INF4140 - Models of concurrency
RPC and Rendezvous

INF4140

24 Oct. 2014

RPC and Rendezvous

More on asynchronous message passing

e interacting processes with different patterns of communication
e summary

remote procedure calls

e concept, syntax, and meaning
e examples: time server, merge filters, exchanging values

Rendez-vous

e concept, syntax, and meaning
e examples: buffer, time server, exchanging values

combinations of RPC, rendezvous and message passing
o Examples: bounded buffer, readers/writers

3/37

Look at processes as peers.

Example: Exchanging values
e Consider n processes P[0], ..., P[n—1], n>1
@ every process has a number, stored in local variable v
@ Goal: all processes knows the largest and smallest number.

@ simplistic problem, but “characteristic” of distributed
computation and information distribution

4/37

Different communication patters

NS RA S
i l ~, \

P1
centralized

symetrical

ring shaped

P4

\

P3

/

P2

5/37

Ha e

Process P[0] is the Ps Pa
coordinator process: \ /
@ P[0] does the calculation P
@ The other processes sends Py I
their values to P[0] and
waits for a reply.

Number of messages:!(number of send:)
P[O]: n—1
P[], ..., P[n—=1]: (n—1)
Total: (n—1)+ (n—1) =2(n— 1) messages
repeated “computation”

Number of channels: n

'For now in the pics: 1 line = 1 message (not 1 channel), but the notation

in the pics is not 100% consistent.
6/37

chan values(int),

results [1..n—1](int smallest, int largest);

process P[0] { # coordinator process
int v := o
int new, smallest := v, largest := v; # initialization
get values and store the largest and smallest
for [i =1 to n—1] {
receive values(new);

if (new < smallest) smallest := new;
if (new > largest) largest := new;
by
send results
for [i =1 to n—1]
send results[i](smallest, largest);
process P[i =1 to n—1] {
int v := o
int smallest, largest;
send values(v);
receive results[i](smallest, largest);}

Fig. 7.11 in Andrews (corrected a bug)

7/37

“Single-programme, multiple data (SPMD)"-solution:

Each process executes the same code
and shares the results with all other processes.

Number of messages:
n processes sending n — 1 messages each,
Total: n(n— 1) messages.

Number of (bi-directional) channels: n(n — 1)

8/37

chan values[n](int);

process P[i = 0 to n—1] {

int v o
int new, smallest := v, largest := v;

send v to all n—1 other processes
for [j =0 to n—1 st j # i]

send values[j](v);
get n—1 values

and store the smallest and largest.
1 to n—1] { # j not used in the loop

for [j =
receive values[i](new);
if (new < smallest) smallest := new;
if (new > largest) largest := new;

¥
} # Fig. 7.12 from Andrews

9/37

Ps P4

/N

Po P3

N/

P1 P2

Almost symmetrical, except P[0], P[n — 2] and P[n — 1].

Each process executes the same code and sends the results to the
next process (if necessary).

Number of messages:

P[O]: 2
P[], ..., P[n—=3]: (n—3)x2
Pln—2]: 1
Pln—1]: 1

2+2(n—3)+1+1=2(n— 1) messages sent.

Number of channels: n .

10/37

chan values[n](int smallest, int largest);

process P[0] { # starts the exchange

int v := ...;

int smallest := v, largest = v;
send v to the next process, P[1]
send values[1](smallest, largest);

get the global smallest and largest from P[n—1]
and send them to P[1]

receive values[0](smallest, largest);

send values[1l](smallest, largest);

11/37

process P[i =1 to n—1] {

int v := ...;
int smallest, largest;
get smallest and largest so far,
and update them by comparing them to v
receive values[i](smallest, largest)
if (v < smallest) smallest = v;
if (v> largest) largest = v;
forward the result, and wait for the global result
send values[(i4+1) mod n](smallest, largest);
if (i < n-1)
receive values[i](smallest, largest);
forward the global result, but not from P[n—1] to P[0]
if (i <n=2)
send values[i+1](smallest, largest);

} # Fig. 7.13 from Andrews (modified)

12/37

Message passing: well suited to programming filters and interacting
peers (where processes communicates one way by one or more
channels).

May be used for client/server applications, but:

@ Each client must have its own reply channel
@ In general: two way communication needs two channels

= many channels

RPC and rendezvous are better suited for client/server applications.

13/37

Remote Procedure Call

main idea

CALLER

at computer A

call foo(ARGS); = -———--

CALLEE

at computer B

op foo(FORMALS); # declaration

proc foo (FORMALS)

new process
end;

RPC: combines elements from monitors and message passing

@ As ordinary procedure call, but caller and callee may be on
different machines.?

o Caller: blocked until called procedure is done, as with monitor
calls and synchronous message passing.

@ Asynchronous programming: not supported directly
@ A new process handles each call.

@ Potentially two way communication: caller sends arguments
and receives return values.

2cf. RMI

15 /37

Module: new program component — contains both
@ procedures and processes.

module M
headers of exported operations;
body
variable declarations;
initialization code;
procedures for exported operations;
local procedures and processes;
end M

Modules may be executed on different machines
M has: procedures and processes

@ may share variables

@ execute concurrently = must be synchronized to achieve
mutex

@ May only communicate with processes in M’ by procedures
exported by M’

16 /37

Declaration of operation O:
op O(formal parameters.) | returns result] ;

Implementation of operation O:

proc O(formal identifiers.) [returns result identifier]{
declaration of local variables;
statements

}

Call of operation O in module M:3
call M.O(arguments)

Processes: as before.

3(f. static/class methods
17 /37

e RPC: primarily a communication mechanism
@ within the module: in principle allowed:

e more than one process
o shared data

= need for synchronization

@ two approaches
1. “implicit™:
@ as in monitors: mutex built-in
e additionally condition variables (or semaphores)
2. “explicit”*
@ user-programmed mutex and synchronization (like
semaphorse, local monitors etc)

“*assumed in the following
18 /37

module providing timing services to processes in other
modules.
interface: two visible operations:

o get time() returns int — returns time of day
o delay(int interval) — let the caller sleep a given number of time
units

multiple clients: may call get time and delay at the same time
Need to protect the variables.

internal process that gets interrupts from machine clock and
updates tod

19/37

module TimeServer
op get time() returns int;
op delay(int interval);

body
int tod := 0; # time of day
sem m:= 1; # for mutex
sem d[n] := ([n] 0); # for delayed processes
queue of (int waketime, int process id) napQ;
when m = 1, tod < waketime for delayed processes
proc get time() returns time { time := tod; }

proc delay(int interval) {

P(m); # assume unique myid and | [0,n—1]
int waketime := tod + interval;

insert (waketime, myid) at appropriate place in napQ;
V(m);

P(d[myid]); # Wait to be awoken

process Clock
end TimeServer

20/37

process Clock {
int id; start hardware timer;
while (true) {
wait for interrupt, then restart hardware timer

tod := tod + 1;
P(m); # mutex
while (tod > smallest waketime on napQ) {
remove (waketime, id) from napQ; # book—keeping
V(d[id]); # awake process
V(m); # mutex

I

end TimeServer # Fig. 8.1 of Andrews

21/37

RPC:
o offers inter-module communication

@ synchronization (often): must be programmed explicitly

Rendezvous:
@ Known from the language Ada (US DoD)

@ Combines communication and synchronization between
processes

@ No new process created for each call
@ instead: perform ‘rendezvous’ with existing process

@ Operations are executed one at the time

synch send and receive may be considered as primitive rendezvous.

cf. also join-synchronization

22/37

Rendezvous: main idea

CALLER CALLEE

at computer A at computer B

op foo(FORMALS); # declaration

. # existing process
_____ > in foo(FORMALS) ->
BODY;
o ni

call foo(ARGS);

23/37

Rendezvous: module declaration

module M
op Oi(types);

op O,(types);
body

process P; {
variable declarations;
while (true) # standard pattern
in Oi(formals) and By —> Si;

[] On (formals) and B, —> S,;
ni

}

. other processes
end M

24/37

Call:

call O; (expri,...,exprm);

Input statement, multiple guarded expressions:
in O1(vi,...vmy) and By —> S1;

[] On(vi...vm,) and Bn —> Sn:
ni
The guard consists of:
@ and B; — synchronization expression (optional)

@ S; — statements (one or more)

The variables vy, ..., vy, may be referred by B;
and S; may read/write to them.®

Sonce again: no side-effects in Bl
25 /37

Consider the following:

in ...
[] o,‘(V,‘,‘..,Vm;) and B; —> §;;

ni
The guard succeeds when O; is called and B; is true (or omitted).

Execution of the in statement:
@ Delays until a guard succeeds
o If more than one guard succeed, the oldest call is served®
@ Values are returned to the caller

@ The the call- and in-statements terminates

®this may be changed using additional syntax (by), see [Andrews, 2000].
26 /37

o different versions of rendezvous, depending on the language

e origin: ADA (accept-statement) (see [Andrews, 2000, Section

8.6])

@ design variation points

synchronization expressions or not?

scheduling expressions or not?

can the guard inspect the values for input variables or not?
non-determinism

checking for absence of messages? priority

checking in more than one operation?

27 /37

module BoundedBuffer
op deposit(TypeT), fetch(result TypeT);
body
process Buffer {
elem buf[n];
int front := 0, rear := 0, count := 0;
while (true)
in deposit(item) and count < n —>

buf[rear] := item; count++;
rear := (rear+1) mod n;
[] fetch(item) and count > 0 —>
item := buf[front]; count——;
front := (front+1) mod n;

ni

b
end BoundedBuffer # Fig. 8.5 of Andrews

28/37

module TimeServer
op get time() returns int;

op delay(int); # absolute waketime as argument
op tick (); # called by the clock interrupt handler
body

process Timer {

int tod = 0;

start timer;

while (true)
in get time() returns time —> time := tod;
[] delay(waketime) and waketime <= tod —> skip;
[l tick() — { tod++; restart timer; }
ni

end TimeServer # Fig. 8.7 of Andrews

29/37

We do now have several combinations:

invocation service effect

call proc procedure call (RPC)

call in rendezvous

send proc dynamic process creation

send in asynchronous message passing

30/37

We do now have several combinations:

invocation service effect

call proc procedure call (RPC)

call in rendezvous

send proc dynamic process creation

send in asynchronous message passing

in addition (not in Andrews)

@ asynchronous procedure call, wait-by-necessity, futures

31/37

Comparing input statements and receive:
in O(ay, ...,ap) ->v1=a1,...,Vp=ap ni <= receive O(vy, ..., v,)
Comparing message passing and semaphores:

send O() and receive O() <= V(O) and P(O)

32/37

module BoundedBuffer

op deposit(typeT), fetch(result typeT);
body

elem buf[n];

int front = 0, rear = 0;

local operation to simulate semaphores

op empty(), full(), mutexD(), mutexF ();
send mutexD (); send mutexF (); # init.

// operations

"semaphores" to 1

for [i =1 to n] # init. empty—"semaphore" to n

send empty ();

proc deposit(item) {
receive empty(); receive mutexD();

buf[rear] = item; rear = (rear+1) mod n;

send mutexD (); send full ();

proc fetch (item) {
receive full (); receive mutexF ();

item = buf[front] ; front = (front+1) mod n;

send mutexF (); send empty();

b

end BoundedBuffer # Fig. 8.12 of Andrews

33/37

New primitive on operations, similar to empty(...) for condition
variables and channels.

70 means number of pending invocations of operation O.

Useful in the input statement to give priority:

O ... —> 51;

O ... and (701 = 0) —> S5,

Here O; has a higher priority than O-.

34/37

module ReadersWriters

op read(result types); # uses RPC
op write(types); # uses rendezvous
body
op startread (), endread(); # local ops.
database (DB)...;

proc read(vars) {
call startread ();

read vars from DB

get read access
send endread ();

free DB
}
process Writer
int nr := 0;
while (true)
in startread () —> nr++;

[1 endread ()

—> nr——,
[] write(vars)

and nr = 0 —>

write vars to DB
ni

end ReadersWriters

35/37

module ReadersWriters
op read(result typeT); # uses RPC
op write(typeT); # uses rendezvous
body
op startread (), endread(); # local ops.
database (DB)...;

proc read(vars) {

call startread (); # get read access
.. read vars from DB ...;
send endread (); # free DB
}
process Writer {
int nr := 0;

while (true)
in startread () and ?write = 0 —> nr++;
[1 endread () > nr——;
[l write(vars) and nr = 0 —>
write vars to DB ... ;
ni

end ReadersWriters

36 /37

References |

[Andrews, 2000] Andrews, G. R. (2000).
Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

[Goetz et al., 2006] Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., and Lea, D. (2006).
Java Concurrency in Practice.
Addison-Wesley.

[Lea, 1999] Lea, D. (1999).
Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, 2d edition.

[Magee and Kramer, 1999] Magee, J. and Kramer, J. (1999).

Concurrency: State Models and Java Programs.
Wiley & Sons.

37/37

	RPC and Rendezvous
	Message passing (cont'd)
	RPC
	Rendez-vouz

