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Abstract
This is the “handout” version of the slides for the lecture (i.e., it’s a rendering of the content of the slides in

a way that does not waste so much paper when printing out). The material is found in [Andrews, 1991]. Being
a handout-version of the slides, some figures and graph overlays may not be rendered in full detail, I remove
most of the overlays, especially the long ones, because they don’t make sense much on a handout/paper.
Scroll through the real slides instead, if one needs the overlays. Not included here is the material about
weak memory models.

1 Intro
29. 08. 2014

1.1 Warming up
Today’s agenda

Introduction

• overview

• motivation

• simple examples and considerations

Start
a bit about

• concurrent programming with critical sections and waiting. Read1 also [Andrews, 2000, chapter 1] for
some background

• interference

• the await-language

What this course is about

• Fundamental issues related to cooperating parallel processes

• How to think about developing parallel processes

• Various language mechanisms, design patterns, and paradigms

• Deeper understanding of parallel processes:

– (informal and somewhat formal) analysis

– properties
1you!, as course particpant
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Parallel processes

• Sequential program: one control flow thread

• Parallel program: several control flow threads

Parallel processes need to exchange information. We will study two different ways to organize communication
between processes:

• Reading from and writing to shared variables (part I of the course)

• Communication with messages between processes (part II of the course)

shared memory

thread0 thread1

Course overview – part I: Shared variables

• atomic operations

• interference

• deadlock, livelock, liveness, fairness

• parallel programs with locks, critical sections and (active) waiting

• semaphores and passive waiting

• monitors

• formal analysis (Hoare logic), invariants

• Java: threads and synchronization

Course overview – part II: Communication

• asynchronous and synchronous message passing

• basic mechanisms: RPC (remote procedure call), rendezvous, client/server setting, channels

• Java’s mechanisms

• analysis using histories

• asynchronous systems

Part I: shared variables

Why shared (global) variables?

• reflected in the HW in conventional architectures

• there may be several CPUs inside one machine (or multi-core nowadays).

• natural interaction for tightly coupled systems

• used in many important languages, e.g., Java’s multithreading model.

• even on a single processor: use many processes, in order to get a natural partitioning

• potentially greater efficiency and/or better latency if several things happen/appear to happen “at the same
time”.2

e.g.: several active windows at the same time
2Holds for concurrency in general, not just shared vars, of course.
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Simple example
Global variables: x, y, and z. Consider the following program:

before after
{ x is a and y is b } x := x+ z; y := y + z; { x is a+ z and y is b+ z }

Pre/post-condition

• executing a program (resp. a program fragment) ⇒ state-change

• the conditions describe the state of the global variables before and after a program statement

• These conditions are meant to give an understanding of the program, and are not part of the executed
code.

Can we use parallelism here (without changing the results)?
If operations can be performed independently of one another, then concurrency may increase performance

Parallel operator ‖
Extend the language with a construction for parallel composition:

co S1 ‖ S2 ‖ . . . ‖ Sn oc

Execution of a parallel composition happens via the concurrent execution of the component processes S1,
. . . , Sn and terminates normally if all component processes terminate normally.
Example 1.

{ x is a, y is b } cox := x+ z ; ‖ y := y + z oc { x = a+ z, y = b+ z }

Interaction between processes
Processes can interact with each other in two different ways:

• cooperation to obtain a result

• competition for common resources

The organization of this interaction is what we will call synchronization.

Synchronization
Synchronization (veeeery abstractly) = restricting the possible interleavings of parallel processes (so as to avoid
“bad” things to happen and to achieve “positive” things)

• increasing “atomicity” and mutual exclusion (Mutex): We introduce critical sections of which cannot be
executed concurrently

• Condition synchronization: A process must wait for a specific condition to be satisfied before execution
can continue.

Concurrent processes: Atomic operations

Definition 2 (Atomic). An operation is atomic if it cannot be subdivided into smaller components.

Note

• A statement with at most one atomic operation, in addition to operations on local variables, can be
considered atomic!

• We can do as if atomic operations do not happen concurrently!

• What is atomic depends on the language/setting: fine-grained and coarse-grained atomicity.

• e.g.: Reading and writing of a global variable is usually atomic.3

• For some (high-level) languages: assignments x := e atomic operations, for others, not (reading of the
variables in the expression e, computation of the value e, followed by writing to x.)

3That’s what we assume in this lecture. In practice, it may be the case that not even that is atomic, for instance for “long
integers” or similarly. Sometimes, only reading one machine-level “word”/byte or similar is atomic. In this lecture, as said, we don’t
go into that level of details.
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Atomic operations on global variables

• fundamental for (shared var) concurrency

• also: process communication may be represented by variables: a communication channel corresponds to
a variable of type vector.

• associated to global variables: a set of atomic operations

• typically: read + write,

• in HW, e.g. LOAD/STORE

• channels as gobal data: send and receive

• x-operations: atomic operations on a variable x

Mutual exclusion
Atomic operations on a variable cannot happen simultaneously.

Example

P1 P2

{ x = 0 } cox := x+ 1 ‖ x := x− 1 oc { ? }

final state? (i.e., post-condition)

• Assume:

– each process is executed on its own processor

– and/or: the processes run on a multi-tasking OS

and that x is part of a shared state space, i.e. a shared var

• Arithmetic operations in the two processes can be executed simultaneously, but read and write operations
on x must be performed sequentially/atomically.

• order of these operations: dependent on relative processor speed and/or scheduling

• outcome of such programs: difficult to predict!

• “race” on x or race condition

• as for races in practice: it’s simple, avoid them at (almost) all costs

Atomic read and write operations

P1 P2

{ x = 0 } cox := x+ 1 ‖ x := x− 1 oc { ? }

Listing 1: Atomic steps for x := x+ 1

1 read x ;
2 i nc ;
3 wr i t e x ;

4 atomic x-operations:

• P1 reads (R1) value of x

• P1 writes (W1) a value into x,

• P2 reads (R2) value of x, and

• P2 writes (W2) a value into x.
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Interleaving & possible execution sequences

• “program order”:4

– R1 must happen before W1 and

– R2 before W2

• inc and dec (“-1”) work process-local5

⇒ remember (e.g.) inc ; write x behaves “as if” atomic (alternatively read x; inc)

operations can be sequenced in 6 ways (“interleaving”)

R1 R1 R1 R2 R2 R2
W1 R2 R2 R1 R1 W2
R2 W1 W2 W1 W2 R1
W2 W2 W1 W2 W1 W1
0 -1 1 -1 1 0

Non-determinism

• final states of the program (in x): {0, 1,−1}

• Non-determinism: result can vary depending on factors outside the program code

– timing of the execution

– scheduler

• as (post)-condition:6 x=−1 ∨ x=0 ∨ x=1

{ } x := 0; cox := x+ 1 ‖ x := x− 1 oc; { x=−1 ∨ x=0 ∨ x=1 }

State-space explosion

• Assume 3 processes, each with the same number of atomic operations

• consider executions of P1 ‖ P2 ‖ P3

nr. of atomic op’s nr. of executions
2 90
3 1680
4 34 650
5 756 756

• different executions can lead to different final states.

• even for simple systems: impossible to consider every possible execution

For n processes with m atomic statements each:

number of exec’s =
(n ∗m)!

m!n

4A word aside: as natural as this seems: in a number of modern architecture/modern languages & their compilers, this is not
guaranteed! Cf. Java’s memory model, or weak memory models in general.

5e.g.: in an arithmetic register, or a local variable (not mentioned in the code).
6Of course, things like x ∈ {−1, 0, 1} or −1 ≤ x ≤ 1 are equally adequate formulations of the postcondition.
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The “at-most-once” property

Fine grained atomicity
only the very most basic operations (R/W) are atomic “by nature”

• however: some non-atomic interactions appear to be atomic.

• note: expressions do only read-access (6= statements)

• critical reference (in an e): a variable changed by another process

• e without critical reference ⇒ evaluation of e as if atomic

Definition 3 (At-most-once property). x := e satisfies the “amo”-property if

1. e contains no crit. reference

2. e with at most one crit. reference & x not referenced7 by other proc’s

assigments with at-most-once property can be considered atomic

At most once examples

• In all examples: initially x = y = 0. And r, r′ etc: local var’s (registers)

• co and oc around . . . ‖ . . . omitted

x := x+ 1 ‖ y := x+ 1
x := y + 1 ‖ y := x+ 1 { (x, y) ∈ {(1, 1), (1, 2), (2, 1)} }
x := y + 1 ‖ x := y + 3 ‖ y := 1 {y=1 ∧ x= 1, 2, 3, 4}
r := y + 1 ‖ r′ := y − 1 ‖ y := 5
r := x− x ‖ . . . {is r now 0?}
x := x ‖ . . . {same as skip?}
if y > 0 then y := y − 1 fi ‖ if y > 0 then y := y − 1 fi

1.2 The await language
The course’s first programming language: the await-language

• the usual sequential, imperative constructions such as assignment, if-, for- and while-statements

• cobegin-construction for parallel activity

• processes

• critical sections

• await-statements for (active) waiting and conditional critical sections

Syntax
We use the following syntax for non-parallel control-flow8

Declarations Assignments
int i = 3; x := e;
int a[1:n]; a[i] := e;
int a[n];9 a[n]++;
int a[1:n] = ([n] 1); sum +:= i;

Seq. composition statement ; statement
Compound statement {statements}
Conditional if statement
While-loop while (condition) statement
For-loop for [i = 0 to n− 1]statement

7or just read.
8The book uses more C/Java kind of conventions, like = for assignment and == for logical equality.
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Parallel statements

coS1 ‖ S2 ‖ . . . ‖ Sn oc

• The statement(s) of each arm Si are executed in parallel with thos of the other arms.

• Termination: when all “arms” Si have terminated (“join” synchronization)

Parallel processes

1 process f oo {
2 int sum := 0 ;
3 for [ i=1 to 10 ]
4 sum +:= 1 ;
5 x := sum ;
6 }

• Processes evaluated in arbitrary order.

• Processes are declared (as methods/functions)

• side remark: the convention “declaration = start process” is not used in practice.10

Example

process bar1 dir0o
for [i = 1 to n]
write(i); }

Starts one process.

The numbers are printed in
increasing order.

process bar2[i=1 to n] dir0o
write(i);
}

Starts n processes.

The numbers are printed in
arbitrary order because the
execution order of the processes
is non-deterministic.

Read- and write-variables

• V : statement→ variable set: set of global variables in a statement (also for expressions)

• W : statement→ variable set set of global write–variables

V(x := e) = V(e) ∪ {x}
V(S1;S2) = V(S1) ∪ V(S2)

V(if b then S) = V(b) ∪ V(S)
V(while (b)S) = V(b) ∪ V(S)

W analogously, except the most important difference:

W(x := e) = {x}

• note: expressions side-effect free
10one typically separates declaration/definition from “activation” (with good reasons). Note: even instantiation of a runnable

interface in Java starts a process. Initialization (filling in initial data into a process) is tricky business.
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Disjoint processes

• Parallel processes without common (=shared) global variables: without interference

V(S1) ∩ V(S2) = ∅

• read-only variables: no interference.

• The following interference criterion is thus sufficient:

V(S1) ∩W(S2) =W(S1) ∩ V(S2) = ∅

• cf. notion of race (or race condition)

• remember also: critical references/amo-property

• programming practice: final variables in Java

1.3 Semantics and properties
Semantic concepts

• A state in a parallel program consists of the values of the global variables at a given moment in the
execution.

• Each process executes independently of the others by modifying global variables using atomic operations.

• An execution of a parallel program can be modelled using a history, i.e. a sequence of operations on global
variables, or as a sequence of states.

• For non-trivial parallel programs: very many possible histories.

• synchronization: conceptually used to limit the possible histories/interleavings.

Properties

• property = predicate over programs, resp. their histories

• A (true) property of a program11 is a predicate which is true for all possible histories of the program.

• Two types:

– safety property: program will not reach an undesirable state

– liveness property: program will reach a desirable state.

• partial correctness: If the program terminates, it is in a desired final state (safety property).

• termination: all histories are finite.12

• total correctness: The program terminates and is partially correct.

Properties: Invariants

• invariant (adj): constant, unchanging

• cf. also “loop invariant”

Definition 4 (Invariant). an invariant = state property, which holds for holds for all reachable states.

• safety property

• appropriate for also non-terminating systems (does not talk about a final state)

• global invariant talks about the state of many processes at once, preferably the entire system
11the program “has” that property, the program satisfies the property . . .
12that’s also called strong termination. Remember: non-determinism.
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• local invariant talks about the state of one process

proof principle: induction

one can show that an invariant is correct by

1. showing that it holds initially,

2. and that each atomic statement maintains it.

Note: we avoid looking at all possible executions!

How to check properties of programs?

• Testing or debugging increases confidence in a program, but gives no guarantee of correctness.

• Operational reasoning considers all histories of a program.

• Formal analysis: Method for reasoning about the properties of a program without considering the histories
one by one.

Dijkstra’s dictum:
A test can only show errors, but “never” prove correctness!

Critical sections
Mutual exclusion: combines sequences of operations in a critical section which then behave like atomic

operations.

• When the non-interference requirement parallel processes does not hold, we use synchronization to restrict
the possible histories.

• Synchronization gives coarse-grained atomic operations.

• The notation 〈S〉 means that S is performed atomically.13

Atomic operations:

• Internal states are not visible to other processes.

• Variables cannot be changed underway by other processes.

• S: like executed in a transaction

Example The example from before can now be written as:

int x := 0; co 〈x := x+ 1〉 ‖ 〈x := x− 1〉 oc{ x = 0 }

Conditional critical sections

Await statement
〈await(b) S〉

• boolean condition b: await condition

• body S: executed atomically (conditionally on b)

Example 5.
〈await(y > 0) y := y − 1〉

• synchronization: decrement delayed until (if ever) y > 0 holds
13In programming languages, one could find it as atomic{S} or similar.
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2 special cases

• unconditional critical section or “mutex”14

〈x := 1; y := y + 1〉

• Condition synchronization:15
〈await(counter > 0) 〉

Typical pattern
1 int counter = 1 ;
2 < await ( counter > 0)
3 counter := counter −1; > // s t a r t CS
4 critical statements ;
5 counter := counter+1 // end CS

• “critical statements” not enclosed in 〈angle brackets〉. Why?

• invariant: 0 ≤ counter ≤ 1 (= counter acts as “binary lock ”)

• very bad style would be: touch counter inside “critical statements” or elsewhere (e.g. access it not following
the “await-inc-CR-dec” pattern)

• in practice: beware(!) of exceptions in the critical statements

Example: (rather silly version of) producer/consumer synchronization

• strong coupling

• buf as shared variable (“one element buffer”)

• synchronization

– coordinating the “speed” of the two procs (rather strictly here)
– to avoid, reading data which is not yet produced
– (related:) avoid w/r conflict on shared memory

1

2 int buf , p := 0 ; c := 0 ;
3

4 process Producer { process Consumer {
5 int a [N ] ; . . . int b [N ] ; . . .
6 while (p < N) { while ( c < N) {
7 < await (p = c ) ; > < await (p > c ) ; >
8 buf := a [ p ] ; b [ c ] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Example (continued)

a:

buf: p: c: n:

b:

• An invariant holds in all states in all histories (traces/executions) of the program (starting in its initial
state(s)).

• Global invariant : c ≤ p ≤ c+1

• Local invariant (Producer) : 0 ≤ p ≤ n
14Later, a special kind of semaphore (a binary one) is also called a “mutex”. Terminology is a bit flexible sometimes.
15one may also see sometimes just await(b): however, eval. of b better be atomic and under no circumstances must b have

side-effects (never, ever. Seriously).
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2 Locks & barriers
5. 9. 2014

Practical Stuff
Mandatory assignment 1 (“oblig”)

• Deadline: Friday September 26 at 18.00

• Possible to work in pairs

• Online delivery (Devilry): https://devilry.ifi.uio.no

Introduction

• Central to the course are general mechanisms and issues related to parallel programs

• Previous class: await language and a simple version of the producer/consumer example

Today

• Entry- and exit protocols to critical sections

– Protect reading and writing to shared variables

• Barriers

– Iterative algorithms: Processes must synchronize between each iteration
– Coordination using flags

Remember: await-example: Producer/Consumer
1
2 int buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 int a [N ] ; . . . int b [N ] ; . . .
6 while (p < N) { while ( c < N) {
7 < await (p = c ) ; > < await (p > c ) ; >
8 buf := a [ p ] ; b [ c ] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Invariants
An invariant holds in all states in all histories of the program.

• global invariant: c ≤ p ≤ c+ 1

• local (in the producer): 0 ≤ p ≤ N

2.1 Critical sections
Critical section

• Fundamental for concurrency

• Immensely intensively researched, many solutions

• Critical section: part of a program that is/needs to be “protected” against interference by other processes

• Execution under mutual exclusion

• Related to “atomicity”

Main question we are discussing today:
How can we implement critical sections / conditional critical sections?

• Various solutions and properties/guarantees

• Using locks and low-level operations

• SW-only solutions? HW or OS support?

• Active waiting (later semaphores and passive waiting)
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Access to Critical Section (CS)

• Several processes compete for access to a shared resource

• Only one process can have access at a time: “mutual exclusion” (mutex)

• Possible examples:

– Execution of bank transactions
– Access to a printer

• A solution to the CS problem can be used to implement await-statements

Critical section: First approach to a solution
Operations on shared variables happen inside the CS.
Access to the CS must then be protected to prevent interference.

1 process p [ i=1 to n ] {
2 while ( true ) {
3 CSentry # entry protoco l to CS
4 CS
5 CSexit # ex i t pro toco l from CS
6 non−CS
7 }
8 }

General pattern for CS

• Assumption: A process which enters the CS will eventually leave it.

⇒ Programming advice: be aware of exceptions inside CS!

Naive solution
1 int in = 1 # pos s i b l e va lues in {1, 2}
2
3
4 process p1 { process p2 {
5 while ( true ) { while ( true ) {
6 while ( in=2) { sk ip } ; while ( in=1) { sk ip } ;
7 CS; CS ;
8 in := 2 ; in := 1
9 non−CS non−CS

10 }

• entry protocol: active/busy waiting

• exit protocol: atomic assignment

Good solution? A solution at all? What’s good, what’s less so?

• More than 2 processes?

• Different execution times?

Desired properties

1. Mutual exclusion (Mutex): At any time, at most one process is inside CS.

2. Absence of deadlock: If all processes are trying to enter CS, at least one will succeed.

3. Absence of unnecessary delay: If some processes are trying to enter CS, while the other processes are
in their non-critical sections, at least one will succeed.

4. Eventual entry: A process attempting to enter CS will eventually succeed.

NB: The three first are safety properties,16 The last a liveness property.
(SAFETY: no bad state, LIVENESS: something good will happen.)

16The question for points 2 and 3, whether it’s safety or liveness, is slightly up-to discussion/standpoint!
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Safety: Invariants (review)
A safety property expresses that a program does not reach a “bad” state. In order to prove this, we can

show that the program will never leave a “good” state:

• Show that the property holds in all initial states

• Show that the program statements preserve the property

Such a (good) property is often called a global invariant.

Atomic sections
Used for synchronization of processes

• General form:
〈await(B) S〉

– B: Synchronization condition
– Executed atomically when B is true

• Unconditional critical section (B is true):
〈S〉 (1)

S executed atomically

• Conditional synchronization:17
〈await(B)〉 (2)

Critical sections using locks
1 bool l o ck = fa l se ;
2
3 process [ i=1 to n ] {
4 while ( true ) {
5 < await (¬ l o ck ) l ock := true >;
6 CS;
7 l o ck := fa l se ;
8 non CS ;
9 }

10 }

Safety properties:

• Mutex

• Absence of deadlock

• Absence of unnecessary waiting

What about taking away the angle brackets 〈. . .〉?

“Test & Set”
Test & Set is a method/pattern for implementing conditional atomic action:

1 TS( lock ) {
2 < bool i n i t i a l := lock ;
3 l o ck := true >;
4 return i n i t i a l
5 }

Effect of TS(lock)

• side effect: The variable lock will always have value true after TS(lock),

• returned value: true or false, depending on the original state of lock

• exists as an atomic HW instruction on many machines.
17We also use then just await (B) or maybe await B. But also in this case we assume that B is evaluated atomically.
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Critical section with TS and spin-lock
Spin lock:

1 bool l o ck := fa l se ;
2
3 process p [ i=1 to n ] {
4 while ( true ) {
5 while (TS( lock ) ) { sk ip } ; # entry protoco l
6 CS
7 l o ck := fa l se ; # ex i t pro toco l
8 non−CS
9 }

10 }

NB: Safety: Mutex, absence of deadlock and of unnecessary delay.

Strong fairness needed to guarantee eventual entry for a process

Variable lock becomes a hotspot!

A puzzle: “paranoid” entry protocol

Better safe than sorry?
What about double-checking in the entry protocol whether it is really, really safe to enter?

1 bool l o ck := fa l se ;
2
3 process p [ i = i to n ] {
4 while ( true ) {
5 while ( l ock ) { sk ip } ; # add i t i ona l spin−l ock check
6 while (TS( lock ) ) { sk ip } ;
7
8 CS;
9 l o ck := fa l se ;

10 non−CS
11 }
12 }

1 bool l o ck := fa l se ;
2
3 process p [ i = i to n ] {
4 while ( true ) {
5 while ( l ock ) { sk ip } ; # add i t i ona l spin lock check
6 while (TS( lock ) ) {
7 while ( l ock ) { sk ip }} ; # + more ins ide the TAS loop
8 CS;
9 l o ck := fa l se ;

10 non−CS
11 }
12 }

Does that make sense?

Multiprocessor performance under load (contention)

time

number of threads

TTASLock

TASLock

ideal lock
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A glance at HW for shared memory

shared memory

thread0 thread1

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

Test and test & set

• Test-and-set operation:

– (Powerful) HW instruction for synchronization

– Accesses main memory (and involves “cache synchronization”)

– Much slower than cache access

• Spin-loops: faster than TAS loops

• “Double-checked locking”: important design pattern/programming idiom for efficient CS (under certain
architectures)18

Implementing await-statements
Let CSentry and CSexit implement entry- and exit-protocols to the critical section.

Then the statement < S;> can be implemented by

CSentry; S; CSexit;

Implementation of conditional critical section < await (B) S;> :

1 CSentry ;
2 while ( !B) {CSexit ; CSentry} ;
3 S ;
4 CSexit ;

The implementation can be optimized with Delay between the exit and entry in the body of the while
statement.

18depends on the HW architecture/memory model. In some architectures: does not guarantee mutex! in which case it’s an
anti-pattern . . .
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2.2 Liveness and fairness
Liveness properties

So far: no(!) solution for “Eventual Entry”-property, except the very first (which did not satisfy “Absence
of Unnecessary Delay”).

• Liveness: Something good will happen

• Typical example for sequential programs: (esp. in our context) Program termination19

• Typical example for parallel programs: A given process will eventually enter the critical section

Note: For parallel processes, liveness is affected by the scheduling strategies.

Scheduling and fairness

• A command is enabled in a state if the statement can in principle be executed next

• Concurrent programs: often more than 1 statement enabled!

1 bool x := true ;
2
3 co while ( x ){ sk ip } ; | | x := fa l se co

Scheduling: resolving non-determinism

A strategy such that for all points in an execution: if there is more than one statement enabled, pick one
of them.

Fairness

Informally: enabled statements should not systematically be neglected by the scheduling strategy.

Fairness notions

• Fairness: how to pick among enabled actions without being “passed over” indefinitely

• Which actions in our language are potentially non-enabled? 20

• Possible status changes:

– disabled → enabled (of course),

– but also enabled → disabled

• Differently “powerful” forms of fairness: guarantee of progress

1. for actions that are always enabled

2. for those that stay enabled

3. for those whose enabledness show “on-off” behavior
19In the first version of the slides of lecture 1, termination was defined misleadingly.
20provided the control-flow/program pointer stands in front of them.
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Unconditional fairness
A scheduling strategy is unconditionally fair if each unconditional atomic action which can be chosen, will

eventually be chosen.

Example:

1 bool x := true ;
2
3 co while ( x ){ sk ip } ; | | x := fa l se co

• x := false is unconditional

⇒ The action will eventually be chosen

• This guarantees termination

• Example: “Round robin” execution

• Note: if-then-else, while (b) ; are not conditional atomic statements!

Weak fairness

Weak fairness
A scheduling strategy is weakly fair if

• it is unconditionally fair

• every conditional atomic action will eventually be chosen, assuming that the condition becomes true and
thereafter remains true until the action is executed.

Example:

1 bool x = true , int y = 0 ;
2
3 co while ( x ) y = y + 1 ; | | < await y ≥ 10 ; > x = fa l se ; oc

• When y ≥ 10 becomes true, this condition remains true

• This ensures termination of the program

• Example: Round robin execution

Strong fairness
Example

1 bool x := true ; y := fa l se ;
2
3 co
4 while ( x ) {y:=true ; y:= fa l se }
5 | |
6 < await ( y ) x:= fa l se >
7 oc

Definition 6 (Strongly fair scheduling strategy). • unconditionally fair and

• each conditional atomic action will eventually be chosen, if the condition is true infinitely often.

For the example:

• under strong fairness: y true ∞-often ⇒ termination

• under weak fairness: non-termination possible
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Fairness for critical sections using locks
The CS solutions shown need to assume strong fairness to guarantee liveness, i.e., access for a given process

(i ):

• Steady inflow of processes which want the lock

• value of lock alternates (infinitely often) between true and false

• Weak fairness: Process i can read lock only when the value is false

• Strong fairness: Guarantees that i eventually sees that lock is true

Difficult: to make a scheduling strategy that is both practical and strongly fair.

We look at CS solutions where access is guaranteed for weakly fair strategies

Fair solutions to the CS problem

• Tie-Breaker Algorithm

• Ticket Algorithm

• The book also describes the bakery algorithm

Tie-Breaker algorithm

• Requires no special machine instruction (like TS)

• We will look at the solution for two processes

• Each process has a private lock

• Each process sets its lock in the entry protocol

• The private lock is read, but is not changed by the other process

Tie-Breaker algorithm: Attempt 1

1 in1 := false , in2 := fa l se ;
2

3 process p1 { process p2 {
4 while ( true ){ while ( true ) {
5 while ( in2 ) { sk ip } ; while ( in1 ) { sk ip } ;
6 in1 := true ; in2 := true ;
7 CS CS ;
8 in1 := fa l se ; in2 := fa l se ;
9 non−CS non−CS

10 } }
11 } }

What is the global invariant here?

Problem: No mutex

Tie-Breaker algorithm: Attempt 2

1 in1 := false , in2 := fa l se ;
2

3 process p1 { process p2 {
4 while ( true ){ while ( true ) {
5 while ( in2 ) { sk ip } ; while ( in1 ) { sk ip } ;
6 in1 := true ; in2 := true ;
7 CS CS ;
8 in1 := fa l se ; in2 := fa l se ;
9 non−CS non−CS

10 } }
11 } }
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1 in1 := false , in2 := fa l se ;
2

3 process p1 { process p2 {
4 while ( true ){ while ( true ) {
5 in1 := true ; in2 := true ;
6 while ( in2 ) { sk ip } ; while ( in1 ) { sk ip } ;
7 CS CS ;
8 in1 := fa l se ; in2 := fa l se ;
9 non−CS non−CS

10 } }
11 } }

• Problem seems to be the entry protocol

• Reverse the order: first “set”, then “test”

Deadlock21 :-(

Tie-Breaker algorithm: Attempt 3 (with await)

• Problem: both half flagged their wish to enter ⇒ deadlock

• Avoid deadlock: “tie-break”

• Be fair: Don’t always give priority to one specific process

• Need to know which process last started the entry protocol.

• Add new variable: last

in1 := false , in2 := false ; int last1 process p1 {
2 while ( true ){
3 in1 := true ;
4 l a s t := 1 ;
5 < await ( (not in2 ) or
6 l a s t = 2);>
7 CS
8 in1 := fa l se ;
9 non−CS

10 }
11 }

1 process p2 {
2 while ( true ){
3 in2 := true ;
4 l a s t := 2 ;
5 < await ( (not in1 ) or
6 l a s t = 1);>
7 CS
8 in2 := fa l se ;
9 non−CS

10 }
11 }

Tie-Breaker algorithm
Even if the variables in1, in2 and last can change the value while a wait-condition evaluates to true, the

wait condition will remain true.

p1 sees that the wait-condition is true:

• in2 = false

– in2 can eventually become true, but then p2 must also set last to 2
– Then the wait-condition to p1 still holds

• last = 2

– Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

21Technically, it’s more of a live-lock, since the processes still are doing “something”, namely spinning endlessly in the empty
while-loops, never leaving the entry-protocol to do real work. The situation though is analogous to a “deadlock” conceptually.
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Tie-Breaker algorithm (4)

1 process p1 {
2 while ( true ){
3 in1 := true ;
4 l a s t := 1 ;
5 while ( in2 and l a s t = 2){ sk ip }
6 CS
7 in1 := fa l se ;
8 non−CS
9 }

10 }

Generalizable to many processes (see book)

Ticket algorithm
Scalability: If the Tie-Breaker algorithm is scaled up to n processes, we get a loop with n − 1 2-process

Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution to the CS problem for n processes.

• Works like the “take a number” queue at the post office (with one loop)

• A customer (process) which comes in takes a number which is higher than the number of all others who
are waiting

• The customer is served when a ticket window is available and the customer has the lowest ticket number.

Ticket algorithm: Sketch (n processes)

1 int number := 1 ; next := 1 ; turn [ 1 : n ] := ( [ n ] 0 ) ;
2
3 process [ i = 1 to n ] {
4 while ( true ) {
5 < turn [ i ] := number ; number := number +1 >;
6 < await ( turn [ i ] = next )>;
7 CS
8 <next = next + 1>;
9 non−CS

10 }
11 }

• The first line in the loop must be performed atomically!

• await-statement: can be implemented as while-loop

• Some machines have an instruction fetch-and-add (FA): FA(var, incr):< int tmp := var; var := var + incr; return tmp;>

Ticket algorithm: Implementation

1 int number := 1 ; next := 1 ; turn [ 1 : n ] := ( [ n ] 0 ) ;
2
3 process [ i = 1 to n ] {
4 while ( true ) {
5 turn [ i ] := FA(number , 1 ) ;
6 while ( turn [ i ] != next ) { sk ip } ;
7 CS
8 next := next + 1 ;
9 non−CS

10 }
11 }

FA(var, incr):< int tmp := var; var := var + incr; return tmp;>

Without this instruction, we use an extra CS:22

CSentry; turn[i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm (see book).
22Why?
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Ticket algorithm: Invariant
Invariants

• What is the global invariant for the ticket algorithm?

0 < next≤number

• What is the local invariant for process i:

– turn[ i ] < number
– if p[ i ] is in the CS then turn[ i ] = next.

• for pairs of processes i 6= j:

if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

2.3 Barriers

Barrier synchronization

• Computation of disjoint parts in parallel (e.g. array elements).

• Processes go into a loop where each iteration is dependent on the results of the previous.

1 process Worker [ i=1 to n ] {
2 while ( true ) {
3 task i ;
4 wait until a l l n tasks are done # barr i e r
5 }
6 }

All processes must reach the barrier (“join”) before any can continue.

Shared counter
A number of processes will synchronize the end of their tasks. Synchronization can be implemented with a

shared counter :
1 int count := 0 ;
2 process Worker [ i=1 to n ] {
3 while ( true ) {
4 task i ;
5 < count := count+1>;
6 < await ( count=n)>;
7 }
8 }

Can be implemented using the FA instruction.
Disadvantages:

• count must be reset between each iteration.

• Must be updated using atomic operations.

• Inefficient: Many processes read and write count concurrently.

Coordination using flags
Goal: Avoid too many read- and write-operations on one variable!!

Divides shared counter into several local variables.

1 Worker [ i ] :
2 a r r i v e [ i ] := 1 ;
3 < await ( continue [ i ] = 1);>
4
5 Coordinator :
6 for [ i=1 to n ] < await ( a r r i v e [ i ]=1);>
7 for [ i=1 to n ] continue [ i ] := 1 ;

NB: In a loop, the flags must be cleared before the next iteration!

Flag synchronization principles:

1. The process waiting for a flag is the one to reset that flag

2. A flag will not be set before it is reset
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Synchronization using flags
Both arrays continue and arrived are initialized to 0.

1 process Worker [ i = 1 to n ] {
2 while ( true ) {
3 code to implement task i ;
4 a r r i v e [ i ] := 1 ;
5 < await ( continue [ i ] := 1>;
6 continue := 0 ;
7 }
8 }

1 process Coordinator {
2 while ( true ) {
3 for [ i = 1 to n ] {
4 <await ( a r r i v ed [ i ] = 1)>;
5 a r r i v ed [ i ] := 0
6 } ;
7 for [ i = 1 to n ] {
8 continue [ i ] := 1
9 }

10 }
11 }

Combined barriers

• The roles of the Worker and Coordinator processes can be combined.

• In a combining tree barrier the processes are organized in a tree structure. The processes signal arrive
upwards in the tree and continue downwards in the tree.

Implementation of Critical Sections
bool lock = false;

Entry: <await (!lock) lock := true>
Critical section

Exit: <lock := false>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:

• Busy waiting protocols are often complicated

• Inefficient if there are fever processors than processes

– Should not waste time executing a skip loop!

• No clear distinction between variables used for synchronization and computation!

Desirable to have a special tools for synchronization protocols

Next week we will do better: semaphores !!

3 Semaphores
12 September, 2014

3.1 Semaphore as sync. construct
Overview

• Last lecture: Locks and Barriers (complex techniques)

– No clear separation between variables for synchronization and variables to compute results

– Busy waiting
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• This lecture: Semaphores (synchronization tool)

– Used easily for mutual exclusion and condition synchronization.
– A way to implement signaling and (scheduling).
– Can be implemented in many ways.

Outline

• Semaphores: Syntax and semantics

• Synchronization examples:

– Mutual exclusion (Critical Section)
– Barriers (signaling events)
– Producers and consumers (split binary semaphores)
– Bounded buffer: resource counting
– Dining philosophers: mutual exclusion – deadlock
– Readers and writers: (condition synchronization – passing the baton

Semaphores

• Introduced by Dijkstra in 1968

• “inspired” by railroad traffic synchronization

• railroad semaphore indicates whether the track ahead is clear or occupied by another train

Clear Occupied

Properties

• Semaphores in concurrent programs: work similarly

• Used to implement

– mutex and
– condition synchronization

• Included in most standard libraries for concurrent programming

• also: system calls in e.g., Linux kernel, similar in Windows etc.

Concept

• semaphore: special kind of shared program variable (with built-in sync. power)

• value of a semaphore: a non-negative integer

• can only be manipulated by two atomic operations:23

P and V

– P: (Passeren) Wait for signal - want to pass
∗ effect: wait until the value is greater than zero, and decrease the value by one

– V: (Vrijgeven) Signal an event - release
∗ effect: increase the value by one

• nowadays, for libraries or sys-calls: other names are preferred (up/down, wait/signal, . . . )

• different “flavors” of semaphores (binary vs. counting)

• a mutex: often (basically) a synonym for binary semaphore
23There are different stories about what Dijkstra actually wanted V and P to stand for.
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Syntax and semantics

• declaration of semaphores:

– sem s; default initial value is zero

– sem s := 1;

– sem s[4] := ([4] 1);

• semantics24 (via “implementation”):

P-operation P(s)

〈await(s > 0) s := s− 1〉

V-operation V(s)

〈s := s+ 1〉

Important: No direct access to the value of a semaphore.
E.g. a test like

if (s = 1) then .... else

is seriously not allowed!

Kinds of semaphores

• Kinds of semaphores

General semaphore: possible values — all non-negative integers

Binary semaphore: possible values — 0 and 1

Fairness

– as for await-statements.

– In most languages: FIFO (“waiting queue”): processes delayed while executing P-operations are
awaken in the order they where delayed

Example: Mutual exclusion (critical section)
Mutex25 implemented by a binary semaphore

9 sem mutex := 1 ;
10 process CS[ i = 1 to n ] {
11 while ( true ) {
12 P(mutex ) ;
13 criticalsection ;
14 V(mutex ) ;
15 noncriticalsection ;
16 }

Note:

• The semaphore is initially 1

• Always P before V → (used as) binary semaphore
24meaning
25As mentioned: “mutex” is also used to refer to a data-structure, basically the same as binary semaphore itself.
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Example: Barrier synchronization
Semaphores may be used for signaling events
sem arrive1 = 0, arrive2 = 0;
process Worker1 {

. . .
V(arrive1); reach the barrier
P(arrive2); wait for other processes

. . .
}
process Worker2 {

. . .
V(arrive2); reach the barrier
P(arrive1); wait for other processes

. . .
}

Note:

• signalling semaphores: usually initialized to 0 and

• signal with a V and then wait with a P

3.2 Producer/consumer
Split binary semaphores

split binary semaphore
A set of semaphores, whose sum ≤ 1

mutex by split binary semaphores

• initialization: one of the semaphores =1, all others = 0

• discipline: all processes call P on a semaphore, before calling V on (another) semaphore

⇒ code between the P and the V

– all semaphores = 0

– code executed in mutex

Example: Producer/consumer with split binary semaphores

1 T buf ; # one element bu f fer , some type T
2 sem empty := 1 ;
3 sem fu l l := 0 ;

1 process Producer {
2 while ( true ) {
3 P(empty ) ;
4 bu f f := data ;
5 V( f u l l ) ;
6 }
7 }

1 process Consumer {
2 while ( true ) {
3 P( f u l l ) ;
4 bu f f := data ;
5 V(empty ) ;
6 }
7 }

Note:

• remember also P/C with await + exercise 1

• empty and full are both binary semaphores, together they form a split binary semaphore.

• solution works with several producers/consumers
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Increasing buffer capacity

• previous example: strong coupling, the producer must wait for the consumer to empty the buffer before
it can produce a new entry.

• easy generalization: buffer of size n.

• loose coupling/asynchronous communcation ⇒ “buffering”

– ring-buffer, typically represented

∗ by an array
∗ + two integers rear and front.

– semaphores to keep track of the number of free/used slots ⇒general semaphore

front rear

Data

Producer/consumer: increased buffer capacity

1 T buf [ n ] # array , elements of type T
2 int f r on t := 0 , r ea r := 0 ; # ‘ ‘ pointers ’ ’
3 sem empty := n ,
4 sem fu l l = 0 ;

1 process Producer {
2 while ( true ) {
3 P(empty ) ;
4 bu f f [ r ea r ] := data ;
5 r ea r := ( r ea r + 1) % n ;
6 V( f u l l ) ;
7 }
8 }

1 process Consumer {
2 while ( true ) {
3 P( f u l l ) ;
4 result := bu f f [ f r on t ] ;
5 f r on t := ( f r on t + 1) % n
6 V(empty ) ;
7 }
8 }

several producers or consumers?

Increasing the number of processes

• several producers and consumers.

• New synchronization problems:

– Avoid that two producers deposits to buf[rear] before rear is updated

– Avoid that two consumers fetches from buf[front] before front is updated.

• Solution: additionally 2 binary semaphores for protection

– mutexDeposit to deny two producers to deposit to the buffer at the same time.

– mutexFetch to deny two consumers to fetch from the buffer at the same time.

Example: Producer/consumer with several processes

1 T buf [ n ] # array , elem ’ s of type T
2 int f r on t := 0 , r ea r := 0 ; # ‘ ‘ pointers ’ ’
3 sem empty := n ,
4 sem fu l l = 0 ;
5 sem mutexDeposit , mutexFetch := 1 ; # protec t the data s tuc t .
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1 process Producer {
2 while ( true ) {
3 P(empty ) ;
4 P( mutexDeposit ) ;
5 bu f f [ r ea r ] := data ;
6 r ea r := ( r ea r + 1) % n ;
7 V( mutexDeposit ) ;
8 V( f u l l ) ;
9 }

10 }

1 process Consumer {
2 while ( true ) {
3 P( f u l l ) ;
4 P(mutexFetch ) ;
5 result := bu f f [ f r on t ] ;
6 f r on t := ( f r on t + 1) % n
7 V(mutexFetch ) ;
8 V(empty ) ;
9 }

10 }

3.3 Dining philosophers
Problem: Dining philosophers introduction

• famous sync. problem (Dijkstra)

• Five philosophers sit around a circular table.

• one fork placed between each pair of philosophers

• philosophers alternates between thinking and eating

• philosopher needs two forks to eat (and none for thinking)

Dining philosophers: sketch

1 process Phi losopher [ i = 0 to 4 ] {
2 while true {
3 th ink ;
4 acqu i r e f o r k s ;
5 eat ;
6 r e l e a s e f o r k s ;
7 }
8 }

now: program the actions acquire forks and release forks

Dining philosophers: 1st attempt

• forks as semaphores

• let the philosophers pick up the left fork first

26image from wikipedia.org
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1 process Phi losopher [ i = 0 to 4 ] {
2 while true {
3 th ink ;
4 acqu i r e f o r k s ;
5 eat ;
6 r e l e a s e f o r k s ;
7 }
8 }

1 sem f o rk [ 5 ] := ( [ 5 ] 1 ) ;
2 process Phi losopher [ i = 0 to 4 ] {
3 while true {
4 th ink ;
5 P( f o rk [ i ] ;
6 P( f o rk [ ( i +1)%5]);
7 eat ;
8 V( f o rk [ i ] ;
9 V( f o rk [ ( i +1)%5]);

10 }
11 }

P0

P1

P2

P3

P4

F0

F1

F2

F3

F4

ok solution?

Example: Dining philosophers 2nd attempt

breaking the symmetry
To avoid deadlock, let 1 philospher (say 4) grab the right fork first

1 process Phi losopher [ i = 0 to 3 ] {
2 while true {
3 th ink ;
4 P( f o rk [ i ] ;
5 P( f o rk [ ( i +1)%5]);
6 eat ;
7 V( f o rk [ i ] ;
8 V( f o rk [ ( i +1)%5]);
9 }

10 }

1 process Phi losopher4 {
2 while true {
3 th ink ;
4 P( f o rk [ 4 ] ;
5 P( f o rk [ 0 ] ) ;
6 eat ;
7 V( f o rk [ 4 ] ;
8 V( f o rk [ 0 ] ) ;
9 }

10 }

1 process Phi losopher4 {
2 while true {
3 th ink ;
4 P( f o rk [ 0 ] ) ;
5 P( f o rk [ 4 ] ;
6 eat ;
7 V( f o rk [ 4 ] ;
8 V( f o rk [ 0 ] ) ;
9 }

10 }
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Dining philosphers

• important illustration of problems with concurrency:

– deadlock

– but also other aspects: liveness and fairness etc.

• resource access

• connection to mutex/critical sections

3.4 Readers/writers
Example: Readers/Writers overview

• Classical synchronization problem

• Reader and writer processes, sharing access to a “database”

– readers: read-only from the database

– writers: update (and read from) the database

• R/R access unproblematic, W/W or W/R: interference

– writers need mutually exclusive access

– When no writers have access, many readers may access the database

Readers/Writers approaches

• Dining philosophers: Pair of processes compete for access to “forks”

• Readers/writers: Different importantclasses of processes competes for access to the database

– Readers compete with writers

– Writers compete both with readers and other writers

• General synchronization problem:

– readers: must wait until no writers are active in DB

– writers: must wait until no readers or writers are active in DB

• here: two different approaches

1. Mutex: easy to implement, but “unfair”

2. Condition synchronization:

– Using a split binary semaphore
– Easy to adapt to different scheduling strategies

Readers/writers with mutex (1)

sem rw := 1

1 process Reader [ i=1 to M] {
2 while ( true ) {
3 . . .
4 P( rw ) ;
5
6 read from DB
7
8 V( rw ) ;
9 }

10 }
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1 process Writer [ i=1 to N] {
2 while ( true ) {
3 . . .
4 P( rw ) ;
5
6 write to DB
7
8 V( rw ) ;
9 }

10 }

• safety ok

• but: unnessessarily cautious

• We want more than one reader simultaneously.

Readers/writers with mutex (2)
Initially:

1 int nr := 0 ; # nunber of ac t i v e readers
2 sem rw := 1 # lock for reader/wr i ter mutex

1 process Reader [ i=1 to M] {
2 while ( true ) {
3 . . .
4 < nr := nr + 1 ;
5 i f (n=1) P( rw) > ;
6
7 read from DB
8
9 < nr := nr − 1 ;

10 i f (n=0) V( rw) > ;
11 }
12
13 }

1 process Writer [ i=1 to N] {
2 while ( true ) {
3 . . .
4
5 P( rw ) ;
6
7 write to DB
8
9

10 V( rw ) ;
11 }
12
13 }

Semaphore inside await statement? Don’t try that at home.

Readers/writers with mutex (3)
1 int nr = 0 ; # number of ac t i v e readers
2 sem rw = 1 ; # lock for reader/wr i ter exc lus ion
3 sem mutexR = 1 ; # mutex for readers
4
5 process Reader [ i=1 to M] {
6 while ( true ) {
7 . . .
8 P(mutexR)
9 nr := nr + 1 ;

10 i f ( nr=1) P( rw ) ;
11 V(mutexR)
12
13 read from DB
14
15 P(mutexR)
16 nr := nr − 1 ;
17 i f ( nr=0) V( rw ) ;
18 V(mutexR)
19 }
20 }

“Fairness”
What happens if we have a constant stream of readers? “Reader’s preference”
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Readers/writers with condition synchronization: overview

• previous mutex solution solved two separate synchronization problems

– Readers and. writers for access to the database
– Reader vs. reader for access to the counter

• Now: a solution based on condition synchronization

Invariant

reasonable invariant27

1. When a writer access the DB, no one else can

2. When no writers access the DB, one or more readers may

• introduce two counters:

– nr: number of active readers
– nw: number of active writers

The invariant may be:
RW: (nr = 0 or nw = 0) and nw ≤ 1

Code for “counting” readers and writers

Reader: Writer:
< nr := nr + 1; > < nw := nw + 1; >
read from DB write to DB
< nr := nr - 1; > < nw := nw - 1; >

• maintain invariant ⇒ add sync-code

• decrease counters: not dangerous

• before increasing though:

– before increasing nr: nw = 0
– before increasing nw: nr = 0 and nw = 0

condition synchronization: without semaphores
Initially:

1 int nr := 0 ; # nunber of ac t i v e readers
2 int nw := 0 ; # number of ac t i v e wr i t e r s
3 sem rw := 1 # lock for reader/wr i ter mutex
4
5 ## Invariant RW: (nr = 0 or nw = 0) and nw <= 1

1 process Reader [ i=1 to M]{
2 while ( true ) {
3 . . .
4 < await (nw=0)
5 nr := nr+1>;
6 read from DB ;
7 < nr := nr − 1>
8 }
9 }

1 process Writer [ i=1 to N]{
2 while ( true ) {
3 . . .
4 < await ( nr = 0 and nw = 0)
5 nw := nw+1>;
6 write to DB ;
7 < nw := nw − 1>
8 }
9 }

272nd point: technically, not an invariant.
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condition synchr.: converting to split binary semaphores
implementation of await’s: possible via split binary semaphores

• May be used to implement different synchronization problems with different guards B1, B2...

General pattern

– entry28 semaphore e, initialized to 1

– For each guard Bi:

∗ associate 1 counter and
∗ 1 delay-semaphore

both initialized to 0

∗ semaphore: delay the processes waiting for Bi
∗ counter: count the number of processes waiting for Bi

⇒ for readers/writers problem: 3 semaphores and 2 counters:

sem e = 1;
sem r = 0; int dr = 0; # condition reader: nw == 0
sem w = 0; int dw = 0; # condition writer: nr == 0 and nw == 0

Condition synchr.: converting to split binary semaphores (2)

• e, r and w form a split binary semaphore.

• All execution paths start with a P-operation and end with a V-operation → Mutex

Signaling

We need a signal mechanism SIGNAL to pick which semaphore to signal.

• SIGNAL: make sure the invariant holds

• Bi holds when a process enters CR because either:

– the process checks itself,

– or the process is only signaled if Bi holds

• and another pitfall: Avoid deadlock by checking the counters before the delay semaphores are signaled.

– r is not signalled (V(r)) unless there is a delayed reader

– w is not signalled (V(w)) unless there is a delayed writer

Condition synchr.: Reader

1 int nr := 0 , nw = 0 ; # condit ion va r i a b l e s ( as be fore )
2 sem e := 1 ; # delay semaphore
3 int dr := 0 ; sem r := 0 ; # delay counter + sem for reader
4 int dw := 0 ; sem w := 0 ; # delay counter + sem for wr i ter
5 # invar iant RW: (nr = 0 ∨ nw = 0 ) ∧ nw ≤ 1

1 process Reader [ i=1 to M]{ # entry condit ion : nw = 0
2 while ( true ) {
3 . . .
4 P( e ) ;
5 i f (nw > 0) { dr := dr + 1 ; # < await (nw=0)
6 V( e ) ; # nr:=nr+1 >
7 P( r ) } ;
8 nr :=nr+1; SIGNAL;
9

10 read from DB ;
11
12 P( e ) ; nr :=nr −1; SIGNAL; # < nr:=nr−1 >
13 }
14 }

28Entry to the administractive CS’s, not entry to data-base access
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With condition synchronization: Writer

1 process Writer [ i=1 to N]{ # entry condit ion : nw = 0 and nr = 0
2 while ( true ) {
3 . . .
4 P( e ) ; # < await (nr=0 ∧ nw=0)
5 i f ( nr > 0 or nw > 0) { # nw:=nw+1 >
6 dw := dw + 1 ;
7 V( e ) ;
8 P(w) } ;
9 nw:=nw+1; SIGNAL;

10
11 write to DB ;
12
13 P( e ) ; nw:=nw −1; SIGNAL # < nw:=nw−1>
14 }
15 }

With condition synchronization: Signalling

• SIGNAL

1 i f (nw = 0 and dr > 0) {
2 dr := dr −1; V( r ) ; # awake reader
3 }
4 e l s e i f ( nr = 0 and nw = 0 and dw > 0) {
5 dw := dw −1; V(w) ; # awake wr i ter
6 }
7 else
8 V( e ) ; # re l ease entry lock

4 Monitors
19. Sep 2014

Overview

• Concurrent execution of different processes

• Communication by shared variables

• Processes may interfere x := 0; co x := x + 1 || x := x + 2 oc final value of x will be 1, 2, or 3

• await language – atomic regions x := 0; co <x := x + 1> || <x := x + 2> oc final value of x will be 3

• special tools for synchronization: Last week: semaphores Today: monitors

Outline

• Semaphores: review

• Monitors:

– Main ideas

– Syntax and semantics

∗ Condition variables
∗ Signaling disciplines for monitors

– Synchronization problems:

∗ Bounded buffer
∗ Readers/writers
∗ Interval timer
∗ Shortest-job next scheduling
∗ Sleeping barber
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Semaphores

• Used as “synchronization variables”

• Declaration: sem s = 1;

• Manipulation: Only two operations, P (s) and V (s)

• Advantage: Separation of business and synchronization code

• Disadvantage: Programming with semaphores can be tricky:

– Forgotten P or V operations

– Too many P or V operations

– They are shared between processes

∗ Global knowledge
∗ May need to examine all processes to see how a semaphore works

Monitors

Monitor

“Abstract data type + synchronization”

• program modules with more structure than semaphores

• monitor encapsulates data, which can only be observed and modified by the monitor’s procedures.

– contains variables that describe the state

– variables can be changed only through the available procedures

• implicit mutex: only a procedure may be active at a time.

– A procedure: mutex access to the data in the monitor

– 2 procedures in the same monitor: never executed concurrently

• Condition synchronization:29 is given by condition variables

• At a lower level of abstraction: monitors can be implemented using locks or semaphores

Usage

• processs = active ⇔ Monitor: = passive/re-active

• a procedure is active, if a statement in the procedure is executed by some process

• all shared variables: inside the monitor

• processes communicate by calling monitor procedures

• processes do not need to know all the implementation details

– Only the visible effects of the called procedure are important

• the implementation can be changed, if visible effect remains the same

• Monitors and processes can be developed relatively independent ⇒ Easier to understand and develop
parallel programs

29block a process until a particular condition holds.
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Syntax & semantics

1 monitor name {
2 mon . v a r i a b l e s # shared g l o b a l v a r i a b l e s
3 i n i t i a l i z a t i o n
4 procedures
5 }

monitor: a form of abstract data type:

• only the procedures’ names visible from outside the monitor:

call name.opname(arguments)

• statements inside a monitor: no access to variables outside the monitor

• monitor variables: initialized before the monitor is used

monitor invariant: used to describe the monitor’s inner states

Condition variables

• monitors contain special type of variables: cond (condition)

• used for synchronizaton/to delay processes

• each such variable is associated with a wait condition

• “value” of a condition variable: queue of delayed processes

• value: not directly accessible by programmer

• Instead, manipulate it by special operations

cond cv; # declares a condition variable cv
empty(cv); # asks if the queue on cv is empty
wait(cv); # causes the process to wait in the queue to cv
signal(cv); # wakes up a process in the queue to cv
signal_all(cv); # wakes up all processes in the queue to cv

entry queue inside monitor

cv queue

call

call

mon. free

sw

wait
sw

sc
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4.1 Semaphores & signalling disciplines
Implementation of semaphores

A monitor with P and V operations:

1 monitor Semaphore { # monitor invar iant : s ≥ 0
2 int s := 0 # value of the semaphore
3 cond pos ; # wait condi t ion
4
5 procedure Psem( ) {
6 while ( s=0) { wait ( pos ) } ;
7 s := s − 1
8 }
9

10
11 procedure Vsem( ) {
12 s := s+1;
13 signal ( pos ) ;
14 }
15 }

Signaling disciplines

• signal on a condition variable cv roughly has the following effect:

– empty queue: no effect

– the process at the head of the queue to cv is woken up

• wait and signal constitute a FIFO signaling strategy

• When a process executes signal(cv), then it is inside the monitor. If a waiting process is woken up,
there would be two active processes in the monitor.

2 disciplines to provide mutex:

• Signal and Wait (SW): the signaller waits, and the signalled process gets to execute immediately

• Signal and Continue (SC): the signaller continues, and the signalled process executes later

Signalling disciplines
Is this a FIFO semaphore assuming SW or SC?

1 monitor Semaphore { # monitor invar iant : s ≥ 0
2 int s := 0 # value of the semaphore
3 cond pos ; # wait condi t ion
4
5 procedure Psem( ) {
6 while ( s=0) { wait ( pos ) } ;
7 s := s − 1
8 }
9

10
11 procedure Vsem( ) {
12 s := s+1;
13 signal ( pos ) ;
14 }
15 }

Signalling disciplines
FIFO semaphore for SW

1 monitor Semaphore { # monitor invar iant : s ≥ 0
2 int s := 0 # value of the semaphore
3 cond pos ; # wait condi t ion
4
5 procedure Psem( ) {
6 while ( s=0) { wait ( pos ) } ;
7 s := s − 1
8 }
9

10
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11 procedure Vsem( ) {
12 s := s+1;
13 signal ( pos ) ;
14 }
15 }

1 monitor Semaphore { # monitor invar iant : s ≥ 0
2 int s := 0 # value of the semaphore
3 cond pos ; # wait condi t ion
4
5 procedure Psem( ) {
6 i f ( s=0) { wait ( pos ) } ;
7 s := s − 1
8 }
9

10
11 procedure Vsem( ) {
12 s := s+1;
13 signal ( pos ) ;
14 }
15 }

FIFO semaphore
FIFO semaphore with SC: can be achieved by explicit transfer of control inside the monitor (forward the

condition).

1 monitor Semaphore_fifo { # monitor invar iant : s ≥ 0
2 int s := 0 ; # value of the semaphore
3 cond pos ; # wait condi t ion
4
5 procedure Psem( ) {
6 i f ( s=0)
7 wait ( pos ) ;
8 else
9 s := s − 1

10 }
11
12
13 procedure Vsem( ) {
14 i f empty( pos )
15 s := s + 1
16 else
17 signal ( pos ) ;
18 }
19 }

4.2 Bounded buffer
Bounded buffer synchronization (1)

• buffer of size n (“channel”, “pipe”)

• producer: performs put operations on the buffer.

• consumer: performs get operations on the buffer.

• count: number of items in the buffer

• two access operations (“methods”)

– put operations must wait if buffer full

– get operations must wait if buffer empty

• assume SC discipline30

30It’s the commonly used one in practical languages/OS.
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Bounded buffer synchronization (2)

• When a process is woken up, it goes back to the monitor’s entry queue

– Competes with other processes for entry to the monitor

– Arbitrary delay between awakening and start of execution

=⇒ re-test the wait condition, when execution starts

– E.g.: put process wakes up when the buffer is not full
∗ Other processes can perform put operations before the awakened process starts up
∗ Must therefore re-check that the buffer is not full

Bounded buffer synchronization monitors (3)
monitor Bounded_Buffer {

typeT buf[n]; int count := 0;
cond not_full, not_empty;

procedure put(typeT data){
while (count = n) wait(not_full);
# Put element into buf
count := count + 1; signal(not_empty);

}

procedure get(typeT &result) {
while (count = 0) wait(not_empty);
# Get element from buf
count := count - 1; signal(not_full);

}
}

Bounded buffer synchronization: client-sides
process Producer[i = 1 to M]{

while (true){
. . .

call Bounded_Buffer.put(data);
}

}
process Consumer[i = 1 to N]{

while (true){
. . .

call Bounded_Buffer.get(result);
}

}

4.3 Readers/writers problem
Readers/writers problem

• Reader and writer processes share a common resource (“database”)

• Reader’s transactions can read data from the DB

• Write transactions can read and update data in the DB

• Assume:

– DB is initially consistent and that
– Each transaction, seen in isolation, maintains consistency

• To avoid interference between transactions, we require that

– writers: exclusive access to the DB.
– No writer: an arbitrary number of readers can access simultaneously
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Monitor solution to the reader/writer problem (2)

• database cannot be encapsulated in a monitor, as the readers will not get shared access

• monitor instead used to give access to the processes

• processes don’t enter the critical section (DB) until they have passed the RW_Controller monitor

Monitor procedures:

• request_read: requests read access

• release_read: reader leaves DB

• request_write: requests write access

• release_write: writer leaves DB

Invariants and signalling
Assume that we have two counters as local variables in the monitor:
nr — number of readers
nw — number of writers

Invariant

RW: (nr = 0 or nw = 0) and nw ≤ 1

We want RW to be a monitor invariant

• chose carefully condition variables for “communication” (waiting/signaling)

Let two condition variables oktoread og oktowrite regulate waiting readers and waiting writers, respectively.

1 monitor RW_Controller { # RW (nr = 0 or nw = 0) and nw ≤ 1
2 int nr :=0 , nw:=0
3 cond oktoread ; # s i gna l l e d when nw = 0
4 cond oktowrite ; # sig ’ ed when nr = 0 and nw = 0
5
6 procedure request_read ( ) {
7 while (nw > 0) wait (oktoread ) ;
8 nr := nr + 1 ;
9 }

10 procedure re l ease_read ( ) {
11 nr := nr − 1 ;
12 i f nr = 0 signal (oktowrite ) ;
13 }
14
15 procedure request_write ( ) {
16 while ( nr > 0 or nw > 0) wait (oktowrite ) ;
17 nw := nw + 1 ;
18 }
19
20 procedure r e l e a s e_wr i t e ( ) {
21 nw := nw −1;
22 signal (oktowrite ) ; # wake up 1 wri ter
23 signal_all (oktoread ) ; # wake up a l l readers
24 }
25 }
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Invariant

• monitor invariant I: describe the monitor’s inner state

• expresses relationship between monitor variables

• maintained by execution of procedures:

– must hold: after initialization

– must hold: when a procedure terminates

– must hold: when we suspend execution due to a call to wait

⇒ can assume that the invariant holds after wait and when a procedure starts

• Should be as strong as possible

Monitor solution to reader/writer problem (6)

RW: (nr = 0 or nw = 0) and nw ≤ 1

procedure request_read() {
# May assume that the invariant holds here
while (nw > 0) {

# the invariant holds here
wait(oktoread);
# May assume that the invariant holds here

}
# Here, we know that nw = 0...
nr := nr + 1;
# ...thus: invariant also holds after increasing nr

}

4.4 Time server
Time server

• Monitor that enables sleeping for a given amount of time

• Resource: a logical clock (tod)

• Provides two operations:

– delay(interval) the caller wishes to sleep for interval time

– tick increments the logical clock with one tick Called by the hardware, preferably with high execution
priority

• Each process which calls delay computes its own time for wakeup: wake_time := tod + interval;

• Waits as long as tod < wake_time

– Wait condition is dependent on local variables

Covering condition:

• all processes are woken up when it is possible for some to continue

• Each process checks its condition and sleeps again if this does not hold
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Time server: covering condition
Invariant: CLOCK : tod ≥ 0 ∧ tod increases monotonically by 1

monitor Timer { int tod = 0; # Time Of Day
cond check; # signalled when tod is increased

procedure delay(int interval) {
int wake_time;
wake_time = tod + interval;
while (wake_time > tod) wait(check);

}

procedure tick() {
tod = tod + 1;
signal_all(check);

}
}

• Not very effective if many processes will wait for a long time

• Can give many false alarms

Prioritized waiting

• Can also give additional argument to wait: wait(cv, rank)

– Process waits in the queue to cv in ordered by the argument rank.
– At signal: Process with lowest rank is awakened first

• Call to minrank(cv) returns the value of rank to the first process in the queue (with the lowest rank)

– The queue is not modified (no process is awakened)

• Allows more efficient implementation of Timer

Time server: Prioritized wait

• Uses prioritized waiting to order processes by check

• The process is awakened only when tod ≥ wake_time

• Thus we do not need a while loop for delay

monitor Timer {
int tod = 0; # Invariant: CLOCK
cond check; # signalled when minrank(check) ≤ tod

procedure delay(int interval) {
int wake_time;
wake_time := tod + interval;
if (wake_time > tod) wait(check, wake_time);

}

procedure tick() {
tod := tod + 1;
while (!empty(check) && minrank(check) ≤ tod)
signal(check);

}
}

4.5 Shortest-job-next scheduling
Shortest-Job-Next allocation

• Competition for a shared resource

• A monitor administrates access to the resource

• Call to request(time)

– Caller needs access for time interval time
– If the resource is free: caller gets access directly

• Call to release

– The resource is released
– If waiting processes: The resource is allocated to the waiting process with lowest value of time

• Implemented by prioritized wait
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Shortest-Job-Next allocation (2)
1 monitor Shortest_Job_Next {
2 bool f r e e = true ;
3 cond turn ;
4
5 procedure r eques t ( int time ) {
6 i f ( f r e e )
7 f r e e := fa l se
8 else
9 wait ( turn , time )

10 }
11
12 procedure r e l e a s e ( ) {
13 i f (empty( turn ) )
14 f r e e := true ;
15 else
16 signal ( turn ) ;
17 }

4.6 Sleeping barber

The story of the sleeping barber

• barbershop: with two doors and some chairs.

• customers: come in through one door and leave through the other. Only one customer sits the he barber
chair at a time.

• Without customers: barber sleeps in one of the chairs.

• When a customer arrives and the barber sleeps ⇒ barber is woken up and the customer takes a seat.

• barber busy ⇒ the customer takes a nap

• Once served, barber lets customer out the exit door.

• If there are waiting customers, one of these is woken up. Otherwise the barber sleeps again.

Interface
Assume the following monitor procedures

Client: get_haircut: called by the customer, returns when haircut is done

Server: barber calls:

– get_next_customer: called by the barber to serve a customer
– finish_haircut: called by the barber to let a customer out of the barbershop

Rendez-vous
Similar to a two-process barrier: Both parties must arrive before either can continue.31

• The barber must wait for a customer

• Customer must wait until the barber is available

The barber can have rendezvous with an arbitrary customer.
31Later, in the context of message passing, will have a closer look at making rendez-vous synchronization (using channels), but

the pattern “2 partners must be present at a point at the same time” is analogous.
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Organize the synch.: Identify the synchronization needs

1. barber must wait until

(a) customer sits in chair
(b) customer left barbershop

2. customer must wait until

(a) the barber is available
(b) the barber opens the exit door

client perspective:

• two phases (during get_haircut)

1. “entering”
– trying to get hold of barber,
– sleep otherwise

2. “leaving”:

• between the phases: suspended

Processes signal when one of the wait conditions is satisfied.

Organize the synchronization: state
3 var’s to synchronize the processes:
barber, chair and open (initially 0)

binary variables, alternating between 0 and 1:

• for entry-rendevouz

1. barber = 1 : the barber is ready for a new customer
2. chair = 1: the customer sits in a chair, the barber hasn’t begun to work

• for exit-sync

3. open = 1: exit door is open, the customer has not yet left

Sleeping barber

1 monitor Barber_Shop {
2 int barber := 0 , cha i r := 0 , open := 0 ;
3 cond barber_ava i lab le ; # s i gna l l e d when barber > 0
4 cond chair_occupied ; # s i gna l l e d when chair > 0
5 cond door_open ; # s i gna l l e d when open > 0
6 cond customer_le f t ; # s i gna l l e d when open = 0
7
8 procedure get_haircut ( ) {
9 while ( barber = 0) wait ( barber_ava i lab le ) ; # RV with barber

10 barber := barber − 1 ;
11 cha i r := cha i r + 1 ; signal ( chair_occupied ) ;
12
13 while ( open = 0) wait ( door_open ) ; # leave shop
14 open := open − 1 ; signal ( customer_le f t ) ;
15 }
16 procedure get_next_customer ( ) { # RV with c l i e n t
17 barber := barber + 1 ; signal ( barber_ava i lab le ) ;
18 while ( cha i r = 0) wait ( chair_occupied ) ;
19 cha i r := cha i r − 1 ;
20 }
21 procedure finished_cut ( ) {
22 open := open + 1 ; signal ( door_open ) ; # get r id of customer
23 while ( open > 0) wait ( customer_le f t ) ;
24 }

5 Program analysis
26.9.2014

43



Program correctness
Is my program correct? Central question for this and the next lecture.

• Does a given program behave as intended?

• Surprising behavior?

x := 5; { x = 5 }〈x := x+ 1〉; { x =? }

• clear: x = 5 immediately after first assignment

• Will this still hold when the second assignment is executed?

– Depends on other processes

• What will be the final value of x?

Today: Basic machinery for program reasoning Next week: Extending this machinery to the concurrent
setting

Concurrent executions

• Concurrent program: several threads operating on (here) shared variables

• Parallel updates to x and y:
co 〈x := x× 3; 〉 ‖ 〈y := y × 2; 〉 oc

• Every concurrent execution can be written as a sequence of atomic operations (gives one history)

• Two possible histories for the above program

• Generally, if n processes executes m atomic operations each:

(n ∗m)!

m!n
If n=3 and m=4:

(3 ∗ 4)!
4!3

= 34650

How to verify program properties?

• Testing or debugging increases confidence in the program correctness, but does not guarantee correctness

– Program testing can be an effective way to show the presence of bugs, but not their absence

• Operational reasoning (exhaustive case analysis) tries all possible executions of a program

• Formal analysis (assertional reasoning) allows to deduce the correctness of a program without executing
it

– Specification of program behavior
– Formal argument that the specification is correct

States

• A state of a program consists of the values of the program variables at a point in time, example: { x =
2 ∧ y = 3 }

• The state space of a program is given by the different values that the declared variables can take

• Sequential program: one execution thread operates on its own state space

• The state may be changed by assignments (“imperative”)

Example 7.
{ x = 5 ∧ y = 5 }x := x ∗ 2;{ x = 10 ∧ y = 5 }y := y ∗ 2;{ x = 10 ∧ y = 10 }
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Executions

• Given program S as sequence S1;S2; . . . ;Sn;, starting in a state p0:

where p1, p2, . . . pn are the different states during execution

• Can be documented by: {p0}S1{p1}S2{p2} . . . {pn−1}Sn{pn}

• p0, pn gives an external specification of the program: {p0}S{pn}

• We often refer to p0 as the initial state and pn as the final state

Example 8 (from previous slide).

{ x = 5 ∧ y = 5 } x := x ∗ 2; y := y ∗ 2; { x = 10 ∧ y = 10 }

Assertions
Want to express more general properties of programs, like

{ x = y }x := x ∗ 2;y := y ∗ 2;{ x = y }

• If the assertion x = y holds, when the program starts, x = y will also hold when/if the program terminates

• Does not talk about particular values of x and y, but about relations between their values

• Assertions characterise sets of states

Example 9. The assertion x = y describes all states where the values of x and y are equal, like {x = −1∧y = −1},
{x = 1 ∧ y = 1}, . . .

Assertions

• An assertion P can be viewed as a set of states where P is true:

x = y All states where x has the same value
as y

x ≤ y: All states where the value of x is less or
equal to the value of y

x = 2 ∧ y = 3 Only one state (if x and y are the only
variables)

true All states
false No state

Example 10.
{ x = y }x := x ∗ 2;{ x = 2 ∗ y }y := y ∗ 2;{x = y}

Then this must also hold for particular values of x and y satisfying the initial assertion, like x = y = 5

Formal analysis of programs

• Establish program properties, using a system for formal reasoning

• Help in understanding how a program behaves

• Useful for program construction

• Look at logics for formal analysis

• basis of analysis tool

Formal system

• Axioms: Defines the meaning of individual program statements

• Rules: Derive the meaning of a program from the individual statements in the program
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Logics and formal systems
Our formal system consists of:

• A set of symbols (constants, variables,...)

• A set of formulas (meaningful combination of symbols)

• A set of axioms (assumed to be true)

• A set of inference rules of the form:

Inference rule
H1 . . . Hn

C

• Where each Hi is an assumption, and C is the conclusion

• The conclusion is true if all the assumptions are true

• The inference rules specify how to derive additional true formulas from axioms and other true formulas.

Symbols

• (program + extra) variables: x, y, z, ...

• Relation symbols: ≤,≥, . . .

• Function symbols: +,−, . . ., and constants 0, 1, 2, . . . , true, false

• Equality (also a relation symbol): =

Formulas of first-order logic
Meaningful combination of symbols

Assume that A and B are formulas, then the following are also formulas:

¬A means “not A”
A ∨B means “A or B”
A ∧B means “A and B”
A⇒ B means “A implies B”

If x is a variable and A, the following are formulas:32

∀x : A(x) means “A is true for all values of x”
∃x : A(x) means “there is (at least) one value of x such that A is true”

Examples of axioms and rules
Typical axioms:

• A ∨ ¬A

• A⇒ A

Typical rules:

A B
And-I

A ∧B

A
Or-I

A ∨B

A⇒ B A
Or-E

B

Example 11.

x = 5 y = 5
And-I

x = 5 ∧ y = 5

x = 5
Or-I

x = 5 ∨ y = 5

x ≥ 0⇒ y ≥ 0 x ≥ 0
Or-E

y ≥ 0

32A(x) to indicate that, here, A (typically) contains x.
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Important terms

• Interpretation: describe each formula as either true or false

• Proof: derivation tree where all leaf nodes are axioms

• Theorems: a “formula” derivable in a given proof system

• Soundness (of the logic): If we can prove (“derive”) some formula P (in the logic) then P is actually
(semantically) true

• Completeness: If a formula P is true, it can be proven

Program Logic (PL)

• PL lets us express and prove properties about programs

• Formulas are of the form

“Hoare triple”
{ P1 } S { P2 }

– S: program statement(s)
– P , P1, P ′, Q . . . : assertions over program states (including ¬,∧,∨,∃,∀)
– In above triple P1: Pre-condition, and P2 post-condition of S

Example 12.
{ x = y } x := x ∗ 2;y := y ∗ 2; { x = y }

The proof system PL (Hoare logic)

• Express and prove program properties

• {P} S {Q}

– P,Q may be seen as a specification of the program S

– Code analysis by proving the specification (in PL)
– No need to execute the code in order to do the analysis
– An interpretation maps triples to true or false

∗ { x = 0 } x := x+ 1; { x = 1 } should be true

∗ { x = 0 } x := x+ 1; { x = 0 } should be false

Reasoning about programs

• Basic idea: Specify what the program is supposed to do (pre- and post-conditions)

• Pre- and post-conditions are given as assertions over the program state

• Use PL for amathematical argument that the program satisfies its specification

Interpretation
Interpretation (“semantics”) of triples is related to code execution

Partial correctness interpretation
{P} S {Q} is true/holds, if the following is the case:

• If the initial state of S satisfies P (P holds for the initial state of S),

• and if33 S terminates,

• then Q is true in the final state of S

Expresses partial correctness (termination of S is assumed)
Example 13. {x = y} x := x ∗ 2;y := y ∗ 2; {x = y} is true if the initial state satisfies x = y and, in case the
execution terminates, then the final state satisfies x = y

33Thus: if S does not terminate, all bets are off. . .
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Examples
Some true formulas:

{ x = 0 } x := x+ 1; { x = 1 }
{ x = 4 } x := 5; { x = 5 }
{ true } x := 5; { x = 5 }
{ y = 4 } x := 5; { y = 4 }
{ x = 4 } x := x+ 1; { x = 5 }

{ x = a ∧ y = b } x = x+ y; { x = a+ b ∧ y = b }
{ x = 4 ∧ y = 7 } x := x+ 1; { x = 5 ∧ y = 7 }
{ x = y } x := x+ 1; y := y + 1; { x = y }

Some formulas that are not true:

{ x = 0 } x := x+ 1; { x = 0 }
{ x = 4 } x := 5; { x = 4 }

{ x = y } x := x+ 1; y := y − 1; { x = y }
{ x > y } x := x+ 1; y := y + 1; { x < y }

Partial correctness

• The interpretation of { P } S { Q } assumes/ignores termination of S, termination is not proven.

• The assertions (P , Q) express safety properties

• The pre- and postconditions restrict possible states

The assertion true can be viewed as all states. The assertion false can be viewed as no state. What does
each of the following triple express?

{ P } S { false } S does not terminate
{ P } S { true } trivially true
{ true } S { Q } Q holds after S in any case

(provided S terminates)
{ false } S { Q } trivially true

Proof system PL
A proof system consists of axioms and rules
here: structural analysis of programs

• Axioms for basic statements:

– x := e, skip,...

• Rules for composed statements:

– S1;S2, if, while, await, co . . . oc, . . .

Formulas in PL

• formulas = triples

• theorems = derivable formulas

• hopefully: all derivable formulas are also “really” (= semantically) true

• derivation: starting from axioms, using derivation rules

•
H1 H2 . . . Hn

C

• axioms: can be seen as rules without premises
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Soundness
If a triple { P } S { Q } is a theorem in PL (i.e., derivable), the triple is actually true!

• Example: we want
{ x = 0 } x := x+ 1 { x = 1 }

to be a theorem (since it was interpreted as true),

• but
{ x = 0 } x := x+ 1 { x = 0 }

should not be a theorem (since it was interpreted as false)

Soundness: All theorems in PL are true

If we can use PL to prove some property of a program, then this property will hold for all executions of the
program

Textual substitution

(Textual) substitution
P x←e means, all free occurrences of x in P are replaced by expression e.

Example 14.
(x = 1)x←(x+1) ⇔ x+ 1 = 1
(x+ y = a)y←(y+x) ⇔ x+ (y + x) = a
(y = a)x←(x+y) ⇔ y = a

Substitution propagates into formulas:
(¬A)x←e ⇔ ¬(Ax←e)
(A ∧B)x←e ⇔ Ax←e ∧Bx←e

(A ∨B)x←e ⇔ Ax←e ∨Bx←e

Remark on textual substitution
Px←e

• Only free occurrences of x are substituted

• Variable occurrences may be bound by quantifiers, then that occurrence of the variable is not free (but
bound)

Example 15 (Substitution).
(∃y : x+ y > 0)x←1 ⇔ ∃y : 1 + y > 0
(∃x : x+ y > 0)x←1 ⇔ ∃x : x+ y > 0
(∃x : x+ y > 0)y←x ⇔ ∃z : z + x > 0

Correspondingly for ∀

The assignment axiom – Motivation
Given by backward construction over the assignment:

• Given the postcondition to the assignment, we may derive the precondition!

What is the precondition?

{ ? } x := e { x = 5 }

If the assignment x = e should terminate in a state where x has the value 5, the expression e must have the
value 5 before the assignment:

{ e = 5 } x := e { x = 5 }
{ (x = 5)x←e } x := e { x = 5 }
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Axiom of assignment
“Backwards reasoning:” Given a postcondition, we may construct the precondition:

Axiom for the assignment statement
{ P x←e } x := e { P } Assign

If the assignment x := e should lead to a state that satisfies P , the state before the assignment must satisfy
P where x is replaced by e.

Proving an assignment
To prove the triple { P }x := e{ Q } in PL, we must show that the precondition P implies Qx←e

P ⇒ Qx←e { Qx←e } x := e { Q }

{ P } x := e { Q }
The blue implication is a logical proof obligation. In this course we only convince ourself that these are true

(we do not prove them formally).

• Qx←e is the largest set of states such that the assignment is guaranteed to terminate with Q

• largest set corresponds to weakest condition ⇒ weakest-precondition reasoning

• We must show that the set of states P is within this set

Examples

true ⇒ 1 = 1

{ true } x := 1 { x = 1 }

x = 0⇒ x+ 1 = 1

{ x = 0 } x := x+ 1 { x = 1 }

(x = a ∧ y = b)⇒ x+ y = a+ b ∧ y = b

{ x = a ∧ y = b } x := x+ y { x = a+ b ∧ y = b }

x = a⇒ 0 ∗ y + x = a

{ x = a } q := 0 { q ∗ y + x = a }

y > 0⇒ y ≥ 0

{ y > 0 }x := y{ x ≥ 0 }

Axiom of skip
The skip statement does nothing

Axiom:
{ P } skip { P } Skip

PL inference rules

{ P } S1 { R } { R } S2 { Q }
Seq

{ P } S1;S2 { Q }

{ P ∧B } S { Q } P ∧ ¬B ⇒ Q
Cond′

{ P } if B then S { Q }

{ I ∧B } S { I }
While

{ I } while B do S { I ∧ ¬B }

{ P } S { Q } P ′ ⇒ P Q⇒ Q′

Consequence
{ P ′ } S { Q′ }
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• Blue: logical proof obligations

• the rule for while needs a loop invariant!

• for-loop: exercise 2.22!

Sequential composition and consequence
Backward construction over assignments:

x = y ⇒ 2 ∗ x = 2 ∗ y

{ x = y } x := x ∗ 2 { x = 2 ∗ y } { (x = y)y←2y } y := y ∗ 2 { x = y }

{ x = y } x := x ∗ 2; y := y ∗ 2 { x = y }

Sometimes we don’t bother to write down the assignment axiom:
(q ∗ y) + x = a⇒ ((q + 1) ∗ y) + x− y = a

{ (q ∗ y) + x = a } x := x− y; { ((q + 1) ∗ y) + x = a }

{ (q ∗ y) + x = a } x := x− y; q := q + 1 { (q ∗ y) + x = a }

Logical variables

• Do not occur in program text

• Used only in assertions

• May be used to “freeze” initial values of variables

• May then talk about these values in the postcondition

Example 16.
{ x = x0 } if (x < 0) then x := −x { x ≥ 0 ∧ (x = x0 ∨ x = −x0) }

where (x = x0 ∨ x = −x0) states that

• the final value of x equals the initial value, or

• the final value of x is the negation of the initial value

Example: if statement
Verification of:

{ x = x0 } if (x < 0) then x := −x { x ≥ 0 ∧ (x = x0 ∨ x = −x0) }

{P ∧B} S {Q} (P ∧ ¬B)⇒ Q
Cond′

{ P } if B then S { Q }

• { P ∧ B } S { Q }: { x = x0 ∧ x < 0 } x := −x { x ≥ 0 ∧ (x = x0 ∨ x = −x0) } Backward construction
(assignment axiom) gives the implication:

x = x0 ∧ x < 0⇒ (−x ≥ 0 ∧ (−x = x0 ∨ −x = −x0))

• P ∧ ¬B ⇒ Q: x = x0 ∧ x ≥ 0⇒ (x ≥ 0 ∧ (x = x0 ∨ x = −x0))

3.10.2014
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6 Program Analysis
Program Logic (PL)

• PL lets us express and prove properties about programs

• Formulas are on the form

“triple”

{ P } S { Q }

– S: program statement(s)

– P and Q: assertions over program states

– P : Pre-condition

– Q: Post-condition

If we can use PL to prove some property of a program, then this property will hold for all executions of the
program

PL rules from last week

{ P } S1 { R } { R } S2 { Q }
Seq

{ P } S1;S2 { Q }

{ P ∧B } S { Q } P ∧ ¬B ⇒ Q
Cond′

{ P } if B then S { Q }

{ I ∧B } S { I }
While

{ I } while B do S { I ∧ ¬B }

{ P } S { Q } P ′ ⇒ P Q⇒ Q′

Consequence
{ P ′ } S { Q′ }

While rule

• Cannot control the execution in the same manner as for if statements

– Cannot tell from the code how many times the loop body will be executed

{ y ≥ 0 } while (y > 0) y := y − 1

– Cannot speak about the state after the first, second, third iteration

• Solution: Find an assertion I that is maintained by the loop body

– Loop invariant: express a property preserved by the loop

• Often hard to find suitable loop invariants

– This course is not an exercise in finding complicated invariants
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While rule

{ I ∧B } S { I }
While

{ I } while B do S { I ∧ ¬B }
Can use this rule to reason about the more general case:

{ P } while B do S { Q }

where

• P need not be the loop invariant

• Q need not match (I ∧ ¬B) syntactically

Combine While-rule with Consequence-rule to prove:

• Entry: P ⇒ I

• Loop: { I ∧B } S { I }

• Exit: I ∧ ¬B ⇒ Q

While rule: example

{ 0 ≤ n } k := 0; { k ≤ n } while (k < n) k := k + 1; { k = n }
Composition rule splits a proof in two: assignment and loop. Let k ≤ n be the loop invariant

• Entry: k ≤ n follows from itself

• Loop:
k < n⇒ k + 1 ≤ n

{ k ≤ n ∧ k < n } k := k + 1 { k ≤ n }

• Exit: (k ≤ n ∧ ¬(k < n))⇒ k = n

Await statement

Rule for await

{ P ∧B } S { Q }
Await

{ P } 〈await(B) S〉 { Q }

Remember: we are reasoning about safety properties

• Termination is assumed/ignored

• the rule does not speak about waiting or progress

Concurrent execution
Assume two statements S1 and S2 such that:

{ P1 } 〈S1〉 { Q1 } and { P2 } 〈S2〉 { Q2 }

Note: to avoid further complications right now: Si’s are enclosed into “〈atomic brackets〉”.
First attempt for a co . . . oc rule in PL:

{ P1 } 〈S1〉 { Q1 } { P2 } 〈S2〉 { Q2 }
Par

{ P1 ∧ P2 } co〈S1〉 ‖ 〈S2〉 oc { Q1 ∧Q2 }

Example 17 (Problem with this rule).

{ x = 0 } 〈x := x+ 1〉 { x = 1 } { x = 0 } 〈x := x+ 2〉 { x = 2 }

{ x = 0 } co〈x := x+ 1〉 ‖ 〈x = x+ 2〉 oc { x = 1 ∧ x = 2 }

but this conclusion is not true: the postcondition should be x = 3!
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1>The first attempt may seem plausible. One has two programs, both with its “own” precondition. There-
fore, if they run in parallel, they start in a common state, obviously. That may be characterized by the
conjunction. Alternatively, one may use the same precondition. There is not much difference between those
two ways of thinking (due to strengthening of preconditions). Indeed, the precodition in this line of reasoning
is not problematic. Note however, that conceptially we are thinking in a forward way, we are not currently
reason like “assume you are in a given post-state, . . . ”. But the forward reasoning fits better to the following
illustrating example. 2>Different ways to analyze what’s exactly wrong. But the important observation is: that
it’s plain wrong. Remember Soundness. The break of soundness is illustrated by the following example. Linear
logic, resources: “I win 100 dollar ∧ I win 100 dollar”. The rule, if it were true, wo be nice: compositionality. For
indepdented variables (i.e., local ones) it would be true. So, the reason, why concurrency is hard/compositional
reasoning does not work, are shared variables. The absense of such problem will later be called interference free.
It will not be defined for processes, but for specifications insofar: interference free if the pre- and post-conditions
of parallel processes are not disturbed.

Interference problem

S1 { x = 0 } 〈x := x+ 1〉 { x = 1 }

S2 { x = 0 } 〈x := x+ 2〉 { x = 2 }

• execution of S2 interferes with pre- and postconditions of S1

– The assertion x = 0 need not hold when S1 starts execution

• execution of S1 interferes with pre- and postconditions of S2

– The assertion x = 0 need not hold when S2 starts execution

Solution: weaken the assertions to account for the other process:

S1 { x = 0∨x = 2 } 〈x := x+ 1〉 { x = 1∨x = 3 }

S2 { x = 0∨x = 1 } 〈x := x+ 2〉 { x = 2∨x = 3 }

Interference problem
Now we can try to apply the rule:

{ x = 0 ∨ x = 2 } 〈x := x+ 1〉 { x = 1 ∨ x = 3 }
{ x = 0 ∨ x = 1 } 〈x := x+ 2〉 { x = 2 ∨ x = 3 }

{ PRE } co〈x := x+ 1〉 ‖ 〈x := x+ 2〉 oc { POST }
where:

PRE : (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)
POST : (x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3)

which gives:
{ x = 0 } co ‖ x = x+ 1 ‖ 〈x := x+ 2〉 oc { x = 3 }

Concurrent execution

Assume { Pi } Si { Qi } for all S1, . . . , Sn

{ Pi } Si { Qi } are interference free
Cooc

{ P1 ∧ . . . ∧ Pn } coS1 ‖ . . . ‖ Sn oc { Q1 ∧ . . . ∧Qn }

Interference freedom
A process interferes with (the specification of) another process, if its execution changes the values of the
assertions34 of the other process.

34Only “critical assertions” considered
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• assertions inside awaits: not endagered

• critical assertions or critical conditions: assertions outside await statement bodies.35

Interference freedom

Interference freedom

• S: statement some process, with pre-condition pre(S)

• C: critical assertion in another process

• S does not interfere with C, if

{ C ∧ pre(S) } S { C }

is derivable in PL (= theorem).

“C is invariant under the execution of the other process”

{ P1 } S1 { Q1 } { P2 } S2 { Q2 }

{ P1 ∧ P2 } coS1 ‖ S2 oc { Q1 ∧Q2 }

Four interference freedom requirements:

{P2 ∧ P1} S1 {P2} {P1 ∧ P2} S2 {P1}
{Q2 ∧ P1} S1 {Q2} {Q1 ∧ P2} S2 {Q1}

“Avoiding” interference: Weakening assertions

S1 : { x = 0 } < x := x+ 1;> { x = 1 }
S2 : { x = 0 } < x := x+ 2;> { x = 2 }

Here we have interference, for instance the precondition of S1 is not maintained by execution of S2:

{ (x = 0) ∧ (x = 0) } x := x+ 2 { x = 0 }

is not true

However, after weakening:

S1 : { x = 0 ∨ x = 2 } 〈x := x+ 1〉 { x = 1 ∨ x = 3 }
S2 : { x = 0 ∨ x = 1 } 〈x := x+ 2〉 { x = 2 ∨ x = 3 }

{ (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1) } x := x+ 2 { x = 0 ∨ x = 2 }

(Correspondingly for the other three critical conditions)

Avoiding interference: Disjoint variables

• V set: global variables referred (i.e. read or written) to by a process

• W set: global variables written to by a process

• Reference set: global variables in critical assertions/conditions of one process

S1 and S2: in 2 different processes. No interference, if:

• W set of S1 is disjoint from reference set of S2

• W set of S2 is disjoint from reference set of S1

Alas: variables in a critical condition of one process will often be among the written variables of another
35More generally one could say: outside mutex-protected sections.
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Avoiding interference: Global invariants

global invariants

• Some conditions. that only refer to global (shared) variables

• Holds initially

• Preserved by all assignments

We avoid interference if critical conditions are on the form {I ∧ L} where:

• I is a global invariant

• L only refers to local variables of the considered process

Avoiding interference: Synchronization

• Hide critical conditions

• MUTEX to critical sections

co . . . ;S; . . . ‖ . . . ;S1; { C }S2; . . . oc

S might interfere with C Hide the critical condition by a critical region:

co . . . ;S; . . . ‖ . . . ; 〈S1; { C }S2〉; . . . oc

Example: Producer/ consumer synchronization
Let process Producer deliver data to a Consumer process

PC : c ≤ p ≤ c+ 1∧ (p = c+ 1)⇒ (buf = a[p− 1])

Let PC be a global invariant of the program:

1
2 int buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 int a [N ] ; . . . int b [N ] ; . . .
6 while (p < N) { while ( c < N) {
7 < await (p = c ) ; > < await (p > c ) ; >
8 buf := a [ p ] ; b [ c ] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Example: Producer
Loop invariant of Producer: IP : PC ∧ p ≤ n

process Producer dir0o
int a[n];
{ IP dir } // entering loop
while (p < n) dir0o { IP ∧ p < n }
< await (p == c); > { IP ∧ p < n ∧ p = c }

{ IP p←p+1buf←a[p] }
buf = a[p]; { IP p←p+1 }
p = p + 1; dir0oIP dir

dir dir0oIP ∧ ¬(p < n)dir // exit loop
⇔ dir0oPC ∧ p = ndir

dir

Proof obligation: { IP ∧ p < n ∧ p = c } ⇒ { IP }p←p+1buf←a[p]
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Example: Consumer
Loop invariant of Consumer: IC : PC ∧ c ≤ n ∧ b[0 : c− 1] = a[0 : c− 1]

process Consumer dir0o
int b[n];
dir0oICdir // entering loop
while (c < n) dir0o dir0oIC ∧ c < ndir
< await (p > c) ; > dir0oIC ∧ c < n ∧ p > cdir

dir0oICdirc←c+1,b[c]←buf

b[c] = buf; dir0oICdirc←c+1

c = c + 1; dir0oICdir
dir dir0oIC ∧ ¬(c < n)dir // exit loop
⇔ dir0oPC ∧ c = n ∧ b[0 : c− 1] = a[0 : c− 1]dir

dir

Proof Obligation: dir0oIC ∧ c < n ∧ p > cdir ⇒ dir0oICdirc←c+1,b[c]←buf

Example: Producer/Consumer
The final state of the program satisfies:

PC ∧ p = n ∧ c = n ∧ b[0 : c− 1] = a[0 : c− 1]

which ensures that all elements in a are received and occur in the same order in b

Interference freedom is ensured by the global invariant and await-statements
If we combine the two assertions after the await statements, we get:

IP ∧ p < n ∧ p = c ∧ IC ∧ c < n ∧ p > c

which gives false! At any time, only one process can be after the await statement!

Monitor invariant
monitor name dir0o

monitor variables # shared global variable
initialization # for the monitor’s procedures
procedures

dir

• A monitor invariant (I): used to describe the monitor’s inner state

• Express relationship between monitor variables

• Maintained by execution of procedures:

– Must hold after initialization

– Must hold when a procedure terminates

– Must hold when we suspend execution due to a call to wait

– Can assume that the invariant holds after wait and when a procedure starts

• Should be as strong as possible!

Axioms for signal and continue (1)
Assume that the monitor invariant I and predicate P doe not mention cv. Then we can set up the following

axioms:
{ I } wait(cv) { I }
{ P } signal(cv) { P } for arbitrary P
{ P } signal_all(cv) { P } for arbitrary P
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Monitor solution to reader/writer problem
Verification of the invariant over request_read

I : (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

procedure request_read() {
{ I }
while (nw > 0) { { I ∧ nw > 0 }

{ I } wait(oktoread); { I }
} { I ∧ nw = 0 }
{ Inr←nr+1 }
nr = nr + 1;
{ I }

}

(I ∧ nw > 0)⇒ I (I ∧ nw = 0)⇒ Inr←nr+1 1>The invariant we had earlier already, it’s the obvious one.

Axioms for Signal and Continue (2)
Assume that the invariant can mention the number of processes in the queue to a condition variable.

• Let #cv be the number of proc’s waiting in the queue to cv.

• The test empty(cv) thus corresponds to #cv = 0

wait(cv) is modelled as an extension of the queue followed by processor release:

wait(cv) : {?} #cv = #cv + 1; {I} “sleep′′{I}

by assignment axiom:

wait(cv) : {I#cv←#cv+1; #cv := #cv + 1; { I } “sleep′′{ I }

Axioms for Signal and Continue (3)
signal(cv) can be modelled as a reduction of the queue, if the queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P ) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

• signal_all(cv): { P#cv←0 } #cv := 0 {P}

Axioms for Signal and Continue (4)
Together this gives:

Axioms for monitor communication

{ I#cv←(#cv+1) } wait(cv) { I } wait

{ ((#cv = 0)⇒ P ) ∧ ((#cv 6= 0)⇒ P#cv←(#cv−1)) } signal(cv) { P } Signal

{ P#cv←0 } signal_all(cv) { P } SignalAll

If we know that #cv 6= 0 whenever we signal, then the axiom for signal(cv) be simplified to:

{ P#cv←(#cv−1) } signal(cv) { P }

Note! #cv is not allowed in statements!, Only used for reasoning
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Example: FIFO semaphore verification (1)

1 monitor Semaphore_fifo { # monitor invar iant : s ≥ 0
2 int s := 0 ; # value of the semaphore
3 cond pos ; # wait condi t ion
4
5 procedure Psem( ) {
6 i f ( s=0)
7 wait ( pos ) ;
8 else
9 s := s − 1

10 }
11
12
13 procedure Vsem( ) {
14 i f empty( pos )
15 s := s + 1
16 else
17 signal ( pos ) ;
18 }
19 }

Consider the following monitor invariant:

s ≥ 0 ∧ (s > 0⇒ #pos = 0)

No process is waiting if the semaphore value is positive
1>The example is from the monitor chapter. This is a monitor solution for fifo-semaphore even under the

weak s&c signalling discipline.

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

Example: FIFO semaphore verification (3)

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

This gives two proof obligations: If-branch:

(I ∧ s = 0) ⇒ I#pos←(#pos+1)

s = 0 ⇒ s ≥ 0 ∧ (s > 0⇒ #pos+ 1 = 0)
s = 0 ⇒ s ≥ 0

Else branch:
(I ∧ s 6= 0) ⇒ Is←(s−1)
(s > 0 ∧#pos = 0) ⇒ s− 1 ≥ 0 ∧ (s− 1 ≥ 0⇒ #pos = 0)
(s > 0 ∧#pos = 0) ⇒ s > 0 ∧#pos = 0

Example: FIFO semaphore verification: Vsem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Vsem() dir0o
{I}

if empty(pos) {I ∧#pos = 0}
{Is←(s+1)}s:=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos←(#pos−1)} signal(pos); {I}

{I}
dir
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Example: FIFO semaphore verification (5)

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

As above, this gives two proof obligations: If-branch:

(I ∧#pos = 0) ⇒ Is←(s+1)

(s ≥ 0 ∧#pos = 0) ⇒ s+ 1 ≥ 0 ∧ (s+ 1 > 0⇒ #pos = 0)
(s ≥ 0 ∧#pos = 0) ⇒ s+ 1 ≥ 0 ∧#pos = 0

Else branch:
(I ∧#pos 6= 0) ⇒ I#pos←(#pos−1)
(s = 0 ∧#pos 6= 0) ⇒ s ≥ 0 ∧ (s > 0⇒ #pos− 1 = 0)
s = 0 ⇒ s ≥ 0

7 Java concurrency
10. 10. 2014

7.1 Threads in Java
Outline

1. Monitors: review

2. Threads in Java:

• Thread classes and Runnable interfaces

• Interference and Java threads

• Synchronized blocks and methods: (atomic regions and monitors)

3. Example: The ornamental garden

4. Thread communication & condition synchronization (wait and signal/notify)

5. Example: Mutual exclusion

6. Example: Readers/writers

Short recap of monitors

• monitor encapsulates data, which can only be observed and modified by the monitor’s procedures

– Contains variables that describe the state

– variables can be accessed/changed only through the available procedures

• Implicit mutex: Only a procedure may be active at a time.

– 2 procedures in the same monitor: never executed concurrently

• Condition synchronization: block a process until a particular condition holds, achieved through condition
variables.

Signaling disciplines

– Signal and wait (SW): the signaller waits, and the signalled process gets to execute immediately

– Signal and continue (SC): the signaller continues, and the signalled process executes later
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Java
From Wikipedia:36

" ... Java is a general-purpose, concurrent, class-based, object-oriented language ..."

Threads in Java
A thread in Java

• unit of concurrency37

• identity, accessible via static method Thread.CurrentThread()38

• has its own stack / execution context

• access to shared state

• shared mutable state: heap structured into objects

– privacy restrictions possible

– what are private fields?

• may be created (and deleted) dynamically

Thread class
36But it’s correct nonetheless . . .
37as such, roughly corresponding to the concept of “processes” from previous lecctures.
38What’s the difference to this?
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Thread 

run() 

MyThread 

run() 

The Thread class executes instructions from its method run(). The actual code executed depends on the
implementation provided for run() in a derived class.
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1 class MyThread extends Thread {
2 public void run ( ) {
3 // . . . . . .
4 }
5 }
6 // Creating a thread ob j ec t :
7 Thread a = new MyThread ( ) ;
8 a . start ( ) ;

Runnable interface
As Java does not support multiple inheritance, we often implement the run() method in a class not derived

from Thread but from the interface Runnable.

Runnable 

run() 

MyRun 

run() 

public interface Runnable  { 
public abstract void run(); 

} 

class MyRun implements Runnable { 
public void run() { 

      // ..... 
   } 
} 

Thread 
target 

1 // Creating a thread ob j ec t :
2 Runnable b = new MyRun( ) ;
3 new Thread(b ) . start ( ) ;

Threads in Java
steps to create a thread in Java and get it running:

1. Define class that

• extends the Java Thread class or

• implements the Runnable interface

2. define run method inside the new class39

3. create an instance of the new class.

4. start the thread.

Interference and Java threads

1 . . .
2 class Store {
3 private int data = 0 ;
4 public void update ( ) { data++; }
5 }
6 . . .
7
8 // in a method :
9 Store s = new Store ( ) ; // the threads below have access to s

10 t1 = new FooThread ( s ) ; t1 . start ( ) ;
11 t2 = new FooThread ( s ) ; t2 . start ( ) ;

t1 and t2 execute s.update() concurrently!
Interference between t1 and t2 ⇒ may lose updates to data.

39overriding, late-binding.
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Synchronization
avoid interference ⇒ threads “synchronize” access to shared data

1. One unique lock for each object o.

2. mutex: at most one thread t can lock o at any time.40

3. 2 “flavors”

“synchronized block”

1 synchronized ( o ) { B }

synchronized method

whole method body of m “protected”41:

1 synchronized Type m( . . . ) { . . . }

Protecting the initialization
Solution to earlier problem: lock the Store objects before executing problematic method:

1 c l a s s Store {
2 pr i va t e int data = 0 ;
3
4 pub l i c void update ( ) {
5 synchronized ( t h i s ) { data++; }
6 }
7 }

or

1 c l a s s Store {
2 pr i va t e int data = 0 ;
3
4 pub l i c synchronized void update ( ) {data++; }
5 }
6 . . .
7
8 // i n s i d e a method :
9 Store s = new Store ( ) ;

Java Examples
Book:
Concurrency: State Models & Java Programs, 2nd Edition

Jeff Magee & Jeff Kramer

Wiley
40but: in a re-entrant manner!
41assuming that other methods play according to the rules as well etc.
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Examples in Java:
http://www.doc.ic.ac.uk/~jnm/book/

7.2 Ornamental garden
Ornamental garden problem

• people enter an ornamental garden through either of 2 turnstiles.

• problem: the number of people present at any time.

The concurrent program consists of:
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• 2 threads

• shared counter object

Ornamental garden problem: Class diagram

The Turnstile thread simulates the periodic arrival of a visitor to the garden every second by sleeping for
a second and then invoking the increment() method of the counter object.

Counter
1
2 class Counter {
3
4 int value = 0 ;
5 NumberCanvas d i sp l ay ;
6
7 Counter (NumberCanvas n) {
8 d i sp l ay = n ;
9 d i sp l ay . s e tva lu e (value ) ;

10 }
11
12 void increment ( ) {
13 int temp = value ; // read [ v ]
14 Simulate . HWinterrupt ( ) ;
15 value = temp + 1 ; // wri te [ v+1]
16 d i sp l ay . s e tva lu e (value ) ;
17 }
18 }

Turnstile
1
2 class Turnstile extends Thread {
3 NumberCanvas d i sp l ay ; // in t e r f a ce
4 Counter people ; // shared data
5
6 Turnstile (NumberCanvas n , Counter c ) { // constructor
7 d i sp l ay = n ;
8 people = c ;
9 }

10
11 public void run ( ) {
12 try {
13 d i sp l ay . s e tva lu e ( 0 ) ;
14 for ( int i = 1 ; i <= Garden .MAX; i++) {
15 Thread . s l e e p ( 5 00 ) ; // 0.5 second
16 d i sp l ay . s e tva lu e ( i ) ;
17 people . increment ( ) ; // increment the counter
18 }
19 } catch ( Inter ruptedExcept ion e ) { }
20 }
21 }

Ornamental Garden Program
The Counter object and Turnstile threads are created by the go() method of the Garden applet:

1 private void go ( ) {
2 counter = new Counter ( counterD ) ;
3 west = new Turnstile (westD , counter ) ;
4 ea s t = new Turnstile ( eastD , counter ) ;
5 west . s t a r t ( ) ;
6 ea s t . s t a r t ( ) ;
7 }
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Ornamental Garden Program: DEMO

DEMO

After the East and West turnstile threads have each incremented its counter 20 times, the garden people
counter is not the sum of the counts displayed. Counter increments have been lost. Why?

Avoid interference by synchronization

1
2 class SynchronizedCounter extends Counter {
3
4 SynchronizedCounter (NumberCanvas n) {
5 super (n ) ;
6 }
7
8 synchronized void increment ( ) {
9 super . increment ( ) ;

10 }
11 }

Mutual Exclusion: The Ornamental Garden - DEMO

DEMO

7.3 Thread communication, monitors, and signaling
Monitors

• each object

– has attached to it a unique lock

– and thus: can act as monitor

• 3 important monitor operations42

– o.wait(): release lock on o, enter o’s wait queue and wait

– o.notify(): wake up one thread in o’s wait queue

– o.notifyAll(): wake up all threads in o’s wait queue

• executable by a thread “inside” the monitor represented by o
42there are more

67



• executing thread must hold the lock of o/ executed within synchronized portions of code

• typical use: this.wait() etc.

• note: notify does not operate on a thread-identity43

⇒
1 Thread t = new MyThread ( ) ;
2 . . .
3 t . n o t i f y ( ) ; ; // mostly to be nonsense

Condition synchronization, scheduling, and signaling

• quite simple/weak form of monitors in Java

• only one (implicit) condition variable per object: availability of the lock. threads that wait on o (o.wait())
are in this queue

• no built-in support for general-purpose condition variables.

• ordering of wait “queue”: implementation-dependent (usually FIFO)

• signaling discipline: S & C

• awakened thread: no advantage in competing for the lock to o.

• note: monitor-protection not enforced

– private field modifier 6= instance private

– not all methods need to be synchronized44

– besides that: there’s re-entrance!

A semaphore implementation in Java

1 // down() = P operation
2 // up () = V operation
3
4 public c lass Semaphore {
5 private int value ;
6
7 public Semaphore ( int i n i t i a l ) {
8 value = i n i t i a l ;
9 }

10
11 synchronized public void up ( ) {
12 ++value ;
13 notifyAll ( ) ; }
14
15 synchronized public void down( ) throws InterruptedException {
16 while ( va lue==0) wait ( ) ; // the wel l−known while−cond−wait pat tern
17 − −value ; }
18 }

• cf. also java.util.concurrency.Semaphore (acquire/release + more methods)

7.4 Semaphores
Mutual exclusion with sempahores

43technically, a thread identity is represented by a “thread object” though. Note also : Thread.suspend() and Thread.resume()
are deprecated.

44remember: find of oblig-1.
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Mutual exclusion with sempahores

1
2 class MutexLoop implements Runnable {
3
4 Semaphore mutex ;
5
6 MutexLoop (Semaphore sema ) {mutex=sema ;}
7
8 public void run ( ) {
9 try {

10 while ( true ) {
11 while ( ! ThreadPanel . r o t a t e ( ) ) ;
12 // get mutual exc lus ion
13 mutex .down ( ) ;
14 while ( ThreadPanel . r o t a t e ( ) ) ; // c r i t i c a l sec t ion
15 // re l ea se mutual exc lus ion
16 mutex .up ( ) ;
17 }
18 } catch ( Inter ruptedExcept ion e ){}
19 }
20 }

DEMO

7.5 Readers and writers
Readers and writers problem (again. . . )

A shared database is accessed by two kinds of processes. Readers execute transactions that examine the
database while Writers both examine and update the database. A Writer must have exclusive access to the
database; any number of Readers may concurrently access it.

Interface R/W

1
2 interface ReadWrite {
3
4 public void acquireRead ( ) throws Inter ruptedExcept ion ;
5
6 public void releaseRead ( ) ;
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7
8 public void acquireWrite ( ) throws Inter ruptedExcept ion ;
9

10 public void releaseWrite ( ) ;
11 }

Reader client code

1
2 c l a s s Reader implements Runnable {
3
4 ReadWrite monitor_ ;
5
6 Reader( ReadWrite monitor ) {
7 monitor_ = monitor ;
8 }
9

10 pub l i c void run ( ) {
11 t ry {
12 while ( true ) {
13 while ( ! ThreadPanel . r o t a t e ( ) ) ;
14 // begin c r i t i c a l s e c t i o n
15 monitor_ . acquireRead ( ) ;
16 while ( ThreadPanel . r o t a t e ( ) ) ;
17 monitor_ . r e l easeRead ( ) ;
18 }
19 } catch ( Inter ruptedExcept ion e ){}
20 }
21 }

Writer client code

1
2 c l a s s Writer implements Runnable {
3
4 ReadWrite monitor_ ;
5
6 Writer ( ReadWrite monitor ) {
7 monitor_ = monitor ;
8 }
9

10 pub l i c void run ( ) {
11 t ry {
12 while ( true ) {
13 while ( ! ThreadPanel . r o t a t e ( ) ) ;
14 // begin c r i t i c a l s e c t i o n
15 monitor_ . acquireWrite ( ) ;
16 while ( ThreadPanel . r o t a t e ( ) ) ;
17 monitor_ . r e l e a s eWr i t e ( ) ;
18 }
19 } catch ( Inter ruptedExcept ion e ){}
20 }
21 }

R/W monitor (regulate readers)

1
2 c l a s s ReadWriteSafe implements ReadWrite {
3 pr i va t e int r eade r s =0;
4 pr i va t e boolean wr i t i ng = fa l se ;
5
6 pub l i c synchronized void acquireRead ( )
7 throws Inter ruptedExcept ion {
8 while ( wr i t i ng ) wait ( ) ;
9 ++reade r s ;

10 }
11
12 pub l i c synchronized void releaseRead ( ) {
13 − −r eade r s ;
14 i f ( r eade r s==0) notifyAll ( ) ;
15 }
16
17 pub l i c synchronized void acquireWrite ( ) { . . . }
18
19 pub l i c synchronized void r e l e a s eWr i t e ( ) { . . . }
20 }
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R/W monitor (regulate writers)

1
2 class ReadWriteSafe implements ReadWrite {
3 private int r eade r s =0;
4 private boolean wr i t ing = fa l se ;
5
6 public synchronized void acquireRead ( ) { . . . }
7
8 public synchronized void re l easeRead ( ) { . . . }
9

10 public synchronized void acquireWrite ( )
11 throws Inter ruptedExcept ion {
12 while ( readers >0 | | wr i t i ng ) wait ( ) ;
13 wr i t ing = true ;
14 }
15
16 public synchronized void releaseWrite ( ) {
17 wr i t ing = fa l se ;
18 notifyAll ( ) ;
19 }
20 }

DEMO

Fairness

“Fairness”: regulating readers

1
2 class ReadWriteFair implements ReadWrite {
3
4 private int r eade r s =0;
5 private boolean wr i t ing = fa l se ;
6 private int waitingW = 0 ; // no of wait ing Writers .
7 private boolean readersturn = fa l se ;
8
9 synchronized public void acquireRead ( )

10 throws Inter ruptedExcept ion {
11 while ( wr i t i ng | | (waitingW>0 && ! readersturn ) ) wait ( ) ;
12 ++reade r s ;
13 }
14
15 synchronized public void releaseRead ( ) {
16 − −r eade r s ;
17 readersturn=fa l se ;
18 i f ( r eade r s==0) notifyAll ( ) ;
19 }
20
21 synchronized public void acquireWrite ( ) { . . . }
22 synchronized public void r e l e a s eWr i t e ( ) { . . . }
23 }

“Fairness”: regulating writers

1
2 class ReadWriteFair implements ReadWrite {
3
4 private int r eade r s =0;
5 private boolean wr i t ing = fa l se ;
6 private int waitingW = 0 ; // no of wait ing Writers .
7 private boolean readersturn = fa l se ;
8
9 synchronized public void acquireRead ( ) { . . . }
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10 synchronized public void re l easeRead ( ) { . . . }
11
12 synchronized public void acquireWrite ( )
13 throws Inter ruptedExcept ion {
14 ++waitingW ;
15 while ( readers >0 | | wr i t i ng ) wait ( ) ;
16 −−waitingW ; wr i t i ng = true ;
17 }
18
19 synchronized public void releaseWrite ( ) {
20 wr i t ing = fa l se ; readersturn=true ;
21 notifyAll ( ) ;
22 }
23 }

Readers and Writers problem

DEMO

Java concurrency

• there’s (much) more to it than what we discussed (synchronization, monitors) (see java.util.concurrency)

• Java’s memory model: since Java 1: loooong, hot debate

• connections to

– GUI-programming (swing/awt/events) and to
– RMI etc.

• major clean-up/repair since Java 5

• better “thread management”

• Lock class (allowing new Lock() and non block-structured locking)

• one simplification here: Java has a (complex!) weak memory model (out-of-order execution, compiler
optimization)

• not discussed here volatile

General advice

shared, mutable state is more than a bit tricky,45 watch out!

– work thread-local if possible
– make variables immutable if possible
– keep things local: encapsulate state
– learn from tried-and-tested concurrent design patterns

golden rule
never, ever allow (real, unprotected) races

• unfortunately: no silver bullet

• for instance: “synchronize everything as much as possible”: not just inefficient, but mostly nonsense

⇒ concurrent programmig remains a bit of an art

see for instance [Goetz et al., 2006] or [Lea, 1999]

8 Message passing and channels
17. Oct. 2014

45and pointer aliasing and a weak memory model makes it worse.
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8.1 Intro
Outline

Course overview:

• Part I: concurrent programming; programming with shared variables

• Part II: “distributed” programming

Outline: asynchronous and synchronous message passing

• Concurrent vs. distributed programming46

• Asynchronous message passing: channels, messages, primitives

• Example: filters and sorting networks

• From monitors to client–server applications

• Comparison of message passing and monitors

• About synchronous message passing

Shared memory vs. distributed memory
more traditional system architectures have one shared memory:

• many processors access the same physical memory

• example: fileserver with many processors on one motherboard

Distributed memory architectures:

• Processor has private memory and communicates over a “network” (inter-connect)

• Examples:

– Multicomputer: asynchronous multi-processor with distributed memory (typically contained inside
one case)

– Workstation clusters: PC’s in a local network

– Grid system: machines on the Internet, resource sharing

– cloud computing: cloud storage service

– NUMA-architectures

– cluster computing . . .

Shared memory concurrency in the real world

shared memory

thread0 thread1

• the memory architecture does not reflect reality

• out-of-order executions:

– modern systems: complex memory hierarchies, caches, buffers. . .

– compiler optimizations,
46The dividing line is not absolute. One can make perfectly good use of channels and message passing also in a non-distributed

setting.
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SMP, multi-core architecture, and NUMA

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

CPU0 CPU1

CPU2CPU3

Mem. Mem.

Mem.Mem.

Concurrent vs. distributed programming
Concurrent programming:

• Processors share one memory

• Processors communicate via reading and writing of shared variables

Distributed programming:

• Memory is distributed ⇒ processes cannot share variables (directly)

• Processes communicate by sending and receiving messages via shared channels

or (in future lectures): communication via RPC and rendezvous

8.2 Asynch. message passing
Asynchronous message passing: channel abstraction

Channel: abstraction, e.g., of a physical communication network47

• One–way from sender(s) to receiver(s)

• unbounded FIFO (queue) of waiting messages

• preserves message order

• atomic access

• error–free

• typed

Variants: errors possible, untyped, . . .
47but remember also: producer-consumer problem
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Asynchronous message passing: primitives

Channel declaration
chan c(type1id1, . . . , typenidn);

Messages: n-tuples of values of the respective types

communication primitives:

• send c(expr1, . . . , exprn); Non-blocking, i.e. asynchronous

• receive c(var1, . . . , varn); Blocking: receiver waits until message is sent on the channel

• empty (c); True if channel is empty

P1 P2
c

send receive

Example: message passing

A B
foo

send receive
(x,y) = (1,2)

1 chan f oo ( int ) ;
2
3 process A {
4 send f oo ( 1 ) ;
5 send f oo ( 2 ) ;
6 }

7
8 process B {
9 receive f oo (x ) ;

10 receive f oo (y ) ;
11 }

Example: shared channel

A1

B

send
foo

receive

A2
send

(x,y) = (1,2) or (2,1)

1 process A1 {
2 send f oo ( 1 ) ;
3 }
4

5 process A2 {
6 send f oo ( 2 ) ;
7 }
8
9 process B {

10 receive f oo (x ) ;
11 receive f oo (y ) ;
12 }

Asynchronous message passing and semaphores
Comparison with general semaphores:

channel ' semaphore
send ' V

receive ' P

Number of messages in queue = value of semaphore

(Ignores content of messages)
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8.2.1 Filters

Filters: one–way interaction

Filter F
= process which:

• receives messages on input channels,

• sends messages on output channels, and

• output is a function of the input (and the initial state).

out

outreceive

F

receive

1

n

.

.

.

in

in

1

n

.

.

.

send

send

• A filter is specified as a predicate.

• Some computations can naturally be seen as a composition of filters.

• cf. stream processing/programming (feedback loops) and dataflow programming

Example: A single filter process
Problem: Sort a list of n numbers into ascending order.

process Sort with input channels input and output channel output.

Define:
n : number of values sent to output. sent [i] : i’th value sent to output.

Sort predicate

∀i : 1 ≤ i < n.
(
sent [i] ≤ sent [i+ 1]

)
∧ values sent to output are a permutation of values from

input.

Filter for merging of streams
Problem: Merge two sorted input streams into one sorted stream.

Process Merge with input channels in1 and in2 and output channel out:

1 in1 : 1 4 9 . . .
2 out : 1 2 4 5 8 9 . . .
3 in2 : 2 5 8 . . .

Special value EOS marks the end of a stream.

Define: n : number of values sent to out. sent [i] : i’th value sent to out.

The following shall hold when Merge terminates:

in1 and in2 are empty ∧ sent [n+ 1] = EOS ∧ ∀i : 1 ≤ i < n
(
sent [i] ≤ sent [i+ 1]

)
∧ values sent

to out are a permutation of values from in1 and in2
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Example: Merge process

1 chan in1 ( int ) , in2 ( int ) , out ( int ) ;
2
3 process Merge {
4 int v1 , v2 ;
5 receive in1 ( v1 ) ; # read the f i r s t two
6 receive in2 ( v2 ) ; # input va lues
7
8 while ( v1 6= EOS and v2 6= EOS) {
9 i f ( v1 ≤ v2 )

10 { send out ( v1 ) ; receive in1 ( v1 ) ; }
11 else # (v1 > v2 )
12 { send out ( v2 ) ; receive in2 ( v2 ) ; }
13 }
14
15 # consume the r e s t
16 # of the non−empty input channel
17 while ( v2 6= EOS)
18 { send out ( v2 ) ; receive in2 ( v2 ) ; }
19 while ( v1 6= EOS)
20 { send out ( v1 ) ; receive in1 ( v1 ) ; }
21 send out (EOS) ; # add spec i a l va lue to out
22 }

Sorting network
We now build a network that sorts n numbers.

We use a collection of Merge processes with tables of shared input and output channels.

Merge
Value 2

Value n

Value n-1

Value 1

.

.

.

Merge

Merge
Sorted
stream

.

.

.

(Assume: number of input values n is a power of 2)

8.2.2 Client-servers

Client-server applications using messages
Server: process, repeatedly handling requests from client processes.

Goal: Programming client and server systems with asynchronous message passing.

1 chan reques t ( int c l i ent ID , . . . ) ,
2 r ep ly [ n ] ( . . . ) ;
3
4 cl ient nr . i server
5 int id ; # c l i e n t id .
6
7 while ( true ) { # server loop
8 send r eques t ( i , a rgs ) ; −→ receive r eques t ( id , vars ) ;

9
...

...
...

10 receive r ep ly [ i ] ( vars ) ; ←− send r ep ly [ id ] ( r e s u l t s ) ;
11 }

8.2.3 Monitors

Monitor implemented using message passing

Classical monitor:

• controlled access to shared resource

• Permanent variables (monitor variables): safeguard the resource state

• access to a resource via procedures

77



• procedures: executed under mutual exclusion

• condition variables for synchronization

also implementable by server process + message passing
Called “active monitor” in the book: active process (loop), instead of passive procedures.48

Allocator for multiple–unit resources
Multiple–unit resource: a resource consisting of multiple units

Examples: memory blocks, file blocks.
Users (clients) need resources, use them, and return them to the allocator (“free” the resources).

• here simplification: users get and free one resource at a time.

• two versions:

1. monitor
2. server and client processes, message passing

Allocator as monitor
Uses “passing the condition” pattern ⇒ simplifies later translation to a server process

Unallocated (free) units are represented as a set, type set, with operations insert and remove.

Recap: “semaphore monitor” with “passing the condition”
1 monitor Semaphore_fifo { # monitor invar iant : s ≥ 0
2 int s := 0 ; # value of the semaphore
3 cond pos ; # wait condi t ion
4
5 procedure Psem( ) {
6 i f ( s=0)
7 wait (pos ) ;
8 else
9 s := s − 1

10 }
11
12
13 procedure Vsem( ) {
14 i f empty(pos )
15 s := s + 1
16 else
17 signal (pos ) ;
18 }
19 }

(Fig. 5.3 in Andrews [Andrews, 2000])

Allocator as a monitor
1 monitor Resource_Allocator {
2 int ava i l := MAXUNITS;
3 s e t un i t s := . . . # i n i t i a l va lues ;
4 cond free ; # s i gna l l e d when process wants a uni t
5
6 procedure acquire ( int &id ) { # var . parameter
7 i f ( a v a i l = 0)
8 wait ( free ) ;
9 else

10 ava i l := ava i l −1;
11 remove ( units , id ) ;
12 }
13
14 procedure release ( int id ) {
15 i n s e r t ( units , id ) ;
16 i f (empty( free ) )
17 ava i l := ava i l +1;
18 else
19 signal ( free ) ; # passing the condi t ion
20 }
21 }

([Andrews, 2000, Fig. 7.6])

48In practice: server may spawn local threads, one per request.
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Allocator as a server process: code design

1. interface and “data structure”

(a) allocator with two types of operations: get unit, free unit

(b) 1 request channel49 ⇒ must be encoded in the arguments to a request.

2. control structure: nested if -statement (2 levels):

(a) first checks type operation,

(b) proceeds correspondingly to monitor-if.

3. synchronization, scheduling, and mutex

(a) cannot wait (wait(free)) when no unit is free.

(b) must save the request and return to it later

⇒ queue of pending requests (queue; insert, remove).

(c) request: “synchronous/blocking” call ⇒ “ack”-message back

(d) no internal parallelism ⇒ mutex

1>In order to design a monitor, we may follow the following 3 “design steps” to make it more systematic:
1) Inteface, 2) “business logic” 3) sync./coordination

Channel declarations:

1 type op_kind = enum(ACQUIRE, RELEASE) ;
2 chan reques t ( int c l i ent ID , op_kind kind , int unitID ) ;
3 chan rep ly [ n ] ( int unitID ) ;

Allocator: client processes

1 process Cl i en t [ i = 0 to n−1] {
2 int unitID ;
3 send r eques t ( i , ACQUIRE, 0) # make reques t
4 receive r ep ly [ i ] ( unitID ) ; # works as ‘ ‘ i f synchronous ’ ’
5 . . . # use resource unitID
6 send r eques t ( i , RELEASE, unitID ) ; # free resource
7 . . .
8 }

(Fig. 7.7(b) in Andrews)

Allocator: server process

1 process Resource_Allocator {
2 int ava i l := MAXUNITS;
3 s e t un i t s := . . . # i n i t i a l va lue
4 queue pending ; # i n i t i a l l y empty
5 int c l i ent ID , unitID ; op_kind kind ; . . .
6 while ( true ) {
7 receive r eques t ( c l i ent ID , kind , unitID ) ;
8 i f ( kind = ACQUIRE) {
9 i f ( a v a i l = 0) # save reques t

10 i n s e r t (pending , c l i e n t ID ) ;
11 else { # perform reques t now
12 ava i l := ava i l −1;
13 remove ( units , unitID ) ;
14 send r ep ly [ c l i e n t ID ] ( unitID ) ;
15 }
16 }
17 else { # kind = RELEASE
18 i f empty(pending ) { # return uni t s
19 ava i l := ava i l +1; i n s e r t ( units , unitID ) ;
20 } else { # a l l o c a t e s to wait ing c l i e n t
21 remove (pending , c l i e n t ID ) ;
22 send r ep ly [ c l i e n t ID ] ( unitID ) ;
23 } } } } # Fig . 7.7 in Andrews ( rewr i t t en )

49Alternatives exist
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Duality: monitors, message passing
monitor-based programs message-based programs
monitor variables local server variables
process-IDs request channel, operation types
procedure call send request(), receive reply[i]()
go into a monitor receive request()
procedure return send reply[i]()
wait statement save pending requests in a queue
signal statement get and process pending request (reply)
procedure body branches in if statement wrt. op. type

8.3 Synchronous message passing
Synchronous message passing

Primitives:

• New primitive for sending:

synch_send c(expr1, . . . , exprn);

Blocking send:

– sender waits until message is received by channel,

– i.e. sender and receiver “synchronize” sending and receiving of message

• Otherwise: like asynchronous message passing:

receive c(var1, . . . , varn);

empty(c);

Synchronous message passing: discussion
Advantages:

• Gives maximum size of channel.

Sender synchronises with receiver ⇒ receiver has at most 1 pending message per channel per sender ⇒
sender has at most 1 unsent message

Disadvantages:

• reduced parallellism: when 2 processes communicate, 1 is always blocked.

• higher risk of deadlock.

Example: blocking with synchronous message passing
1 chan va lues ( int ) ;
2
3 process Producer {
4 int data [ n ] ;
5 for [ i = 0 to n−1] {
6 . . . # computation . . . ;
7 synch_send va lues ( data [ i ] ) ;
8 } }
9

10 process Consumer {
11 int r e s u l t s [ n ] ;
12 for [ i = 0 to n−1] {
13 receive va lues ( r e s u l t s [ i ] ) ;
14 . . . # computation . . . ;
15 } }

Assume both producer and consumer vary
in time complexity.
Communication using synch_send/receive
will block.

With asynchronous message passing, the
waiting is reduced.
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Example: deadlock using synchronous message passing

1 chan in1 ( int ) , in2 ( int ) ;
2
3 process P1 {
4 int v1 = 1 , v2 ;
5 synch_send in2 ( v1 ) ;
6 receive in1 ( v2 ) ;
7 }
8
9 process P2 {

10 int v1 , v2 = 2 ;
11 synch_send in1 ( v2 ) ;
12 receive in2 ( v1 ) ;
13 }

P1 and P2 block on synch_send – deadlock.
One process must be modified to do receive first
⇒ asymmetric solution.

With asynchronous message passing (send) all
goes well.

INF4140 24 Oct. 2014

9 RPC and Rendezvous
Outline

• More on asynchronous message passing

– interacting processes with different patterns of communication
– summary

• remote procedure calls

– concept, syntax, and meaning
– examples: time server, merge filters, exchanging values

• Rendez-vous

– concept, syntax, and meaning
– examples: buffer, time server, exchanging values

• combinations of RPC, rendezvous and message passing

– Examples: bounded buffer, readers/writers

9.1 Message passing (cont’d)
Interacting peers (processes): exchanging values example

Look at processes as peers.

Example: Exchanging values

• Consider n processes P[0], . . . , P[n− 1], n > 1

• every process has a number, stored in local variable v

• Goal: all processes knows the largest and smallest number.

• simplistic problem, but “characteristic” of distributed computation and information distribution

Different communication patters

P1

P2

P3

P4P5

P0 P0

P1 P2

P3

P4P5

P0

P1 P2

P3

P4P5

centralized symetrical ring shaped

Centralized solution
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Process P[0] is the coordinator process:

• P[0] does the calculation

• The other processes sends their values to P[0] and
waits for a reply.

P1

P2

P3

P4P5

P0

Number of messages:50(number of send:)
P[0]: n− 1

P[1], . . . , P[n− 1]: (n− 1)
Total: (n− 1) + (n− 1) = 2(n− 1) messages

repeated “computation”

Number of channels: n

Centralized solution: code

1 chan va lues ( int ) ,
2 r e s u l t s [ 1 . . n−1]( int sma l l e s t , int l a r g e s t ) ;
3
4 process P [ 0 ] { # coordinator process
5 int v := . . . ;
6 int new , sma l l e s t := v , l a r g e s t := v ; # i n i t i a l i z a t i o n
7 # get va lues and s tore the l a r g e s t and sma l l e s t
8 for [ i = 1 to n−1] {
9 receive va lues (new ) ;

10 i f (new < sma l l e s t ) sma l l e s t := new ;
11 i f (new > l a r g e s t ) l a r g e s t := new ;
12 }
13 # send r e s u l t s
14 for [ i = 1 to n−1]
15 send r e s u l t s [ i ] ( sma l l e s t , l a r g e s t ) ;
16 }
17 process P[ i = 1 to n−1] {
18 int v := . . . ;
19 int sma l l e s t , l a r g e s t ;
20
21 send va lues (v ) ;
22 receive r e s u l t s [ i ] ( sma l l e s t , l a r g e s t ) ; }
23 # Fig . 7.11 in Andrews ( corrected a bug )

Symmetric solution

P0

P1 P2

P3

P4P5

“Single-programme, multiple data (SPMD)”-solution:

Each process executes the same code and shares the results with all other processes.

Number of messages: n processes sending n− 1 messages each, Total: n(n− 1) messages.

Number of (bi-directional) channels: n(n− 1)

Symmetric solution: code

1 chan va lues [ n ] ( int ) ;
2
3 process P[ i = 0 to n−1] {
4 int v := . . . ;
5 int new , sma l l e s t := v , l a r g e s t := v ;
6
7 # send v to a l l n−1 other processes
8 for [ j = 0 to n−1 st j 6= i ]
9 send va lues [ j ] ( v ) ;

10
11 # get n−1 va lues

50For now in the pics: 1 line = 1 message (not 1 channel), but the notation in the pics is not 100% consistent.
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12 # and s tore the sma l l e s t and l a r g e s t .
13 for [ j = 1 to n−1] { # j not used in the loop
14 receive va lues [ i ] ( new ) ;
15 i f (new < sma l l e s t ) sma l l e s t := new ;
16 i f (new > l a r g e s t ) l a r g e s t := new ;
17 }
18 } # Fig . 7.12 from Andrews

Ring solution

P0

P1 P2

P3

P4P5

Almost symmetrical, except P[0], P[n− 2] and P[n− 1].

Each process executes the same code and sends the results to the next process (if necessary).

Number of messages:

P[0]: 2
P[1], . . . , P[n− 3]: (n− 3)× 2

P[n− 2]: 1
P[n− 1]: 1

2 + 2(n− 3) + 1 + 1 = 2(n− 1) messages sent.

Number of channels: n .

Ring solution: code (1)
1 chan va lues [ n ] ( int sma l l e s t , int l a r g e s t ) ;
2
3 process P [ 0 ] { # s t a r t s the exchange
4 int v := . . . ;
5 int sma l l e s t := v , l a r g e s t := v ;
6 # send v to the next process , P[ 1 ]
7 send va lues [ 1 ] ( sma l l e s t , l a r g e s t ) ;
8 # get the g l o ba l sma l l e s t and l a r g e s t from P[n−1]
9 # and send them to P[ 1 ]

10 receive va lues [ 0 ] ( sma l l e s t , l a r g e s t ) ;
11 send va lues [ 1 ] ( sma l l e s t , l a r g e s t ) ;
12 }

Ring solution: code (2)
1 process P[ i = 1 to n−1] {
2 int v := . . . ;
3 int sma l l e s t , l a r g e s t ;
4 # get sma l l e s t and l a r g e s t so far ,
5 # and update them by comparing them to v
6 receive va lues [ i ] ( sma l l e s t , l a r g e s t )
7 i f ( v < sma l l e s t ) sma l l e s t := v ;
8 i f ( v > l a r g e s t ) l a r g e s t := v ;
9 # forward the re su l t , and wait for the g l o ba l r e s u l t

10 send va lues [ ( i +1) mod n ] ( sma l l e s t , l a r g e s t ) ;
11 i f ( i < n−1)
12 receive va lues [ i ] ( sma l l e s t , l a r g e s t ) ;
13 # forward the g l o ba l r e su l t , but not from P[n−1] to P[ 0 ]
14 i f ( i < n−2)
15 send va lues [ i +1]( sma l l e s t , l a r g e s t ) ;
16 } # Fig . 7.13 from Andrews ( modified )

Message passing: Summary
Message passing: well suited to programming filters and interacting peers (where processes communicates

one way by one or more channels).
May be used for client/server applications, but:

• Each client must have its own reply channel

• In general: two way communication needs two channels

⇒ many channels

RPC and rendezvous are better suited for client/server applications.
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9.2 RPC
Remote Procedure Call: main idea

1 CALLER CALLEE
2
3 at computer A at computer B

op foo(FORMALS); # declaration

...
call foo(ARGS); -----> proc foo(FORMALS) # new process

...
<----- end;

...

RPC (cont.)
RPC: combines elements from monitors and message passing

• As ordinary procedure call, but caller and callee may be on different machines.51

• Caller: blocked until called procedure is done, as with monitor calls and synchronous message passing.

• Asynchronous programming: not supported directly

• A new process handles each call.

• Potentially two way communication: caller sends arguments and receives return values.

RPC: module, procedure, process
Module: new program component – contains both

• procedures and processes.

1 module M
2 headers o f exported ope ra t i on s ;
3 body
4 va r i ab l e d e c l a r a t i o n s ;
5 i n i t i a l i z a t i o n code ;
6 procedures for exported ope ra t i on s ;
7 l o c a l procedures and processes ;
8 end M

Modules may be executed on different machines
M has: procedures and processes

• may share variables

• execute concurrently ⇒ must be synchronized to achieve mutex

• May only communicate with processes in M ′ by procedures exported by M ′

RPC: operations
Declaration of operation O:

op O(formal parameters.) [ returns result] ;

Implementation of operation O:

proc O(formal identifiers.) [ returns result identifier]{ declaration of local variables;
statements }

Call of operation O in module M:52

call M.O(arguments)

Processes: as before.
51cf. RMI
52Cf. static/class methods
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Synchronization in modules

• RPC: primarily a communication mechanism

• within the module: in principle allowed:

– more than one process
– shared data

⇒ need for synchronization

• two approaches

1. “implicit”:
– as in monitors: mutex built-in
– additionally condition variables (or semaphores)

2. “explicit”:53

– user-programmed mutex and synchronization (like semaphorse, local monitors etc)

Example: Time server (RPC)

• module providing timing services to processes in other modules.

• interface: two visible operations:

– get_time() returns int – returns time of day
– delay(int interval) – let the caller sleep a given number of time units

• multiple clients: may call get_time and delay at the same time

⇒ Need to protect the variables.

• internal process that gets interrupts from machine clock and updates tod

Time server code (rpc)
1 module TimeServer
2 op get_time ( ) returns int ;
3 op delay ( int i n t e r v a l ) ;
4 body
5 int tod := 0 ; # time of day
6 sem m := 1 ; # for mutex
7 sem d [ n ] := ( [ n ] 0 ) ; # for delayed processes
8 queue o f ( int waketime , int process_id ) napQ ;
9 ## when m = 1 , tod < waketime for delayed processes

10 proc get_time ( ) returns time { time := tod ; }
11
12 proc delay ( int i n t e r v a l ) {
13 P(m) ; # assume unique myid and i [0 ,n−1]
14 int waketime := tod + i n t e r v a l ;
15 i n s e r t ( waketime , myid ) at appropr ia te p lace in napQ ;
16 V(m) ;
17 P(d [ myid ] ) ; # Wait to be awoken
18 }
19 process Clock . . .

20
...

21 end TimeServer

Time server code: clock process
1 process Clock {
2 int id ; s t a r t hardware t imer ;
3 while ( true ) {
4 wait for i n t e r rupt , then r e s t a r t hardware t imer
5 tod := tod + 1 ;
6 P(m) ; # mutex
7 while ( tod ≥ sma l l e s t waketime on napQ) {
8 remove (waketime , id ) from napQ ; # book−keeping
9 V(d [ id ] ) ; # awake process

10 }
11 V(m) ; # mutex
12 } }
13 end TimeServer # Fig . 8.1 of Andrews

53assumed in the following
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9.3 Rendez-vouz
Rendezvous

RPC:

• offers inter-module communication

• synchronization (often): must be programmed explicitly

Rendezvous:

• Known from the language Ada (US DoD)

• Combines communication and synchronization between processes

• No new process created for each call

• instead: perform ‘rendezvous’ with existing process

• Operations are executed one at the time

synch_send and receive may be considered as primitive rendezvous.
cf. also join-synchronization

Rendezvous: main idea

1 CALLER CALLEE
2
3 at computer A at computer B

op foo(FORMALS); # declaration

... ... # existing process
call foo(ARGS); -----> in foo(FORMALS) ->

BODY;
<----- ni

...

Rendezvous: module declaration

1 module M
2 op O1 ( types ) ;
3 . . .
4 op On ( types ) ;
5 body
6
7 process P1 {
8 va r i ab l e d e c l a r a t i o n s ;
9 while ( true ) # standard pattern

10 in O1 ( fo rmal s ) and B1 −> S1 ;
11 . . .
12 [ ] On ( fo rmal s ) and Bn −> Sn ;
13 ni
14 }
15 . . . other p r o c e s s e s
16 end M

Calls and input statements
Call:

1 ca l l Oi (expr1, . . . , exprm ) ;

Input statement, multiple guarded expressions:

1 in O1(v1, . . . vm1
) and B1 −> S1 ;

2 . . .
3 [ ] On(v1, . . . vmn ) and Bn −> Sn ;
4 ni

The guard consists of:
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• and Bi – synchronization expression (optional)

• Si – statements (one or more)

The variables v1, . . . , vmi
may be referred by Bi and Si may read/write to them.54

Semantics of input statement
Consider the following:

1 in . . .
2 [ ] Oi(vi, . . . , vmi

) and Bi −> Si ;
3 . . .
4 ni

The guard succeeds when Oi is called and Bi is true (or omitted).

Execution of the in statement:

• Delays until a guard succeeds

• If more than one guard succeed, the oldest call is served55

• Values are returned to the caller

• The the call- and in-statements terminates

Different variants

• different versions of rendezvous, depending on the language

• origin: ADA (accept-statement) (see [Andrews, 2000, Section 8.6])

• design variation points

– synchronization expressions or not?

– scheduling expressions or not?

– can the guard inspect the values for input variables or not?

– non-determinism

– checking for absence of messages? priority

– checking in more than one operation?

Bounded buffer with rendezvous

1 module BoundedBuffer
2 op depos i t (TypeT) , f e t ch ( result TypeT ) ;
3 body
4 process Buf f e r {
5 elem buf [ n ] ;
6 int f r on t := 0 , r ea r := 0 , count := 0 ;
7 while ( true )
8 in depos i t ( item ) and count < n −>
9 buf [ r ea r ] := item ; count++;

10 r ea r := ( r ea r+1) mod n ;
11 [ ] f e t ch ( item ) and count > 0 −>
12 item := buf [ f r on t ] ; count−−;
13 f r on t := ( f r on t+1) mod n ;
14 ni
15 }
16 end BoundedBuffer # Fig . 8.5 of Andrews

54once again: no side-effects in B!!!
55this may be changed using additional syntax (by), see [Andrews, 2000].
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Example: time server (rendezvous)

1 module TimeServer
2 op get_time ( ) r e tu rn s int ;
3 op delay ( int ) ; # abso lu te waketime as argument
4 op t i c k ( ) ; # ca l l e d by the c lock in t e r rup t handler
5 body
6 process Timer {
7 int tod := 0 ;
8 s t a r t t imer ;
9 while ( true )

10 in get_time ( ) r e tu rn s time −> time := tod ;
11 [ ] de lay ( waketime ) and waketime <= tod −> sk ip ;
12 [ ] t i c k ( ) −> { tod++; r e s t a r t t imer ; }
13 ni
14 }
15 end TimeServer # Fig . 8.7 of Andrews

RPC, rendezvous and message passing
We do now have several combinations:

invocation service effect
call proc procedure call (RPC)
call in rendezvous
send proc dynamic process creation
send in asynchronous message passing

in addition (not in Andrews)

• asynchronous procedure call, wait-by-necessity, futures

Rendezvous, message passing and semaphores

Comparing input statements and receive:

in O(a1, . . . ,an) ->v1=a1,. . . ,vn=an ni ⇐⇒ receive O(v1, . . . , vn)

Comparing message passing and semaphores:

send O() and receive O() ⇐⇒ V(O) and P(O)

Bounded buffer: procedures and “semaphores (simulated by channels)”

1 module BoundedBuffer
2 op depos i t ( typeT ) , f e t ch ( result typeT ) ;
3 body
4 elem buf [ n ] ;
5 int f r on t = 0 , r ea r = 0 ;
6 # loca l operation to simulate semaphores
7 op empty ( ) , f u l l ( ) , mutexD ( ) , mutexF ( ) ; // ope ra t i on s
8 send mutexD ( ) ; send mutexF ( ) ; # in i t . "semaphores" to 1
9 for [ i = 1 to n ] # in i t . empty−"semaphore" to n

10 send empty ( ) ;
11
12 proc depos i t ( item ) {
13 receive empty ( ) ; receive mutexD ( ) ;
14 buf [ r ea r ] = item ; r ea r = ( r ea r+1) mod n ;
15 send mutexD ( ) ; send fu l l ( ) ;
16 }
17 proc f e t ch ( item ) {
18 receive fu l l ( ) ; receive mutexF ( ) ;
19 item = buf [ f r on t ] ; f r on t = ( f r on t+1) mod n ;
20 send mutexF ( ) ; send empty ( ) ;
21 }
22 end BoundedBuffer # Fig . 8.12 of Andrews

The primitive ?O in rendezvous
New primitive on operations, similar to empty(. . . ) for condition variables and channels.

?O means number of pending invocations of operation O.

Useful in the input statement to give priority:
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1 in
2 O1 . . . −> S1 ;
3 [ ]
4 O2 . . . and (?O1 = 0) −> S2 ;
5
6 ni

Here O1 has a higher priority than O2.

Readers and writers
1 module ReadersWriters
2 op read ( result types ) ; # uses RPC
3 op wr i t e ( types ) ; # uses rendezvous
4 body
5 op s t a r t r e ad ( ) , endread ( ) ; # loca l ops .
6 . . . database (DB ) . . . ;
7
8 proc read ( vars ) {
9 ca l l s t a r t r e ad ( ) ; # get read access

10 . . . read vars from DB . . . ;
11 send endread ( ) ; # free DB
12 }
13 process Writer {
14 int nr := 0 ;
15 while ( true )
16 in s t a r t r e ad ( ) −> nr++;
17 [ ] endread ( ) −> nr−−;
18 [ ] wr i t e ( vars ) and nr = 0 −>
19 . . . wr i t e vars to DB . . . ;
20 ni
21 }
22 end ReadersWriters

Readers and writers: prioritize writers
1 module ReadersWriters
2 op read ( result typeT ) ; # uses RPC
3 op wr i t e ( typeT ) ; # uses rendezvous
4 body
5 op s t a r t r e ad ( ) , endread ( ) ; # loca l ops .
6 . . . database (DB ) . . . ;
7
8 proc read ( vars ) {
9 ca l l s t a r t r e ad ( ) ; # get read access

10 . . . read vars from DB . . . ;
11 send endread ( ) ; # free DB
12 }
13 process Writer {
14 int nr := 0 ;
15 while ( true )
16 in s t a r t r e ad ( ) and ? wr i t e = 0 −> nr++;
17 [ ] endread ( ) −> nr−−;
18 [ ] wr i t e ( vars ) and nr = 0 −>
19 . . . wr i t e vars to DB . . . ;
20 ni
21 }
22 end ReadersWriters

10 Asynchronous Communication I
7.11.2014

Asynchronous Communication: Semantics, specification and reasoning
Where are we?

• part one: shared variable systems

– programming
– synchronization
– reasoning by invariants and Hoare logic

• part two: communicating systems

– message passing
– channels
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– rendezvous

What is the connection?

• What is the semantic understanding of message passing?

• How can we understand concurrency?

• How to understand a system by looking at each component?

• How to specify and reason about asynchronous systems?

Overview
Clarifying the semantic questions above, by means of histories:

• describing interaction

• capturing interleaving semantics for concurrent systems

• Focus: asynchronous communication systems without channels

Plan today

• histories from the outside view of components

– describing overall understanding of a (sub)system

• Histories from the inside view of a component

– describing local understanding of a single process

• The connection between the inside and outside view

– the composition rule

What kind of system? Agent network systems
Two kinds of settings for concurrent systems, based on the notion of:

• processes — without self identity, but with named channels. Channels often FIFO.

• object (agent) — with self identity, but without channels, sending messages to named objects through a
network. In general, a network gives no FIFO guarantee, nor guarantee of successful transmission.

We use the latter here, since it is a very general setting. The process/channel setting may be obtained by
representing each combination of object and message kind as a channel.

in the following we consider agent/network systems!

Programming asynchronous agent systems
New syntax statements for sending and receiving:

• send statement: send B : m(e) means that the current agent sends message m to agent B where e is an
(optional) list of actual parameters.

• fixed receive statement: await B : m(w) wait for a message m from a specific agent B, and receive
parameters in the variable list w. We say that the message is then consumed.

• open receive statement: await X ?m(w) wait for a message m from any agent X and receive parameters
in w (consuming the message). The variable X will be set to the agent that sent the message.

• choice operator [ ] to select between alternative statement lists, starting with receive statements.

Here m is a message name, B the name of an agent, e expressions, X and w variables.

Example: Coin machine
Consider an agent C which changes “5 krone” coins and “1 krone” coins into “10 krone” coins. It receives five

and one messages and sends out ten messages as soon as possible, in the sense that the number of messages
sent out should equal the total amount of kroner received divided by 10.

We imagine here a fixed user agent U , both producing the five and one messages and consuming the ten
messages. The code of the agent C is given below, using b (balance) as a local variable initialized to 0.
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Example: Coin machine (Cont)

1 loop
2 while b < 10
3 do
4 (await U: f i v e ; b:=b+5)
5 [ ]
6 (await U: one ; b:=b+1)
7 od ;
8 send U: ten ;
9 b:=b−10

10 end

• choice operator [ ]56

– selects 1 enabled branch

– non-deterministic choice if both branches are enabled

Interleaving semantics of concurrent systems

• behavior of a concurrent system: may be described as set of executions,

• 1 execution: sequence of atomic interaction events,

• other names for it: trace, history, execution, (interaction) sequence . . . 57

Interleaving semantics

Concurrency is expressed by the set of all possible interleavings.

• remember also: “sequential consistency” from the WMM part.

• note: for each interaction sequence, all interactions are ordered sequentially, and their “visible” concurrency

Regular expressions

• very well known and widely used “format” to descibe “languages” (= sets finite “words” over given a given
“alphabet”)

•

A way to describe (sets of) traces

Example 18 (Reg-Expr). • a, b: atomic interactions.

• Assume them to “run” concurrently

⇒ two possible interleavings, described by

[[a.b] + [b.a]] (3)

Parallel composition of a∗ and b∗:
(a+ b)∗ (4)

Remark: notation for reg-expr’s
Different notations exist. E.g.: some write a|b for the alternative/non-deterministic choice between a and b.
We use + instead

• to avoid confusion with parallel composition

• be consistent with common use of regexp. for describing concurrent behavior

Note: earlier version of this lecture used |.
56In the literature, also + as notation can often be found.
57message sequence (charts) in UML etc.
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Safety and liveness & traces
We may let each interaction sequence reflect all interactions in an execution, called the trace, and the set of

all possible traces is then called the trace set.

• terminating system: finite traces58

• non-terminating systems: infinite traces

• trace set semantics in the general case: both finite and infinite traces

• 2 conceptually important classes of properties59

– safety (“nothing wrong will happen”)

– liveness (“something good will happen”)

Safety and liveness & histories

• often: concentrate on finite traces

• reasons

– conceptually/theoretically simpler

– connection to monitoring

– connection to checking (violations of) safety prop’s

• our terminology: history = trace up to a given execution point (thus finite)

• note: In contrast to the book, histories are here finite initial parts of a trace (prefixes)

• sets of histories are

prefix closed

if a history h is in the set, then every prefix (initial part) of h is also in the set.

• sets of histories: can be used capture safety, but not liveness

Simple example: histories and trace set
Consider a system of two agents, A and B, where agent A says “hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case there
will be an infinite trace with
only “hi-B”

hiB
∞ + hiB

+hiA hiB
∗ + hiB

+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will end
with “hiA” after finitely many
“hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

• a “sloppy” B may or may not give a reply, in which case there will be an infinite trace with only “hi-B” (here comma denotes
union).
Trace set: {[hiB ]∞}, {[hiB ]+ [hiA]} Histories: {[hiB ]∗}, {[hiB ]+ [hiA]}

• a “lazy” B will reply eventually, but there is no limit on how long A may need to wait. Thus, each trace will end with “hiA”
after finitely many “hiB ” ’s. Trace set: {[hiB ]+ [hiA]} Histories: {[hiB ]∗}, {[hiB ]+ [hiA]}

• an “eager” B will reply within a fixed number of “hiB ” ’s, for instance before A says “hiB ” three times. Trace set:
{[hiB ] [hiA]}, {[hiB ] [hiB ] [hiA]} Histories: ∅, {[hiB ]}, {[hiB ] [hiA]}, {[hiB ] [hiB ]}, {[hiB ] [hiB ] [hiA]}

58Be aware: typically an infinite set of finite traces.
59Safety etc. it’s not a property, it’s a “property/class of properties”
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Histories
Let use the following conventions

• events x : Event is an event,

• set of events: A : 2Event

• history h : Hist

A set of events is assumed to be fixed.

Definition 19 (Histories). Histories (over the given set of events) is given inductively over the constructors ε
(empty history) and _;_ (appending of an event to the right of the history)

Functions over histories

function type
ε : → Hist the empty history (constructor)

_;_ : Hist ∗ Event → Hist append right (constructor)
#_ : Hist → Nat length
_/_ : Hist ∗ Set → Hist projection by set of events
_ ≤ _ : Hist ∗Hist → Bool prefix relation
_ < _ : Hist ∗Hist → Bool strict prefix relation

Inductive definitions (inductive wrt. ε and _;_):

#ε = 0
#(h;x) = #h+ 1
ε/A = ε
(h;x)/s =if x ∈ A then (h/s);x else (h/s) fi
h ≤ h′ = (h = h′) ∨ h < h′

h < ε = false
h < (h′;x) = h ≤ h′

Invariants and Prefix Closed Trace Sets
May use invariants to define trace sets:
A (history) invariant I is a predicate over a histories, supposed to hold at all times:

“At any point in an execution h the property I(h) is satisfied”

It defines the following set:
{h | I(h)} (5)

• mostly interested in prefix-closed invariants!

• a history invariant is historically monotonic:

h ≤ h′ ⇒ (I(h′)⇒ I(h)) (6)

• I history-monotonic ⇒ set from equation (5) prefix closed

Remark: A non-monotonic predicate I may be transformed to a monotonic one I ′:

I ′(ε) = I(ε)
I ′(h′;x) = I(h′) ∧ I(h′;x)

Semantics: Outside view: global histories over events
Consider asynchronous communication by messages from one agent to another: Since message passing may

take some time, the sending and receiving of a message m are semantically seen as two distinct atomic interaction
events of type Event:

• A↑B : m denotes that A sends message m to B

• A↓B : m denotes that B receives (consumes) message m from A
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A global history, H, is a finite sequence of such events, requiring that it is legal, i.e. each reception is preceded
by a corresponding send-event.

For instance, the history

[(A↑B : hi), (A↑B : hi), (A↓B : hi), (A↑B : hi), (B ↑A : hi)]

is legal and expresses that A has sent “hi” three times and that B has received one of these and has replied “hi”.

Note: a concrete message may also have parameters, say messagename(parameterlist) where the number and types of the

parameters are statically checked.

Coin Machine Example: Events

U ↑C : five −− U sends the message “five” to C
U ↓C : five −− C consumes the message “five”

U ↑C : one −− U sends the message “one to C
U ↓C : one −− C consumes the message “one”

C ↑U : ten −− C sends the message “ten”
C ↓U : ten −− U consumes the message “ten”

Legal histories

• note all global sequences/histories “make sense”

• depens on the programming language/communciation model

• sometimes called well-definedness, well-formedness or similar

• legal : Hist→ Bool

Definition 20 (Legal history).

legal(ε) = true
legal(h; (A↑B : m)) = legal(h)
legal(h; (A↓B : m)) = legal(h)∧

#(h/{A↓B : m}) < #(h/{A↑B : m})

where m is message and h a history.

• should m include parameters, legality ensures that the values received are the same as those sent.

Example (coin machine C user U):

[(U ↑C : five), (U ↑C : five), (U ↓C : five), (U ↓C : five), (C ↑U : ten)]

Outside view: logging the global history
How to “calculate” the global history at run-time:

• introduce a global variable H,

• initialize: to empty sequence

• for each execution of a send statement in A, update H by

H := H; (A↑B : m)

where B is the destination and m is the l message

• for each execution of a receive statement in B, update H by

H := H; (A↓B : m)

where m is the message and A the sender. The message must be of the kind requested by B.
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Outside View: Global Properties
Global invariant: By a predicate I on the global history, we may specify desired system behavior:

“at any point in an execution H the property I(H) is satisfied”

• By logging the history at run-time, as above, we may monitor an executing system. When I(H) is violated
we may

– report it

– stop the system, or

– interact with the system (for inst. through fault handling)

• How to prove such properties by analysing the program?

• How can we monitor, or prove correctness properties, component-wise ?

Semantics: Inside view: Local histories

Definition 21 (Local events). The events visible to an agent A, denoted αA, are the events local to A, i.e.:

• A↑B : m: any send-events from A. (output by A)

• B ↓A : m: any reception by A. (input by A)

Definition 22 (Local history). Given a global history: The local history of A, written hA, is the subsequence
of all events visible to A

• Conjecture: Correspondence between global and local view:

hA = H/αA

i.e. at any point in an execution the history observed locally in A is the projection to A -events of the
history observed globally.

• Each event is visible to one, and only one, agent!

Coin Machine Example: Local Events
The events visible to C are:

U ↓C : five C consumes the message “five”
U ↓C : one C consumes the message “one”
C ↑U : ten C sends the message “ten”

The events visible to U are:

U ↑C : five U sends the message “five” to C
U ↑C : one U sends the message “one to C
C ↓U : ten U consumes the message “ten”

How to relate local and global views
From global specification to implementation: First, set up the goal of a system: by one or more global

histories. Then implement it. For each component: use the global histories to obtain a local specification,
guiding the implementation work.

“construction from specifications” From implementation to global specification: First, make or reuse compo-

nents.
Use the local knowledge for the desired components to obtain global knowledge. Working with invariants:

The specifications may be given as invariants over the history.

• Global invariant: in terms of all events in the system

• Local invariant (for each agent): in terms of events visible to the agent

Need composition rules connecting local and global invariants.
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Example revisited: Sloppy coin machine

1 loop
2 while b < 10
3 do
4 (await U: f i v e ; b:=b+5)
5 [ ]
6 (await U: one ; b:=b+1)
7 od ;
8 send U: ten ;
9 b:=b−10

10 end

interactions visible to C (i.e. those that may show up in the local history):

U ↓C : five −− C consumes the message “five”
U ↓C : one −− C consumes the message “one”
C ↑U : ten −− C sends the message “ten”

Coin machine example: Loop invariants
Loop invariant for the outer loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 5 (7)

where sum (the sum of values in the messages) is defined as follows:

sum(ε) = 0
sum(h; (... : five)) = sum(h) + 5
sum(h; (... : one)) = sum(h) + 1
sum(h; (... : ten)) = sum(h) + 10

Loop invariant for the inner loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 15 (8)

Histories: from inside to outside view
From local histories to global history: if we know all the local histories hAi in a system (i = 1...n), we

have
legal(H) ∧i hAi = H/αAi

i.e. the global history H must be legal and correspond to all the local histories. This may be used to reason
about the global history.

Local invariant: a local specification of Ai is given by a predicate on the local history IAi(hAi) describing
a property which holds before all local interaction points. I may have the form of an implication, expressing
the output events from Ai depends on a condition on its input events.

From local invariants to a global invariant: if each agent satisfies IAi
(hAi

), the total system will
satisfy:

legal(H) ∧i IAi(H/αAi)

Coin machine example: from local to global invariant
before each send/receive: (see eq. (8))

sum(h/↓) = sum(h/↑) + b ∧ 0 ≤ b < 15

Local Invariant of C in terms of h alone:

IC(h) = ∃b. (sum(h/↓) = sum(h/↑) + b ∧ 0 ≤ b < 15) (9)

IC(h) = 0 ≤ sum(h/↓)− sum(h/↑) < 15 (10)
For a global history H (h = H/αC):

IC(H/αC) = 0 ≤ sum(H/αC/ ↓)− sum(H/αC/↑) < 15 (11)

Shorthand notation: IC(H/αC) = 0 ≤ sum(H/↓C)− sum(H/C ↑) < 15
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Coin machine example: from local to global invariant

• Local Invariant of a careful user U (with exact change):

IU (h) = 0 ≤ sum(h/ ↑)− sum(h/↓) ≤ 10
IU (H/αU ) = 0 ≤ sum(H/U ↑)− sum(H/↓U) ≤ 10

• Global Invariant of the system U and C:

I(H) = legal(H) ∧ IC(H/αC) ∧ IU (H/αU ) (12)

implying:

Overall
0 ≤sum(H/U ↓C)− sum(H/C ↑U)≤sum(H/U ↑C)− sum(H/C ↓U)≤10

since legal(H) gives: sum(H/U ↓C) ≤ sum(H/U ↑C) and sum(H/C ↓U) ≤ sum(H/C ↑U).

So, globally, this system will have balance ≤ 10.

Coin machine example: Loop invariants (Alternative)
Loop invariant for the outer loop:

rec(h) = sent(h) + b ∧ 0 ≤ b < 5

where rec (the total amount received) and sent (the total amount sent) are defined as follows:

rec(ε) = 0
rec(h; (U ↓C : five)) = rec(h) + 5
rec(h; (U ↓C : one)) = rec(h) + 1
rec(h; (C ↑U : ten)) = rec(h)
sent(ε) = 0
sent(h; (U ↓C : five)) = sent(h)
sent(h; (U ↓C : one)) = sent(h)
sent(h; (C ↑U : ten)) = sent(h) + 10

Loop invariant for the inner loop:

rec(h) = sent(h) + b ∧ 0 ≤ b < 15

Legality
The above definition of legality reflects networks where you may not assume that messages sent will be

delivered, and where the order of messages sent need not be the same as the order received.
Perfect networks may be reflected by a stronger concept of legality (see next slide).

Remark: In “black-box” specifications, we consider observable events only, abstracting away from internal
events. Then, legality of sending may be strengthened:

legal(h; (A↑B : m)) = legal(h) ∧A 6= B

Using Legality to Model Network Properties
If the network delivers messages in a FIFO fashion, one could capture this by strengthening the legality-

concept suitably, requiring
sendevents(h/ ↓) ≤ h/↑

where the projections h/ ↑ and h/ ↓ denote the subsequence of messages sent and received, respectively, and
sendevents converts receive events to the corresponding send events.

sendevents(ε) = ε
sendevents(h; (A↑B : m)) = sendevents(h)
sendevents(h; (A↓B : m)) = sendevents(h); (A↑B : m)

Channel-oriented systems can be mimicked by requiring FIFO ordering of communication for each pair of
agents:

sendevents(h/A ↓ B) ≤ h/A↑B
where A ↓ B denotes the set of receive-events with A as source and B as destination, and similarly for A↑B.
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11 Asynchronous Communication II
14.11.2014

Overview: Last time

• semantics: histories and trace sets

• specification: invariants over histories

– global invariants
– local invariants
– the connection between local and global histories

• example: Coin machine

– the main program
– formulating local invariants

Overview: Today

• Analysis of send/await statements

• Verifying local history invariants

• example: Coin Machine

– proving loop invariants
– the local invariant and a global invariant

• example: Mini bank

Agent/network systems (Repetition)
We consider general agent/network systems:

• Concurrent agents:

– with self identity
– no variables shared between agents
– communication by message passing

• Network:

– no channels
– no FIFO guarantee
– no guarantee of successful transmission

Local reasoning by Hoare logic (a.k.a program logic)
We adapt Hoare logic to reason about local histories in an agent A:

• Introducing a local (logical) variable h, initialized to empty ε

– h represents the local history of A

• For send/await-statement: define the effect on h.

– extending the h with the corresponding event

• Local reasoning : we do not know the global invariant

– For await: unknown parameter values
– For open receive: unknown sender

⇒ use non-deterministic assignment
x := some (13)

where variable x may be given any (type correct) value
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Local invariant reasoning by Hoare Logic

• each send statement send B : m in A is treated as:

h := (h;A↑B : m) (14)

• each fixed receive statement await B : m(~x) in A60 is treated as

~x := some ;h := (h;B ↓A : m(~x)) (15)

the usage of ~x := some expresses that A may receive any values for the receive parameters

• each open receive statement await X ?m(~x) in A is treated as

X := some ;await X : m(~x) (16)

where the usage of X := some expresses that A may receive the message from any agent

Rule for non-deterministic assignments

Non-det assignment
ND-Assign

{ ∀x . Q } x := some { Q }

• as said: await/send have been expressed by manipulating h, using non-det assignments

⇒ rules for await/send statements

Derived Hoare rules for send and receive

Send
{ Qh←h;A↑B:m } send B : m { Q }

Receive1

{ ∀~x . Qh←h;B↓A:m(~x) } await B : m(~x) { Q }

Receive2

{ ∀~x,X . Qh←h;X↓A:m(~x) } await X ?m(~x) { Q }

• As before: A is current agent/object, h the local history

• We assume that neither B nor X occur in ~x, and that ~x is a list of distinct variables.

• No shared variables. ⇒ no interference, and Hoare reasoning can be done as usual in the sequential
setting!

• Simplified version, if no parameters in await:

Receive
{ Qh←h;(B↓A:m) } await B : m { Q }

Hoare rules for local reasoning
The Hoare rule for non-deterministic choice ([ ]) is

Rule for [ ]

{ P1 } S1 { Q } { P2 } S2 { Q }
Nondet

{ P1 ∧ P2 } (S1[ ]S2) { Q }

Remark: We may reason similarly backwards over conditionals:61

{ P1 } S1 { Q } { P2 } S2 { Q }
If′

{ (b⇒ P1) ∧ (¬b⇒ P2) } if b then S1 else S2 fi { Q }

60where ~x is a sequence of variables
61We used actually a different formulation for the rule for conditionals. Both formulations are equivalent in the sense that

(together with the other rules, in particular Consequence, one can prove the same properties.
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Coin machine: local events
Invariants may refer to the local history h, which is the sequence of events visible to C that have occurred

so far. The events visible to C are:
U ↓C : five −− C consumes the message “five”
U ↓C : one −− C consumes the message “one”
C ↑U : ten −− C sends the message “ten”

Inner loop
let Ii (“inner invariant”) abbreviate equation (8)

1 { Ii }
2 while b < 10 { b ≤ 10 ∧ Ii }
3 { (Ii b←(b+5)) h←h;U↓C:five

∧ (Ii b←(b+1)) h←h;U↓C:one
}

4 do
5 ( await U: f i v e ; { Ii5←b+1 }
6 b:=b+5 )
7 [ ]
8 (await U: one ; b:=b+1)
9 { Ii }

10 od ;
11 { Ii ∧ b ≥ 10 }
12 { (Iob←b−10)h←h;C↑U:ten }
13 send U: ten ;

Must prove the implication:

b < 10 ∧ Ii ⇒ (Ii b←(b+5)) h←h;U↓C:five
∧ (Ii b←(b+1)) h←h;U↓C:one

note: From precondition Ii for the loop, we have Ii ∧ b ≥ 10 as the postcondition to the inner loop.

Outer loop
1 { Io }
2 loop
3 { Io }
4 { Ii }
5 while b < 10 { b ≤ 10 ∧ Ii }
6 { (Ii b←(b+5)) h←h;U↓C:five

∧ (Ii b←(b+1)) h←h;U↓C:one
}

7 do
8 ( await U: f i v e ; { Ii5←b+1 }
9 b:=b+5 )

10 [ ]
11 (await U: one ; b:=b+1)
12 { Ii }
13 od ;
14 { Ii ∧ b ≥ 10 }
15 { (Iob←b−10)h←h;C↑U:ten }
16 send U: ten ;
17 { Iob←b−10 }
18 b:=b−10
19 { Io }
20 end

Verification conditions (as usual):

• Io ⇒ Ii, and

• Ii ∧ b ≥ 10⇒ (Io b←(b−10)) h←h;C↑U :ten

• Io holds initially since h = ε ∧ b = 0⇒ Io

Local history invariant
For each agent (A):

• Predicate IA(h) over the local communication history (h)

• Describes interactions between A and the surrounding agents

• Must be maintained by all history extensions in A

• Last week: Local history invariants for the different agents may be composed, giving a global invariant

Verification idea: “induction”:

Init: Ensure that IA(h) holds initially (i.e., with h = ε)

Preservation: Ensure that IA(h) holds after each send/await-statement, assuming that IA(h) holds before
each such statement
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Local history invariant reasoning

• to prove properties of the code in agent A

• for instance: loop invariants etc

• the conditions may refer to the local state ~x (a list of variables) and the local history h, e.g., Q(~x, h).

The local history invariant IA(h):

• must hold immediately after each send/receive

⇒ if reasoning gives the condition Q(v, h) immediately after a send or receive statement, we basically need
to ensure:

Q(~x, h)⇒ IA(h) (17)

• we may assume that the invariant is satisfied immediately before each send/receive point.

• we may also assume that the last event of h is the send/receive event.

Proving the local history invariant

• IA(_): local history invariant of A

• first conjunct h = ...: specifies last communication step

• IA(h
′): assumption that invariant holds before the comm.-statement

• 3 communcation/sync. statements: send B : m(e), await Bm(~x), and await X ?m(~x) ⇒

3 kinds of verification conditions
( h = (h′;A↑B : m(e)) ∧ IA(h′) ∧Q(~x, h) )⇒ IA(h) (18)
( h = (h′;B ↓A : m(~y)) ∧ IA(h′) ∧Q(~x, h) )⇒ IA(h) (19)
( h = (h′;X ↓A : m(~y)) ∧ IA(h′) ∧Q(~x, h) )⇒ IA(h) (20)

in all three cases: Q is the condition right after the send-, resp. the await-statement

Coin machine example: local history invariant
For the coin machine C, consider the local history invariant IC(h) from last week (see equation (10)):

IC(h) = 0 ≤ sum(h/↓)− sum(h/↑) < 15

Consider the statement send U : ten in C

• Hoare analysis of the outer loop gave the condition Io b←(b−10) immediately after the statement

• history ends with the event C ↑U : ten

⇒ Verification condition, corresponding to equation (18):

h = h′; (C ↑U : ten) ∧ IC(h′) ∧ Io b←(b−10) ⇒ IC(h) (21)

Coin machine example: local history invariant
Expanding Ic and Io in the VC from equation (21), and using definition of sum and using (sum(h′/ ↓

)− sum(h′/↑) = b in the last step

h = h′; (C ↑U : ten) ∧
IC(h

′) ∧
Io b←(b−10)
⇒ IC(h)

h = h′; (C ↑U : ten) ∧
(0 ≤ sum(h′/↓)− sum(h′/↑) < 15) ∧
(sum(h/↓) = sum(h/↑) + b− 10 ∧ 0 ≤ b− 10 < 5)
⇒ 0 ≤ sum(h/↓)− sum(h/↑) < 15

h = h′; (C ↑U : ten) ∧
(0 ≤ sum(h′/↓)− sum(h′/↑) < 15) ∧
(sum(h′/↓) = sum(h′/↑) + 10 + b− 10 ∧ 0 ≤ b− 10 < 5)
⇒ 0 ≤ sum(h′/↓)− sum(h′/↑)− 10 < 15

(0 ≤ b < 15) ∧ 0 ≤ b− 10 < 5)
⇒ 0 ≤ b− 10 < 15
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Coin Machine Example: Summary
Correctness proofs (bottom-up):

• code

• loop invariants (Hoare analysis)

• local history invariant

• verification of local history invariant based on the Hoare analysis

Note: The [ ]-construct was useful (basically necessary) for programming service-oriented systems, and had
a simple proof rule.

Example: “Mini bank” (ATM): Informal specification
Client cycle: The client C is making these messages

• put in card, give pin, give amount to withdraw, take cash, take card

Mini Bank cycle: The mini bank M is making these messages

to client: ask for pin, ask for withdrawal, give cash, return card

to central bank: request of withdrawal

Central Bank cycle: The central bank B is making these messages

to mini bank: grant a request for payment, or deny it

There may be many mini banks talking to the same central bank, and there may be many clients using each
mini bank (but the mini bank must handle one client at a time).

Mini bank example: Global histories
Consider a client C, mini bank M and central bank B: Example of successful cycle:
[ C lM : card_in(n),M lC : pin, C lM : pin(x), M lC : amount, C lM : amount(y),M lB : request(n, x, y), B lM : grant,
M lC : cash(y),M lC : card_out ]
where n is name, x pin code, and y cash amount, provided by clients. Example of unsuccessful cycle: [ C lM : card_in(n),M lC : pin, C lM : pin(x),
M lC : amount, C lM : amount(y),M lB : request(n, x, y), B lM : deny, M lC : card_out ]
Notation: AlB : m denotes the sequence A↑B : m,A↓B : m

Mini bank example: Local histories (1)
From the global histories above, we may extract the corresponding local histories: The successful cycle:

• Client: [C ↑M : card_in(n),M ↓C : pin, C ↑M : pin(x), M ↓C : amount, C ↑M : amount(y),M ↓C : cash(y),M ↓C : card_out]

• Mini Bank: [C ↓M : card_in(n),M ↑C : pin, C ↓M : pin(x), M ↑C : amount, C ↓M : amount(y),M ↑B : request(n, x, y),
B ↓M : grant,M ↑C : cash(y),M ↑C : card_out]

• Central Bank: [M ↓B : request(n, x, y), B ↑M : grant]

The local histories may be used as guidelines when implementing the different agents.

Mini bank example: Local histories (2)

The unsuccessful cycle:

• Client: [C ↑M : card_in(n),M ↓C : pin, C ↑M : pin(x), M ↓C : amount, C ↑M : amount(y),M ↓C : card_out]

• Mini Bank: [C ↓M : card_in(n),M ↑C : pin, C ↓M : pin(x), M ↑C : amount, C ↓M : amount(y),M ↑B : request(n, x, y),
B ↓M : deny,M ↑C : card_out]

• Central Bank: [M ↓B : request(n, x, y), B ↑M : deny]

Note: many other executions possible, say when clients behaves differently, difficult to describe all at a global level
(remember the formula of week 1).

102



Mini bank example: implementation of Central Bank

Sketch of simple central bank. Program variables:

pin –- array of pin codes, indexed by client names
bal –- array of account balances, indexed by client names

X : Agent, n: Client_Name, x: Pin_Code, y: Natural

1 Loop
2 await X? reques t (n , x , y ) ;
3 i f pin [ n]=x and bal [ n]>y
4 then bal [ n ] := bal [ n]−y ;
5 send X: grant ;
6 else send X: deny
7 f i
8 end

Note: the mini bank X may vary with each iteration.

Mini bank example: Central Bank (B)
Consider the (extended) regular expression CycleB defined by:

[ X ↓B : request(n, x, y), [ B ↑X : grant + B ↑X : deny ] some X,n, x, y ]∗

• with + for choice, [...]∗ for repetition

• Defines cycles: request answered with either grant or deny

• notation [regExp some X,n, x, y]∗ means that the values of X, n, x, and y are fixed in each cycle, but
may vary from cycle to cycle.

Notation: Given an extended regular expression R. Let h is R denote that h matches the structure
described by R. Example (for events a, b, and c):

• we have (a; b; a; b) is [a, b]∗

• we have (a; c; a; b) is [a, [b|c]]∗

• we do not have (a; b; a) is [a, b]∗

Loop invariant of Central Bank (B): Let CycleB denote the regular expression:

[ X ↓B : request(n, x, y), [ B ↑X : grant + B ↑X : deny ] some X,n, x, y ]∗

Loop invariant: h is CycleB
Proof of loop invariant (entry condition): Must prove that it is satisfied initially: ε isCycleB , which

is trivial.

Proof of loop invariant (invariance):

loop {h isCycleB}
await X?request(n,x,y);
if pin[n]=x and bal[n]>y

then bal[n]:=bal[n]-y; send X:grant;
else send X:deny

fi
{h isCycleB}
end

Loop invariant of the central bank (B):

1 loop
2 { h is CycleB }
3 { ∀X,n, x, y . if pin[n] = x ∧ bal[n] > y then h′′1 is CycleB else h′′2 is CycleB }
4 await X? reques t (n , x , y ) ;
5 { if pin[n] = x ∧ bal[n] > y then h′1 is CycleB else h′2 is CycleB }
6 i f pin [ n]=x and bal [ n]>y
7
8 then bal [ n ] := bal [ n]−y ;
9 { (h;B ↑X : grant) is CycleB }

10 send X: grant ;
11 { (h;B ↑X : grant) is CycleB }
12 else
13 { (h;B ↑X : deny) is CycleB }
14 f i
15 { h is CycleB }
16 end
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h′′1 = h;X ↓B : request(n, x, y);B ↑X : grant
h′1 = h;B ↑X : grant

Analogously (with deny) for h′2 and h′′2

Hoare analysis of central bank loop (cont.)

Verification condition:
h isCycleB⇒∀X,n, x, y . if pin[n] = x ∧ bal[n] > y

then (h;X ↓B : request(n, x, y);B ↑X : grant) isCycleB
else (h;X ↓B : request(n, x, y);B ↑X : deny) isCycleB

where CycleB is

[ X ↓B : request(n, x, y), [ B ↑X : grant + B ↑X : deny ] some X,n, x, y ]∗

The condition follows by the general rule (regExp R and events a and b):

h is R∗ ∧ (a; b) is R⇒ (h; a; b) is R∗

since (X ↓B : request(n, x, y);B ↑X : grant) isCycleB and (X ↓B : request(n, x, y);B ↑X : deny) isCycleB

Local history invariant for the central bank (B)
CycleB is

[ X ↓B : request(n, x, y), [ B ↑X : grant + B ↑X : deny ] some X,n, x, y ]∗

Define the history invariant for B by:
h ≤ CycleB

Let h ≤ R denote that h is a prefix of the structure described by R.

• intuition: if h ≤ R we may find some extension h′ such that (h;h′) is R

• h is R⇒ h ≤ R (but not vice versa)

• (h; a) is R⇒ h ≤ R

• Example: (a; b; a) ≤ [a, b]∗

Central Bank: Verification of the local history invariant
h ≤ CycleB

• As before, we need to ensure that the history invariant is implied after each send/receive statement.

• Here it is enough to assume the conditions after each send/receive statement in the verification of the loop invariant

This gives 2 proof conditions:
1. after send grant/deny (i.e. after fi )

h isCycleB⇒h ≤ CycleB which is trivial.
2. after await request

if . . . then (h;B ↑X : grant) isCycleB else (h;B ↑X : deny) isCycleB
⇒h ≤ CycleB which follows from (h; a) isR⇒h ≤ R.

Note: We have now proved that the implementation of B satisfies the local history invariant, h ≤ CycleB .

Mini bank example: Local invariant of Client (C)
CycleC : [ C ↑X : card_in(n) + X ↓C : pin, C ↑X : pin(x) + X ↓C : amount, C ↑X : amount(y′) + X ↓C : cash(y)

+ X ↓C : card_out some X, y, y′ ]∗

History invariant:
hC ≤ CycleC

Note: The values of C, n and x are fixed from cycle to cycle.
Note: The client is willing to receive cash and cards, and give card, at any time, and will respond to pin, and

amount messages from a mini bank X in a sensible way, without knowing the protocol of the particular mini bank. This
is captured by + for different choices.
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Mini bank example: Local invariant for Mini bank (M)
CycleM : [ C ↓M : card_in(n),M ↑C : pin, C ↓M : pin(x), M ↑C : amount, C ↓M : amount(y), if y ≤ 0 then ε else
M ↑B : request(n, x, y), [B ↓M : deny + B ↓M : grant,M ↑C : cash(y) ] fi , M ↑C : card_out some C, n, x, y ]∗

History invariant:
hM ≤ CycleM

Note: communication with a fixed central bank. The client may vary with each cycle.

Mini bank example: obtaining a global invariant
Consider the parallel composition of C,B,M . Global invariant:
legal(H) ∧H/αC ≤ CycleC ∧H/αM ≤ CycleM ∧H/αB ≤ CycleB

Assuming no other agents, this invariant may almost be formulated by:
H≤ [C lM : card_in(n),M lC : pin, C lM : pin(x), M lC : amount, C lM : amount(y), if y ≤ 0 then M lC : card_out
else M lB : request(n, x, y), [B lM : deny,M lC : card_out + B lM : grant,M ↑C : cash(y), [M ↓C : cash(y) ||| M lC : card_out]] fi
some n, x, y ]∗

where ||| gives all possible interleavings. However, we have no guarantee that the cash and the card events are
received by C before another cycle starts. Any next client may actually take the cash of C.

For proper clients it works OK, but improper clients may cause the Mini Bank to misbehave. Need to incorporate
assumptions on the clients, or make an improved mini bank.

Improved mini bank based on a discussion of the global invariant
The analysis so far has discovered some weaknesses:
• The mini bank does not know when the client has taken his cash, and it may even start a new cycle with another client

before the cash of the previous cycle is removed. This may be undesired, and we may introduce a new event, say cash_taken
from C to M, representing the removal of cash by the client. (This will enable the mini bank to decide to take the cash back
within a given amount of time.)

• A similar discussion applies to the removal of the card, and one may introduce a new event, say card_taken from C to M,
so that the mini bank knows when a card has been removed. (This will enable the mini bank to decide to take the card back
within a given amount of time.)

• A client may send improper or unexpected events. These may be lying in the network unless the mini bank receives them,
and say, ignores them. For instance an old misplaced amount message may be received in (and interfere with) a later cycle.
An improved mini bank could react to such message by terminating the cycle, and in between cycles it could ignore all
messages (except card_in).

Summary
Concurrent agent systems, without network restrictions (need not be FIFO, message loss possible).

• Histories used for semantics, specification and reasoning

• correspondence between global and local histories, both ways

• parallel composition from local history invariants

• extension of Hoare logic with send/receive statements

• avoid interference, may reason as in the sequential setting

• Bank example, showing

– global histories may be used to exemplify the system, from which we obtain local histories, from
which we get useful coding help

– specification of local history invariants
– verification of local history invariants from Hoare logic + verification conditions (one for each send/re-

ceive statement)
– composition of local history invariants to a global invariant
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