond pos;

procedure P() {

if (s =0)
wait (pos);
else
s =s — 1;

¥

procedure V() {
if (empty(pos))
s =s + 1;
else
signal (pos);

(Fig. 5.3 in Andrews [Andrews, 2000])

24 /42

monitor Resource Allocator {

int avail = MAXUNITS;
set units = ... # initial values;
cond free; # signalled when process wants a unit

procedure acquire(int &id) { # var.parameter

if (avail = 0)
wait (free);
else
avail = avail —1;
remove(units, id);

}

procedure release(int id) {
insert(units, id);
if (empty(free))

avail = avail+1;
else
signal (free); # passing the condition

¥
}

(Fig. 7.6 in Andrews [Andrews, 2000])

25 /42

1. interface and “data structure”
2. control structure: nested if-statement (2 levels):

3. synchronization, scheduling, and mutex

26 /42

1. interface and “data structure”

o allocator with two types of operations: get unit, free unit
e 1 request channel = must be encoded in the arguments to a
request.

2. control structure: nested if-statement (2 levels):

3. synchronization, scheduling, and mutex

27 /42

1. interface and "data structure”

o allocator with two types of operations: get unit, free unit
e 1 request channel = must be encoded in the arguments to a
request.

2. control structure: nested if-statement (2 levels):

2.1 first checks type operation,
2.2 proceeds correspondingly to monitor-if.

3. synchronization, scheduling, and mutex

28 /42

1. interface and “data structure”
o allocator with two types of operations: get unit, free unit
e 1 request channel = must be encoded in the arguments to a
request.
2. control structure: nested if-statement (2 levels):
2.1 first checks type operation,
2.2 proceeds correspondingly to monitor-if.
3. synchronization, scheduling, and mutex
o Cannot wait (wait(free)) when no unit is free.
e Must save the request and return to it later
= queue of pending requests (queue; insert, remove).
e request: “synchronous/blocking” call = “ack’-message back
e no internal parallelism = mutex

29 /42

Channel declarations:

type op_ kind = enum(ACQUIRE, RELEASE);
chan request(int clientlD , op_ kind kind, int unitlD);
chan reply[n](int unitlD);

30/ 42

process Client[i = 0 to n—1] {

int unitlD;
send request (i, ACQUIRE, 0) # make request
receive reply[i](unitlD); # works as ''if synchronous '’

use resource unitlD
send request (i, RELEASE, unitlD); # free resource

(Fig. 7.7(b) in Andrews)

31/42

process Resource Allocator {

int avail = MAXUNITS;
set units = ... # initial value
queue pending; # inutially empty

int clientlD , unitlD; op_ kind kind;
while (true) {
receive request(clientlD , kind, unitlD);
if (kind — ACQUIRE) {
if (avail = 0) # save request
insert (pending, clientlD);
else { # perform request now
avail:= avail —1;
remove(units, unitlD);
send reply[clientID](unitlD);

}
else { # kind =— RELEASE
if empty(pending) { # return units
avail := avail+1; insert(units, unitlD);
} else { # allocates to waiting client

remove (pending, clientlD);

send reply[clientID](unitiD);
Y33 # Fig. 7.7 in Andrews (rewritten

32/42

monitor Resource Allocator {

int avail = MAXUNITS;
set units = ... # initial values;
cond free; # signalled when process wants a unit

procedure acquire(int &id) { # var.parameter

if (avail = 0)
wait (free);
else
avail = avail —1;
remove(units, id);

}

procedure release(int id) {
insert(units, id);
if (empty(free))

avail = avail+1;
else
signal (free); # passing the condition

¥
}

(Fig. 7.6 in Andrews [Andrews, 2000])

33/42

monitor-based programs

message-based programs

permanent variables
process-1Ds
procedure call

go into a monitor
procedure return
wait statement
signal statement
procedure body

local server variables

request channel, operation types

send request(), receive reply[i]()
receive request()

send reply[i]()

save pending requests in a queue

get and process pending request (reply)
branches in if statement wrt. op. type

34 /42

Primitives:
e New primitive for sending:
synch send c(expry,...,expr,);

Blocking: sender waits until message is received by channel,
i.e. sender and receiver synchronize sending and receiving of

message.
@ Otherwise like asynchronous message passing:
receive c(varg,...,varp);
empty(c);

35/42

Advantages:

@ Gives maximum size of channel.
Sender synchronises with receiver
= receiver has at most 1 pending message per channel per
sender
= sender has at most 1 unsent message

Disadvantages:

@ Reduced parallellism: when 2 processes communicate, 1 is
always blocked.

@ High risk of deadlock.

36 /42

chan values(int);

process Producer {
int data[n];
for [i =0 to n—-1] {
computation ...;
synch _send values(data[i]);

P}

process Consumer {
int results[n];
for [i =0 to n—-1] {
receive values(results[i]);
computation ...;

’

P}

37/42

chan values(int);

process Producer {
int data[n];

for [i =0 to n—-1] {
computation
synch _send values(data[i]);
}}

process Consumer {
int results[n];
for [i =0 to n—-1] {
receive values(results[i]);
computation ...;

P}

Assume both producer and
consumer vary in time
complexity.
Communication using
synch_send/receive will
block.

With asynchronous
message passing, the
waiting is reduced.

38/42

Example:

chan inl(int), in2(int);

process P1 {
int vl =1, v2;
synch _send in2(vl);
receive inl(v2);

}

process P2 {
int v, v2 = 2;
synch_send inl(v2);
receive in2(vl);

¥

39/ 42

chan inl(int), in2(int);

process P1 {
int vl = 1, v2;
synch _send in2(vl);
receive inl(v2);

}

process P2 {
int vi, v2 = 2;
synch_send inl(v2);
receive in2(vl);

¥

P1 and P2 block on

synch _send — deadlock.

One process must be modified
to do receive first

=- asymmetric solution.

40/ 42

chan inl(int), in2(int);

process P1 {
int vl = 1, v2;
synch _send in2(vl);
receive inl(v2);

}

process P2 {
int vi, v2 = 2;
synch_send inl(v2);
receive in2(vl);

¥

P1 and P2 block on

synch _send — deadlock.

One process must be modified
to do receive first

= asymmetric solution.

With asynchronous message
passing (send) all goes well.

41/42

References |

[Abelson et al., 1985] Abelson, H., Sussmann, G. J., and Sussman, J. (1985)

Structure and Interpretation of Computer Programms.

MIT Press.

[Andrews, 2000] Andrews, G. R. (2000).
Addison-Wesley.

Foundations of Multithreaded, Parallel, and Distributed Programming.

	Message passing and channels
	Intro
	Asynch. message passing
	Filters
	Client-servers
	Monitors

	Synchronous message passing

