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Concurrency

Concurrency
“Concurrency is a property of systems in which several
computations are executing simultaneously, and potentially
interacting with each other” (Wikipedia)

performance increase, better latency

many forms of concurrency/parallelism: multi-core,
multi-threading, multi-processors, distributed systems
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Shared memory: a simplistic picture

shared memory

thread0 thread1

one way of “interacting” (i.e.,
communicating and
synchronizing): via shared
memory

a number of threads/processors:
access common
memory/address space

interacting by sequence of
read/write (or load/stores etc)

however: considerably harder to get correct and efficient programs
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Dekker’s solution to mutex

As known, shared memory programming requires
synchronization: mutual exclusion

Dekker
simple and first known mutex algo

here slighly simplified

initially: flag0 = flag1 = 0
f l a g 0 := 1 ;
i f ( f l a g 1 = 0)
then CRITICAL

f l a g 1 := 1 ;
i f ( f l a g 0 = 0)
then CRITICAL
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synchronization: mutual exclusion

Dekker
simple and first known mutex algo

here slighly simplified

initially: flag0 = flag1 = 0
f l a g 0 := 1 ;
i f ( f l a g 1 = 0)
then CRITICAL

f l a g 1 := 1 ;
i f ( f l a g 0 = 0)
then CRITICAL

known textbook “fact”:
Dekker is a software-based solution to the mutex problem (or is it?)
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Dekker’s solution to mutex

As known, shared memory programming requires
synchronization: mutual exclusion

Dekker
simple and first known mutex algo

here slighly simplified

initially: flag0 = flag1 = 0
f l a g 0 := 1 ;
i f ( f l a g 1 = 0)
then CRITICAL

f l a g 1 := 1 ;
i f ( f l a g 0 = 0)
then CRITICAL

programmers need to know concurrency
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Shared memory concurrency in the real world

shared memory

thread0 thread1
the memory architecture does not reflect
reality
out-of-order executions:

modern systems: complex memory
hierarchies, caches, buffers. . .
compiler optimizations,
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SMP, multi-core architecture, and NUMA

shared memory
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Modern HW architectures and performance

public class TASLock implements Lock {
. . .
public void l ock ( ) {

while ( s t a t e . getAndSet ( true ) ) { } / / sp in
}

. . .
}

public class TTASLock implements Lock {
. . .
public void l ock ( ) {

while ( true ) {
while ( s t a t e . get ( ) ) { } ; / / sp in
i f ( ! s t a t e . getAndSet ( true ) )

return ;
}

. . .
}

}

(cf. [Anderson, 1990] [Herlihy and Shavit, 2008, p.470])
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Observed behavior

time

number of threads

TTASLock

TASLock

ideal lock

Mai Thuong Tran Weak memory models 10 / 56



Compiler optimizations

many optimizations with different forms:
elimination of reads, writes, sometimes synchronization

statements
re-ordering of independent non-conflicting memory

accesses
introductions of reads
examples

constant propagation
common sub-expression elimination
dead-code elimination
loop-optimizations
call-inlining
. . . and many more
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Code reodering

Initially: x = y = 0
thread0 thread1

x := 1 y:= 1;

r1 := y r2 := x;

print r1 print r2

possible print-outs
{(0, 1), (1, 0), (1, 1)}

=⇒

Initially: x = y = 0
thread0 thread1

r1 := y y:= 1;

x := 1 r2 := x;

print r1 print r2

possible print-outs
{(0, 0), (0, 1), (1, 0), (1, 1)}
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Compiler optimizations

Golden rule of compiler optimization
Change the code (for instance re-order statements, re-group parts
of the code, etc) in a way that leads to

better performance, but is otherwise

unobservable to the programmer (i.e., does not introduce new
observable result(s))

In the presence of concurrency
more forms of “interaction”

⇒ more effects become observable

standard optimizations become observable (i.e., “break” the
code, assuming a naive, standard shared memory model
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Compiler optimizations

Golden rule of compiler optimization
Change the code (for instance re-order statements, re-group parts
of the code, etc) in a way that leads to

better performance, but is otherwise

unobservable to the programmer (i.e., does not introduce new
observable result(s))
when executed single-threadedly, i.e. without concurrency!

In the presence of concurrency
more forms of “interaction”

⇒ more effects become observable

standard optimizations become observable (i.e., “break” the
code, assuming a naive, standard shared memory model
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Compilers vs. programmers

Programmer
want’s to understand
the code

⇒ profits from strong
memory models

!

Compiler/HW
want to optimize
code/execution
(re-ordering memory
accesses)

⇒ take advantage of
weak memory models

=⇒

What are valid (semantics-preserving) compiler-optimations?

What is a good memory model as compromise between
programmer’s needs and chances for optimization
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Sad facts and consequences

incorrect concurrent code, “unexpected” behavior
Dekker (and other well-know mutex algo’s) is incorrect on
modern architectures1

unclear/obstruse/informal hardware specifications, compiler
optimizations may not be transparent

understanding of the memory architecture also crucial for
performance

Need for unambiguous description of the behavior of a chosen
platform/language under shared memory concurrecy =⇒ memory
models

1Actually already since at least IBM 370.
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Memory (consistency) model

What’s a memory model?
“A formal specification of how the memory system will appear to
the programmer, eliminating the gap between the behavior
expected by the programmer and the actual behavior supported by
a system.” [Adve and Gharachorloo, 1995]

MM specifies:

How threads interact through memory.

What value a read can return.

When does a value update become visible to other threads.

What assumptions are allowed to make about memory when
writing a program or applying some program optimization.
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Sequential consistency

in the previous examples: unspoken assumptions

1 Program order: statements executed in the order
written/issued (Dekker).

2 atomicity: memory update is visible to everyone at the same
time

Lamport [Lamport, 1979]: Sequential consistency
”...the results of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.”

“classical” model, (one of the) oldest correctness conditions
simple/simplistic⇒ (comparatively) easy to understand
straightforward generalization: single⇒ multi-processor
weak means basically “more relaxed than SC”
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Atomicity: no overlap

W[x] := 1

W[x] := 2

W[x] := 3

R[x] = ??
C

B

A

Which values for x consistent with SC?
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Some order consistent with the observation

W[x] := 1

W[x] := 2

W[x] := 3

R[x] = 2
C

B

A

read of 2: observable under sequential consistency (as is 1,
and 3)

read of 0: contradicts program order for thread C.
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Spectrum of available architectures

(from http://preshing.com/20120930/weak-vs-strong-memory-models)
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Trivial example

thread0 thread1

x := 1 y := 1

print y print x

Result?
Is the printout 0,0 observable?
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Hardware optimization: Write buffers

shared memory

thread0 thread1
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Total store order

TSO: SPARC, pretty old already

x86-TSO

see [Owell et al., 2009] [Sewell et al., 2010]

Relaxation
1 architectural: adding store buffers (aka write buffers)
2 axiomatic: relaxing program order⇒W-R order dropped
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Architectural model: Write-buffers (IBM 370)

shared memory

thread0 thread1

Mai Thuong Tran Weak memory models 25 / 56



Architectural model: TSO (SPARC)

shared memory

thread0 thread1
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Architectural model: x86-TSO

shared memory

thread0 thread1

lock
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Directly from Intel’s spec

Intel 64/IA-32 architecture sofware developer’s manual [int, 2013]
(over 3000 pages long!)

single-processor systems:
Reads are not reordered with other reads.
Writes are not reordered with older reads.
Reads may be reordered with older writes to different locations
but not with older writes to the same location.
. . .

for multiple-processor system
Individual processors use the same ordering principles as in a
single-processor system.
Writes by a single processor are observed in the same order
by all processors.
Writes from an individual processor are NOT ordered with
respect to the writes from other processors . . .
Locked instructions have a total order
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x86-TSO

FIFO store buffer

read = read the most recent buffered write, if it exists (else
from main memory)

buffered write: can propagate to shared memory at any time
(except when lock is held by other threads).

behavior of LOCK’ed instructions

obtain global lock

flush store buffer at the end

release the lock

note: no reading allowed by other threads if lock is held
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SPARC V8 Total Store Ordering (TSO):
a read can complete before an earlier write to a different address,
but a read cannot return the value of a write by another processor
unless all processors have seen the write (it returns the value of
own write before others see it)

Consequences: In a thread: for a write followed by a read (to
different addresses) the order can be swapped

Justification: Swapping of W − R is not observable by the
programmer, it does not lead to new, unexpected
behavior!
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Example

thread thread′

flag := 1 flag′ := 1

A := 1 A := 2

reg1 := A reg′1 := A

reg2 := flag
′ reg′2 := flag

Result?
In TSOa

(reg1,reg
′
1) = (1,2) observable (as in SC)

(reg2,reg
′
2) = (0,0) observable

aDifferent from IBM 370, which also has write buffers, but not the possibility for
a thread to read from it’s own write buffer
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Axiomatic description

consider “temporal” ordering of memory commands
(read/write, load/store etc)
program order <p :

order in which memory commands are issued by the processor
= order in which they appear in the program code

memory order <m: order in which the commands become
effective/visible in main memory

Order (and value) conditions
RR: l1 <p l2 =⇒ l1 <m l2

WW: s1 <p s2 =⇒ s1 <m s2

RW: l1 <p s2 =⇒ l1 <m s2

Latest write wins: val(l1) = val(max<m {s1 <m l1 ∨ s1 <p l1})
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ARM and Power architecture

ARM and POWER: similar to each other

ARM: widely used inside smartphones and tablets
(battery-friendly)

POWER architecture = Performance Optimization With
Enhanced RISC., main driver: IBM

Memory model
much weaker than x86-TSO

exposes multiple-copy semantics to the programmer
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“Message passing” example in POWER/ARM

thread0 wants to pass a message over “channel” x to thread1,
shared var y used as flag.

Initially: x = y = 0
thread0 thread1

x := 1 while (y=0) { };

y := 1 r := x

Result?
Is the result r = 0 observable?

impossible in (x86-)TSO

it would violate W-W order
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Analysis of the example

thread0 thread1

W[x] := 1

W[y] := 1

R[y] = 1

R[x] = 0

rf
rf

How could that happen?
1 thread does stores out of order
2 thread does loads out of order
3 store propagates between threads out of order.
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Analysis of the example

thread0 thread1

W[x] := 1

W[y] := 1

R[y] = 1

R[x] = 0

rf
rf

How could that happen?
1 thread does stores out of order
2 thread does loads out of order
3 store propagates between threads out of order.

Power/ARM do all three!
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Conceptual memory architecture

memory0 memory1

thread0 thread1

w

w
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Power and ARM order constraints

basically, program order is not preserved! unless

writes to the same location

address dependency between two loads
dependency between a load and a store,

1 address dependency
2 data dependency
3 control dependency

use of synchronization instructions
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Repair of the MP example

To avoid reorder: Barriers
heavy-weight: sync instruction (POWER)

light-weight: lwsync

thread0 thread1

W[x] := 1

W[y] := 1

R[y] = 1

R[x] = 0

sync syncrf
rf
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Relationship between different models

(from

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2013/10c_ks)
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Java memory model

known example for a memory model for a programming
language.

specifies how Java threads interact through memory

weak memory model

under long development and debate
original model (from 1995):

widely criticized as flawed
disallowing many runtime optimizations
no good guarantees for code safety

more recent proposal: Java Specification Request 133
(JSR-133), part of Java 5

see [Manson et al., 2005]
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Correctly synchronized programs and others

1 Correctly synchronized programs: correctly synchronized, i.e.,
data-race free, programs are sequentially consistent
(“Data-race free” model [Adve and Hill, 1990])

2 Incorrectly synchronized programs: A clear and definite
semantics for incorrectly synchronized programs, without
breaking Java’s security/safety guarantees.

tricky balance for programs with data races:
disallowing programs violating Java’s security and safety
guarantees vs. flexibility still for standard compiler optimizations.
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Data race free model

Data race free model
data race free programs/executions are sequentially consistent

Data race
A data race is the “simultaneous” access by two threads to the
same shared memory location, with at least one access a
write.

a program is race free if no execution reaches a race.

note: the definition is ambigious!
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Data race free model

Data race free model
data race free programs/executions are sequentially consistent

Data race with a twist
A data race is the “simultaneous” access by two threads to the
same shared memory location, with at least one access a
write.

a program is race free if no sequentially consistent execution
reaches a race.
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Order relations

synchronizing actions: locking, unlocking, access to volatile
variables

Definition
1 synchronization order <sync : total order on all synchronizing

actions (in an execution)
2 synchronizes-with order: <sw

an unlock action synchronizes-with all <sync -subsequent lock
actions by any thread
similarly for volatile variable accesses

3 happens-before (<hb ): transitive closure of program order and
synchronizes-with order
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Happens-before memory model

simpler than/approximation of Java’s memory model

distinguising volative from non-volatile reads

happens-before

Happens before consistency
In a given execution:

if R[x] <hb W [X ], then the read cannot observe the write

if W [X ] <hb R[X ] and the read observes the write, then there
does not exists a W ′[X ] s.t. W [X ] <hb W ′[X ] <hb R[X ]

Synchronization order consistency (for volatile-s)
<sync consistent with <p .

If W [X ] <hb W ′[X ] <hb R[X ] then the read sees the write
W ′[X ]
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Incorrectly synchronized code

Initially: x = y = 0

thread0 thread1

r1 := x r2 := y

y := r1 x := r2

obviously: a race

however:

out of thin air
observation r1 = r2 = 42 not wished, but consistent with the
happens-before model!
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Happens-before: volatiles

cf. also the “message passing” example

ready volatile
Initially: x = 0, ready = false

thread0 thread1

x := 1 if (ready)

ready := true r1 := x

ready volatile⇒ r1 = 1 guaranteed
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Problem with the happens-before model

Initially: x = 0, y = 0

thread0 thread1

r1:= x r2:= y

if (r1 , 0) if (r2 , 0)

y := 42 x := 42

the program is correctly synchronized!

⇒ observation y = x = 42 disallowed

However: in the happens-before model, this is allowed!

violates the “data-race-free” model

⇒ add causality
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Causality: second ingredient for JMM

JMM
Java memory model = happens before + causality

circular causality is unwanted
causality eliminates:

data dependence
control dependence
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Causality and control dependency

Initially: a = 0; b = 1
thread0 thread1

r1 := a r3:= b

r2 := a a := r3;

if (r1 = r2)

b := 2;

is r1 = r2 = r3 = 2
possible?

=⇒

Initially: a = 0; b = 1
thread0 thread1

b := 2 r3:= b;

r1 := a a := r3;

r2 := r1

if (true) ;

r1 = r2 = r3 = 2 is
sequentially consistent

Optimization breaks control dependency
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Causality and data dependency

Initially: x = y =0
thread0 thread1

r1 := x; r3:= y;

r2 := r1∨1; x := r3;

y := r2;

Is r1 = r2 = r3 = 1
possible?

=⇒

Initially: x = y = 0
thread0 thread1

r2 := 1 r3:=y;

y := 1 x := r3;

r1:=x

using global analysis

∨ = bit-wise or on integers

Optimization breaks data dependence
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Summary: Un-/Desired outcomes for causality

Disallowed behavior
Initially: x = y = 0

thread0 thread1
r1 := x r2 := y
y := r1 x := r2

r1 = r2 = 42

Initially: x = 0, y = 0

thread0 thread1
r1:= x r2:= y
if (r1 , 0) if (r2 , 0)
y := 42 x := 42

r1 = r2 = 42

Allowed behavior

Initially: a = 0; b = 1
thread0 thread1
r1 := a r3:= b
r2 := a a := r3;
if (r1 = r2)
b := 2;

is r1 = r2 = r3 = 2 possible?

Initially: x = y =0
thread0 thread1
r1 := x; r3:= y;
r2 := r1∨1; x := r3;
y := r2;

Is r1 = r2 = r3 = 1 possible?
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Causality and the JMM

key of causality: well-behaved executions (i.e. consistent with
SC execution)

non-trivial, subtle definition

writes can be done early for well-behaved executions

Well-behaved
a not yet commited read must return the value of a write which is
<hb .
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Iterative algorithm for well-behaved executions

commit action

if action is well-behaved with actions in CAL
∧

if <hb and <sync orders among committed actions remain the same
∧

if values returned by committed reads remain the same

analyse (read or write) action

committed action list (CAL) = ∅

yes
no

next action
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JMM impact

considerations for implementors
control dependence: should not reorder a write above a
non-terminating loop
weak memory model: semantics allow re-ordering,
other code transformations

synchronization on thread-local objects can be ignored
volatile fields of thread local obects: can be treated as normal
fields
redundant synchronization can be ignored.

Consideration for programmers
DRF-model: make sure that the program is correctly
synchronized⇒ don’t worry about re-orderings
Java-spec: no guarantees whatsoever concerning pre-emptive
scheduling or fairness
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Conclusion

Take-home lesson
it’s impossible(!!) to produce

correct and

high-performance

concurrent code without clear knowledge of the chosen
platform’s/language’s MM

that holds: not only for system programmers, OS-developers,
compiler builders . . . but also for “garden-variety” SW
developers

reality (since long) much more complex than “naive” SC model

Take home lesson for the impatient
Avoid data races at (almost) all costs (by using synchronization)!
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