
Intro

INF4140 - Models of concurrency
Intro, lecture 1

Høsten 2014

29. 08. 2014

2 / 578

Today’s agenda

Introduction
overview
motivation
simple examples and considerations

Start
a bit about

concurrent programming with critical sections and waiting.
Reada also [Andrews, 2000, chapter 1] for some background
interference
the await-language

ayou!, as course particpant

3 / 578

What this course is about

Fundamental issues related to cooperating parallel processes
How to think about developing parallel processes
Various language mechanisms, design patterns, and paradigms
Deeper understanding of parallel processes:

(informal and somewhat formal) analysis
properties

4 / 578

Parallel processes

Sequential program: one control flow thread
Parallel program: several control flow threads

Parallel processes need to exchange information.
We will study two different ways to organize communication
between processes:

Reading from and writing to shared variables (part I of the
course)
Communication with messages between processes (part II of
the course)

5 / 578

shared memory

thread0 thread1

6 / 578

Course overview – part I: Shared variables

atomic operations
interference
deadlock, livelock, liveness, fairness
parallel programs with locks, critical sections and (active)
waiting
semaphores and passive waiting
monitors
formal analysis (Hoare logic), invariants
Java: threads and synchronization

7 / 578

Course overview – part II: Communication

asynchronous and synchronous message passing
basic mechanisms: RPC (remote procedure call), rendezvous,
client/server setting, channels
Java’s mechanisms
analysis using histories
asynchronous systems

8 / 578

Part I: shared variables

Why shared (global) variables?

reflected in the HW in conventional architectures
there may be several CPUs inside one machine (or multi-core
nowadays).
natural interaction for tightly coupled systems
used in many important languages, e.g., Java’s multithreading
model.
even on a single processor: use many processes, in order to get
a natural partitioning
potentially greater efficiency and/or better latency if several
things happen/appear to happen “at the same time”.1

e.g.: several active windows at the same time
1Holds for concurrency in general, not just shared vars, of course.

9 / 578

Simple example

Global variables: x , y , and z . Consider the following program:

x := x + z ; y := y + z ;

Pre/post-condition
executing a program (resp. a program fragment) ⇒
state-change
the conditions describe the state of the global variables before
and after a program statement
These conditions are meant to give an understanding of the
program, and are not part of the executed code.

Can we use parallelism here (without changing the results)?
If operations can be performed independently of one another, then
concurrency may increase performance

10 / 578

Simple example

Global variables: x , y , and z . Consider the following program:

before
{ x is a and y is b } x := x + z ; y := y + z ;

Pre/post-condition
executing a program (resp. a program fragment) ⇒
state-change
the conditions describe the state of the global variables before
and after a program statement
These conditions are meant to give an understanding of the
program, and are not part of the executed code.

Can we use parallelism here (without changing the results)?
If operations can be performed independently of one another, then
concurrency may increase performance

11 / 578

Simple example

Global variables: x , y , and z . Consider the following program:

before after
{ x is a and y is b } x := x + z ; y := y + z ; { x is a + z and y is b + z }

Pre/post-condition
executing a program (resp. a program fragment) ⇒
state-change
the conditions describe the state of the global variables before
and after a program statement
These conditions are meant to give an understanding of the
program, and are not part of the executed code.

Can we use parallelism here (without changing the results)?
If operations can be performed independently of one another, then
concurrency may increase performance

12 / 578

Parallel operator ‖

Extend the language with a construction for parallel composition:

co S1 ‖ S2 ‖ . . . ‖ Sn oc

Execution of a parallel composition happens via the concurrent
execution of the component processes S1, . . . , Sn and terminates
normally if all component processes terminate normally.

Example

{ x is a, y is b } x := x + z ; y := y + z { x = a + z , y = b + z }

13 / 578

Parallel operator ‖

Extend the language with a construction for parallel composition:

co S1 ‖ S2 ‖ . . . ‖ Sn oc

Execution of a parallel composition happens via the concurrent
execution of the component processes S1, . . . , Sn and terminates
normally if all component processes terminate normally.

Example

{ x is a, y is b } co x := x+z ‖ y := y+z oc { x = a+z , y = b+z }

14 / 578

Interaction between processes

Processes can interact with each other in two different ways:
cooperation to obtain a result
competition for common resources

The organization of this interaction is what we will call
synchronization.

Synchronization
Synchronization (veeeery abstractly) = restricting the possible
interleavings of parallel processes (so as to avoid “bad” things to
happen and to achieve “positive” things)

increasing “atomicity” and mutual exclusion (Mutex): We
introduce critical sections of which cannot be executed
concurrently
Condition synchronization: A process must wait for a specific
condition to be satisfied before execution can continue.

15 / 578

Concurrent processes: Atomic operations

Definition (Atomic)

An operation is atomic if it cannot be subdivided into smaller
components.

Note
A statement with at most one atomic operation, in addition to
operations on local variables, can be considered atomic!
We can do as if atomic operations do not happen concurrently!

What is atomic depends on the language/setting: fine-grained
and coarse-grained atomicity.
e.g.: Reading and writing of a global variable is usually
atomic.2

For some (high-level) languages: assignments x := e atomic
operations, for others, not (reading of the variables in the
expression e, computation of the value e, followed by writing
to x .)

2That’s what we assume in this lecture. In practice, it may be the case that
not even that is atomic, for instance for “long integers” or similarly. Sometimes,
only reading one machine-level “word”/byte or similar is atomic. In this lecture,
as said, we don’t go into that level of details.

16 / 578

Atomic operations on global variables

fundamental for (shared var) concurrency
also: process communication may be represented by variables:
a communication channel corresponds to a variable of type
vector.
associated to global variables: a set of atomic operations
typically: read + write,
in HW, e.g. LOAD/STORE
channels as gobal data: send and receive
x-operations: atomic operations on a variable x

Mutual exclusion
Atomic operations on a variable cannot happen simultaneously.

17 / 578

Example

P1 P2
{ x = 0 } co x := x + 1 ‖ x := x − 1 oc { ? }

final state? (i.e., post-condition)
Assume:

each process is executed on its own processor
and/or: the processes run on a multi-tasking OS

and that x is part of a shared state space, i.e. a shared var
Arithmetic operations in the two processes can be executed
simultaneously, but read and write operations on x must be
performed sequentially/atomically.
order of these operations: dependent on relative processor
speed and/or scheduling
outcome of such programs: difficult to predict!
“race” on x or race condition
as for races in practice: it’s simple, avoid them at (almost) all
costs

18 / 578

Atomic read and write operations

P1 P2
{ x = 0 } co x := x + 1 ‖ x := x − 1 oc { ? }

Listing 1: Atomic steps for x := x + 1
1 r ead x ;
2 i n c ;
3 w r i t e x ;

4 atomic x-operations:
P1 reads (R1) value of x

P1 writes (W1) a value into x ,
P2 reads (R2) value of x , and
P2 writes (W2) a value into x .

19 / 578

Interleaving & possible execution sequences

“program order”:3

R1 must happen before W1 and
R2 before W2

inc and dec (“-1”) work process-local4

⇒ remember (e.g.) inc ; write x behaves “as if” atomic
(alternatively read x; inc)

operations can be sequenced in 6 ways (“interleaving”)

R1 R1 R1 R2 R2 R2
W1 R2 R2 R1 R1 W2
R2 W1 W2 W1 W2 R1
W2 W2 W1 W2 W1 W1
0 -1 1 -1 1 0

3A word aside: as natural as this seems: in a number of modern
architecture/modern languages & their compilers, this is not guaranteed! Cf.
Java’s memory model, or weak memory models in general.

4e.g.: in an arithmetic register, or a local variable (not mentioned in the
code).

20 / 578

Non-determinism

final states of the program (in x): {0, 1,−1}
Non-determinism: result can vary depending on factors outside
the program code

timing of the execution
scheduler

as (post)-condition:5 x =−1 ∨ x =0 ∨ x =1

5Of course, things like x ∈ {−1, 0, 1} or −1 ≤ x ≤ 1 are equally adequate
formulations of the postcondition.

21 / 578

Non-determinism

final states of the program (in x): {0, 1,−1}
Non-determinism: result can vary depending on factors outside
the program code

timing of the execution
scheduler

as (post)-condition:5 x =−1 ∨ x =0 ∨ x =1

{ } x := 0; co x := x + 1 ‖ x := x − 1 oc; { x =−1 ∨ x =0 ∨ x =1 }

5Of course, things like x ∈ {−1, 0, 1} or −1 ≤ x ≤ 1 are equally adequate
formulations of the postcondition.

22 / 578

State-space explosion

Assume 3 processes, each with the same number of atomic
operations
consider executions of P1 ‖ P2 ‖ P3

nr. of atomic op’s nr. of executions
2 90
3 1680
4 34 650
5 756 756

different executions can lead to different final states.
even for simple systems: impossible to consider every possible
execution

For n processes with m atomic statements each:

number of exec’s =
(n ∗m)!

m!n

23 / 578

The “at-most-once” property

Fine grained atomicity
only the very most basic operations (R/W) are atomic “by nature”

however: some non-atomic interactions appear to be atomic.
note: expressions do only read-access (6= statements)
critical reference (in an e): a variable changed by another
process
e without critical reference ⇒ evaluation of e as if atomic

Definition (At-most-once property)
x := e satisfies the “amo”-property if
1. e contains no crit. reference
2. e with at most one crit. reference & x not referenceda by

other proc’s
aor just read.

assigments with at-most-once property can be considered atomic
24 / 578

The “at-most-once” property

Fine grained atomicity
only the very most basic operations (R/W) are atomic “by nature”

however: some non-atomic interactions appear to be atomic.
note: expressions do only read-access (6= statements)
critical reference (in an e): a variable changed by another
process
e without critical reference ⇒ evaluation of e as if atomic

Definition (At-most-once property)
x := e satisfies the “amo”-property if
1. e contains no crit. reference
2. e with at most one crit. reference & x not referenceda by

other proc’s
aor just read.

assigments with at-most-once property can be considered atomic
25 / 578

At most once examples

In all examples: initially x = y = 0. And r , r ′ etc: local var’s
(registers)
co and oc around . . . ‖ . . . omitted

x := x + 1 ‖ y := x + 1
x := y + 1 ‖ y := x + 1 { (x , y) ∈ {(1, 1), (1, 2), (2, 1)} }
x := y + 1 ‖ x := y + 3 ‖ y := 1 {y =1 ∧ x = 1, 2, 3, 4}
r := y + 1 ‖ r ′ := y − 1 ‖ y := 5
r := x − x ‖ . . . {is r now 0?}
x := x ‖ . . . {same as skip?}
if y > 0 then y := y − 1 fi ‖ if y > 0 then y := y − 1 fi

26 / 578

The course’s first programming language: the
await-language

the usual sequential, imperative constructions such as
assignment, if-, for- and while-statements
cobegin-construction for parallel activity
processes
critical sections
await-statements for (active) waiting and conditional critical
sections

27 / 578

Syntax

We use the following syntax for non-parallel control-flow6

Declarations Assignments
int i = 3; x := e;
int a[1:n]; a[i] := e;
int a[n];7 a[n]++;
int a[1:n] = ([n] 1); sum +:= i;

Seq. composition statement; statement
Compound statement {statements}
Conditional if statement
While-loop while (condition) statement
For-loop for [i = 0 to n − 1]statement

6The book uses more C/Java kind of conventions, like = for assignment
and == for logical equality.

7corresponds to: int a[0:n-1]
28 / 578

Parallel statements

co S1 ‖ S2 ‖ . . . ‖ Sn oc

The statement(s) of each arm Si are executed in parallel with
thos of the other arms.
Termination: when all “arms” Si have terminated (“join”
synchronization)

29 / 578

Parallel processes

1 process f oo {
2 i n t sum := 0 ;
3 f o r [i=1 to 10]
4 sum +:= 1 ;
5 x := sum ;
6 }

Processes evaluated in arbitrary order.
Processes are declared (as methods/functions)
side remark: the convention “declaration = start process” is
not used in practice.8

8one typically separates declaration/definition from “activation” (with good
reasons). Note: even instantiation of a runnable interface in Java starts a
process. Initialization (filling in initial data into a process) is tricky business.

30 / 578

Example

process bar1 dir0o
for [i = 1 to n]
write(i); }

Starts one process.

The numbers are printed in
increasing order.

process bar2[i=1 to n] dir0o
write(i);
}

Starts n processes.

The numbers are printed in
arbitrary order because the
execution order of the processes
is non-deterministic.

31 / 578

Read- and write-variables

V : statement → variable set: set of global variables in a
statement (also for expressions)
W : statement → variable set set of global write–variables

V(x := e) = V(e) ∪ {x}
V(S1;S2) = V(S1) ∪ V(S2)

V(if b then S) = V(b) ∪ V(S)
V(while (b)S) = V(b) ∪ V(S)

W analogously, except the most important difference:

W(x := e) = {x}

note: expressions side-effect free

32 / 578

Disjoint processes

Parallel processes without common (=shared) global variables:
without interference

V(S1) ∩ V(S2) = ∅

read-only variables: no interference.
The following interference criterion is thus sufficient:

V(S1) ∩W(S2) =W(S1) ∩ V(S2) = ∅

cf. notion of race (or race condition)
remember also: critical references/amo-property
programming practice: final variables in Java

33 / 578

Semantic concepts

A state in a parallel program consists of the values of the
global variables at a given moment in the execution.
Each process executes independently of the others by
modifying global variables using atomic operations.
An execution of a parallel program can be modelled using a
history, i.e. a sequence of operations on global variables, or as
a sequence of states.
For non-trivial parallel programs: very many possible histories.
synchronization: conceptually used to limit the possible
histories/interleavings.

34 / 578

Properties

property = predicate over programs, resp. their histories
A (true) property of a program9 is a predicate which is true for
all possible histories of the program.
Two types:

safety property: program will not reach an undesirable state
liveness property: program will reach a desirable state.

partial correctness: If the program terminates, it is in a desired
final state (safety property).
termination: all histories are finite.10

total correctness: The program terminates and is partially
correct.

9the program “has” that property, the program satisfies the property . . .
10that’s also called strong termination. Remember: non-determinism.

35 / 578

Properties: Invariants

invariant (adj): constant, unchanging
cf. also “loop invariant”

Definition (Invariant)
an invariant = state property, which holds for holds for all
reachable states.

safety property
appropriate for also non-terminating systems (does not talk
about a final state)
global invariant talks about the state of many processes at
once, preferably the entire system
local invariant talks about the state of one process

proof principle: induction
one can show that an invariant is correct by

1. showing that it holds initially,

2. and that each atomic statement maintains it.

Note: we avoid looking at all possible executions!
36 / 578

How to check properties of programs?

Testing or debugging increases confidence in a program, but
gives no guarantee of correctness.
Operational reasoning considers all histories of a program.
Formal analysis: Method for reasoning about the properties of
a program without considering the histories one by one.

Dijkstra’s dictum:
A test can only show errors, but “never” prove correctness!

37 / 578

Critical sections

Mutual exclusion: combines sequences of operations in a critical
section which then behave like atomic operations.

When the non-interference requirement parallel processes does
not hold, we use synchronization to restrict the possible
histories.
Synchronization gives coarse-grained atomic operations.
The notation 〈S〉 means that S is performed atomically.11

Atomic operations:
Internal states are not visible to other processes.
Variables cannot be changed underway by other processes.
S : like executed in a transaction

Example The example from before can now be written as:

int x := 0; co 〈x := x + 1〉 ‖ 〈x := x − 1〉 oc{ x = 0 }
11In programming languages, one could find it as atomic{S} or similar.

38 / 578

Conditional critical sections

Await statement

〈await(b) S〉

boolean condition b: await condition
body S : executed atomically (conditionally on b)

Example

〈await(y > 0) y := y − 1〉

synchronization: decrement delayed until (if ever) y > 0 holds

39 / 578

2 special cases

unconditional critical section or “mutex”12

〈x := 1; y := y + 1〉

Condition synchronization:13

〈await(counter > 0) 〉

12Later, a special kind of semaphore (a binary one) is also called a “mutex”.
Terminology is a bit flexible sometimes.

13one may also see sometimes just await(b): however, eval. of b better be
atomic and under no circumstances must b have side-effects (never, ever.
Seriously).

40 / 578

Typical pattern

1 i n t coun t e r = 1 ;
2 < await (coun t e r > 0)
3 coun t e r := counte r −1; > // s t a r t CS
4 critical statements ;
5 coun t e r := coun t e r+1 // end CS

“critical statements” not enclosed in 〈angle brackets〉. Why?
invariant: 0 ≤ counter ≤ 1 (= counter acts as “binary lock”)
very bad style would be: touch counter inside “critical
statements” or elsewhere (e.g. access it not following the
“await-inc-CR-dec” pattern)
in practice: beware(!) of exceptions in the critical statements

41 / 578

Example: (rather silly version of) producer/consumer
synchronization

strong coupling
buf as shared variable (“one element buffer”)
synchronization

coordinating the “speed” of the two procs (rather strictly here)
to avoid, reading data which is not yet produced
(related:) avoid w/r conflict on shared memory

1

2 i n t buf , p := 0 ; c := 0 ;
3

4 p roce s s Producer { p roce s s Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 wh i l e (p < N) { wh i l e (c < N) {
7 < awa i t (p = c) ; > < awa i t (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

42 / 578

Example (continued)

a:

buf: p: c: n:

b:

An invariant holds in all states in all histories
(traces/executions) of the program (starting in its initial
state(s)).
Global invariant : c ≤ p ≤ c+1

Local invariant (Producer) : 0 ≤ p ≤ n

43 / 578

Locks & barriers

INF4140 - Models of concurrency
Locks & barriers, lecture 2

Høsten 2014

5. 9. 2014

45 / 578

Practical Stuff

Mandatory assignment 1 (“oblig”)
Deadline: Friday September 26 at 18.00
Possible to work in pairs
Online delivery (Devilry): https://devilry.ifi.uio.no

46 / 578

Introduction

Central to the course are general mechanisms and issues
related to parallel programs
Previous class: await language and a simple version of the
producer/consumer example

Today
Entry- and exit protocols to critical sections

Protect reading and writing to shared variables
Barriers

Iterative algorithms:
Processes must synchronize between each iteration
Coordination using flags

47 / 578

Introduction

Central to the course are general mechanisms and issues
related to parallel programs
Previous class: await language and a simple version of the
producer/consumer example

Today
Entry- and exit protocols to critical sections

Protect reading and writing to shared variables
Barriers

Iterative algorithms:
Processes must synchronize between each iteration
Coordination using flags

48 / 578

Remember: await-example: Producer/Consumer

1
2 i n t buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 whi le (p < N) { whi le (c < N) {
7 < await (p = c) ; > < await (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Invariants
An invariant holds in all states in all histories of the program.

global invariant:
local (in the producer):

49 / 578

Remember: await-example: Producer/Consumer

1
2 i n t buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 whi le (p < N) { whi le (c < N) {
7 < await (p = c) ; > < await (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Invariants
An invariant holds in all states in all histories of the program.

global invariant:
local (in the producer):

50 / 578

Remember: await-example: Producer/Consumer

1
2 i n t buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 whi le (p < N) { whi le (c < N) {
7 < await (p = c) ; > < await (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Invariants
An invariant holds in all states in all histories of the program.

global invariant:
local (in the producer):

51 / 578

Remember: await-example: Producer/Consumer

1
2 i n t buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 whi le (p < N) { whi le (c < N) {
7 < await (p = c) ; > < await (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Invariants
An invariant holds in all states in all histories of the program.

global invariant: c ≤ p ≤ c + 1
local (in the producer):

52 / 578

Remember: await-example: Producer/Consumer

1
2 i n t buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 whi le (p < N) { whi le (c < N) {
7 < await (p = c) ; > < await (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

Invariants
An invariant holds in all states in all histories of the program.

global invariant: c ≤ p ≤ c + 1
local (in the producer): 0 ≤ p ≤ N

53 / 578

Critical section

Fundamental for concurrency
Immensely intensively researched, many solutions
Critical section: part of a program that is/needs to be
“protected” against interference by other processes
Execution under mutual exclusion
Related to “atomicity”

Main question we are discussing today:
How can we implement critical sections / conditional critical
sections?

Various solutions and properties/guarantees
Using locks and low-level operations
SW-only solutions? HW or OS support?
Active waiting (later semaphores and passive waiting)

54 / 578

Critical section

Fundamental for concurrency
Immensely intensively researched, many solutions
Critical section: part of a program that is/needs to be
“protected” against interference by other processes
Execution under mutual exclusion
Related to “atomicity”

Main question we are discussing today:
How can we implement critical sections / conditional critical
sections?

Various solutions and properties/guarantees
Using locks and low-level operations
SW-only solutions? HW or OS support?
Active waiting (later semaphores and passive waiting)

55 / 578

Critical section

Fundamental for concurrency
Immensely intensively researched, many solutions
Critical section: part of a program that is/needs to be
“protected” against interference by other processes
Execution under mutual exclusion
Related to “atomicity”

Main question we are discussing today:
How can we implement critical sections / conditional critical
sections?

Various solutions and properties/guarantees
Using locks and low-level operations
SW-only solutions? HW or OS support?
Active waiting (later semaphores and passive waiting)

56 / 578

Access to Critical Section (CS)

Several processes compete for access to a shared resource
Only one process can have access at a time:
“mutual exclusion” (mutex)

Possible examples:
Execution of bank transactions
Access to a printer

A solution to the CS problem can be used to implement
await-statements

57 / 578

Access to Critical Section (CS)

Several processes compete for access to a shared resource
Only one process can have access at a time:
“mutual exclusion” (mutex)

Possible examples:
Execution of bank transactions
Access to a printer

A solution to the CS problem can be used to implement
await-statements

58 / 578

Access to Critical Section (CS)

Several processes compete for access to a shared resource
Only one process can have access at a time:
“mutual exclusion” (mutex)

Possible examples:
Execution of bank transactions
Access to a printer

A solution to the CS problem can be used to implement
await-statements

59 / 578

Critical section: First approach to a solution

Operations on shared variables happen inside the CS.
Access to the CS must then be protected to prevent interference.

1 process p [i=1 to n] {
2 whi le (t rue) {
3 CSentry # en t r y p r o t o c o l to CS
4 CS
5 CSex i t # e x i t p r o t o c o l from CS
6 non−CS
7 }
8 }

General pattern for CS

Assumption: A process which enters the CS will eventually
leave it.

⇒ Programming advice: be aware of exceptions inside CS!

60 / 578

Critical section: First approach to a solution

Operations on shared variables happen inside the CS.
Access to the CS must then be protected to prevent interference.

9 process p [i=1 to n] {
10 whi le (t rue) {
11 CSentry # en t r y p r o t o c o l to CS
12 CS
13 CSex i t # e x i t p r o t o c o l from CS
14 non−CS
15 }
16 }

General pattern for CS

Assumption: A process which enters the CS will eventually
leave it.

⇒ Programming advice: be aware of exceptions inside CS!

61 / 578

Critical section: First approach to a solution

Operations on shared variables happen inside the CS.
Access to the CS must then be protected to prevent interference.

17 process p [i=1 to n] {
18 whi le (t rue) {
19 CSentry # en t r y p r o t o c o l to CS
20 CS
21 CSex i t # e x i t p r o t o c o l from CS
22 non−CS
23 }
24 }

General pattern for CS

Assumption: A process which enters the CS will eventually
leave it.

⇒ Programming advice: be aware of exceptions inside CS!

62 / 578

Naive solution

1 i n t i n = 1 # p o s s i b l e v a l u e s i n {1, 2}
2
3
4 process p1 { process p2 {
5 whi le (t rue) { whi le (t rue) {
6 whi le (i n =2) { s k i p } ; whi le (i n =1) { s k i p } ;
7 CS ; CS ;
8 i n := 2 ; i n := 1
9 non−CS non−CS

10 }

entry protocol: active/busy waiting
exit protocol: atomic assignment

Good solution? A solution at all? What’s good, what’s less so?
More than 2 processes?
Different execution times?

63 / 578

Naive solution

1 i n t i n = 1 # p o s s i b l e v a l u e s i n {1, 2}
2
3
4 process p1 { process p2 {
5 whi le (t rue) { whi le (t rue) {
6 whi le (i n =2) { s k i p } ; whi le (i n =1) { s k i p } ;
7 CS ; CS ;
8 i n := 2 ; i n := 1
9 non−CS non−CS

10 }

entry protocol: active/busy waiting
exit protocol: atomic assignment

Good solution? A solution at all? What’s good, what’s less so?

More than 2 processes?
Different execution times?

64 / 578

Naive solution

1 i n t i n = 1 # p o s s i b l e v a l u e s i n {1, 2}
2
3
4 process p1 { process p2 {
5 whi le (t rue) { whi le (t rue) {
6 whi le (i n =2) { s k i p } ; whi le (i n =1) { s k i p } ;
7 CS ; CS ;
8 i n := 2 ; i n := 1
9 non−CS non−CS

10 }

entry protocol: active/busy waiting
exit protocol: atomic assignment

Good solution? A solution at all? What’s good, what’s less so?
More than 2 processes?
Different execution times?

65 / 578

Desired properties

1. Mutual exclusion (Mutex): At any time, at most one
process is inside CS.

2. Absence of deadlock: If all processes are trying to enter CS,
at least one will succeed.

3. Absence of unnecessary delay: If some processes are trying
to enter CS, while the other processes are in their non-critical
sections, at least one will succeed.

4. Eventual entry: A process attempting to enter CS will
eventually succeed.

NB: The three first are safety properties,14

The last a liveness property.
(SAFETY: no bad state, LIVENESS: something good will happen.)

14The question for points 2 and 3, whether it’s safety or liveness, is slightly
up-to discussion/standpoint!

66 / 578

Desired properties

1. Mutual exclusion (Mutex): At any time, at most one
process is inside CS.

2. Absence of deadlock: If all processes are trying to enter CS,
at least one will succeed.

3. Absence of unnecessary delay: If some processes are trying
to enter CS, while the other processes are in their non-critical
sections, at least one will succeed.

4. Eventual entry: A process attempting to enter CS will
eventually succeed.

NB: The three first are safety properties,14

The last a liveness property.
(SAFETY: no bad state, LIVENESS: something good will happen.)

14The question for points 2 and 3, whether it’s safety or liveness, is slightly
up-to discussion/standpoint!

67 / 578

Desired properties

1. Mutual exclusion (Mutex): At any time, at most one
process is inside CS.

2. Absence of deadlock: If all processes are trying to enter CS,
at least one will succeed.

3. Absence of unnecessary delay: If some processes are trying
to enter CS, while the other processes are in their non-critical
sections, at least one will succeed.

4. Eventual entry: A process attempting to enter CS will
eventually succeed.

NB: The three first are safety properties,14

The last a liveness property.
(SAFETY: no bad state, LIVENESS: something good will happen.)

14The question for points 2 and 3, whether it’s safety or liveness, is slightly
up-to discussion/standpoint!

68 / 578

Safety: Invariants (review)

A safety property expresses that a program does not reach a “bad”
state. In order to prove this, we can show that the program will
never leave a “good” state:

Show that the property holds in all initial states
Show that the program statements preserve the property

Such a (good) property is often called a global invariant.

69 / 578

Safety: Invariants (review)

A safety property expresses that a program does not reach a “bad”
state. In order to prove this, we can show that the program will
never leave a “good” state:

Show that the property holds in all initial states
Show that the program statements preserve the property

Such a (good) property is often called a global invariant.

70 / 578

Safety: Invariants (review)

A safety property expresses that a program does not reach a “bad”
state. In order to prove this, we can show that the program will
never leave a “good” state:

Show that the property holds in all initial states
Show that the program statements preserve the property

Such a (good) property is often called a global invariant.

71 / 578

Atomic sections

Used for synchronization of processes

General form:
〈await(B) S〉

B: Synchronization condition
Executed atomically when B is true

Unconditional critical section (B is true):

〈S〉 (1)

S executed atomically

Conditional synchronization:15

〈await(B)〉 (2)

15We also use then just await (B) or maybe await B. But also in this case we
assume that B is evaluated atomically.

72 / 578

Atomic sections

Used for synchronization of processes

General form:
〈await(B) S〉

B: Synchronization condition
Executed atomically when B is true

Unconditional critical section (B is true):

〈S〉 (1)

S executed atomically

Conditional synchronization:15

〈await(B)〉 (2)

15We also use then just await (B) or maybe await B. But also in this case we
assume that B is evaluated atomically.

73 / 578

Atomic sections

Used for synchronization of processes

General form:
〈await(B) S〉

B: Synchronization condition
Executed atomically when B is true

Unconditional critical section (B is true):

〈S〉 (1)

S executed atomically

Conditional synchronization:15

〈await(B)〉 (2)

15We also use then just await (B) or maybe await B. But also in this case we
assume that B is evaluated atomically.

74 / 578

Critical sections using locks

1 bool l o c k = f a l s e ;
2
3 process [i=1 to n] {
4 whi le (t rue) {
5 < await (¬ l o c k) l o c k := t rue >;
6 CS ;
7 l o c k := f a l s e ;
8 non CS ;
9 }

10 }

Safety properties:
Mutex
Absence of deadlock
Absence of unnecessary waiting

What about taking away the angle brackets <...>?

75 / 578

Critical sections using locks

1 bool l o c k = f a l s e ;
2
3 process [i=1 to n] {
4 whi le (t rue) {
5 < await (¬ l o c k) l o c k := t rue >;
6 CS ;
7 l o c k := f a l s e ;
8 non CS ;
9 }

10 }

Safety properties:
Mutex
Absence of deadlock
Absence of unnecessary waiting

What about taking away the angle brackets <...>?

76 / 578

Critical sections using locks

1 bool l o c k = f a l s e ;
2
3 process [i=1 to n] {
4 whi le (t rue) {
5 < await (¬ l o c k) l o c k := t rue >;
6 CS ;
7 l o c k := f a l s e ;
8 non CS ;
9 }

10 }

Safety properties:
Mutex
Absence of deadlock
Absence of unnecessary waiting

What about taking away the angle brackets <...>?

77 / 578

“Test & Set”

Test & Set is a method/pattern for implementing
conditional atomic action:

1 TS(l o c k) {
2 < bool i n i t i a l := l o c k ;
3 l o c k := t rue >;
4 re tu rn i n i t i a l
5 }

Effect of TS(lock)
side effect: The variable lock will always have value true
after TS(lock),
returned value: true or false , depending on the original
state of lock
exists as an atomic HW instruction on many machines.

78 / 578

“Test & Set”

Test & Set is a method/pattern for implementing
conditional atomic action:

1 TS(l o c k) {
2 < bool i n i t i a l := l o c k ;
3 l o c k := t rue >;
4 re tu rn i n i t i a l
5 }

Effect of TS(lock)
side effect: The variable lock will always have value true
after TS(lock),
returned value: true or false , depending on the original
state of lock
exists as an atomic HW instruction on many machines.

79 / 578

“Test & Set”

Test & Set is a method/pattern for implementing
conditional atomic action:

1 TS(l o c k) {
2 < bool i n i t i a l := l o c k ;
3 l o c k := t rue >;
4 re tu rn i n i t i a l
5 }

Effect of TS(lock)
side effect: The variable lock will always have value true
after TS(lock),
returned value: true or false , depending on the original
state of lock
exists as an atomic HW instruction on many machines.

80 / 578

Critical section with TS and spin-lock

Spin lock:

1 bool l o c k := f a l s e ;
2
3 process p [i=1 to n] {
4 whi le (t rue) {
5 whi le (TS(l o c k)) { s k i p } ; # en t r y p r o t o c o l
6 CS
7 l o c k := f a l s e ; # e x i t p r o t o c o l
8 non−CS
9 }

10 }

NB:
Safety: Mutex, absence of deadlock and of unnecessary delay.

Strong fairness needed to guarantee eventual entry for a process

Variable lock becomes a hotspot!

81 / 578

Critical section with TS and spin-lock

Spin lock:

1 bool l o c k := f a l s e ;
2
3 process p [i=1 to n] {
4 whi le (t rue) {
5 whi le (TS(l o c k)) { s k i p } ; # en t r y p r o t o c o l
6 CS
7 l o c k := f a l s e ; # e x i t p r o t o c o l
8 non−CS
9 }

10 }

NB:
Safety: Mutex, absence of deadlock and of unnecessary delay.

Strong fairness needed to guarantee eventual entry for a process

Variable lock becomes a hotspot!

82 / 578

Critical section with TS and spin-lock

Spin lock:

1 bool l o c k := f a l s e ;
2
3 process p [i=1 to n] {
4 whi le (t rue) {
5 whi le (TS(l o c k)) { s k i p } ; # en t r y p r o t o c o l
6 CS
7 l o c k := f a l s e ; # e x i t p r o t o c o l
8 non−CS
9 }

10 }

NB:
Safety: Mutex, absence of deadlock and of unnecessary delay.

Strong fairness needed to guarantee eventual entry for a process

Variable lock becomes a hotspot!

83 / 578

A puzzle: “paranoid” entry protocol

Better safe than sorry?
What about double-checking in the entry protocol whether it is
really, really safe to enter?

1 bool l o c k := f a l s e ;
2
3 process p [i = i to n] {
4 whi le (t rue) {
5 whi le (l o c k) { s k i p } ; # a d d i t i o n a l sp in−l o c k check
6 whi le (TS(l o c k)) { s k i p } ;
7
8 CS ;
9 l o c k := f a l s e ;

10 non−CS
11 }
12 }

Does that make sense?

84 / 578

A puzzle: “paranoid” entry protocol

Better safe than sorry?
What about double-checking in the entry protocol whether it is
really, really safe to enter?

1 bool l o c k := f a l s e ;
2
3 process p [i = i to n] {
4 whi le (t rue) {
5 whi le (l o c k) { s k i p } ; # a d d i t i o n a l s p i n l o c k check
6 whi le (TS(l o c k)) {
7 whi le (l o c k) { s k i p }} ; # + more i n s i d e the TAS loop
8 CS ;
9 l o c k := f a l s e ;

10 non−CS
11 }
12 }

Does that make sense?

85 / 578

Multiprocessor performance under load (contention)

time

number of threads

TTASLock

TASLock

ideal lock

86 / 578

A glance at HW for shared memory

shared memory

thread0 thread1

87 / 578

A glance at HW for shared memory

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

88 / 578

Test and test & set

Test-and-set operation:
(Powerful) HW instruction for synchronization
Accesses main memory (and involves “cache synchronization”)
Much slower than cache access

Spin-loops: faster than TAS loops

“Double-checked locking”: important design
pattern/programming idiom for efficient CS (under certain
architectures)16

16depends on the HW architecture/memory model. In some architectures:
does not guarantee mutex! in which case it’s an anti-pattern . . .

89 / 578

Implementing await-statements

Let CSentry and CSexit implement entry- and exit-protocols to the
critical section.

Then the statement < S;> can be implemented by

CSentry; S; CSexit;

Implementation of conditional critical section < await (B) S;> :

1 CSentry ;
2 whi le (!B) {CSexit ; CSentry } ;
3 S ;
4 CSexit ;

The implementation can be optimized with Delay between the exit
and entry in the body of the while statement.

90 / 578

Implementing await-statements

Let CSentry and CSexit implement entry- and exit-protocols to the
critical section.

Then the statement < S;> can be implemented by

CSentry; S; CSexit;

Implementation of conditional critical section < await (B) S;> :

1 CSentry ;
2 whi le (!B) {CSexit ; CSentry } ;
3 S ;
4 CSexit ;

The implementation can be optimized with Delay between the exit
and entry in the body of the while statement.

91 / 578

Implementing await-statements

Let CSentry and CSexit implement entry- and exit-protocols to the
critical section.

Then the statement < S;> can be implemented by

CSentry; S; CSexit;

Implementation of conditional critical section < await (B) S;> :

1 CSentry ;
2 whi le (!B) {CSexit ; CSentry } ;
3 S ;
4 CSexit ;

The implementation can be optimized with Delay between the exit
and entry in the body of the while statement.

92 / 578

Liveness properties

So far: no(!) solution for “Eventual Entry”-property, except the
very first (which did not satisfy “Absence of Unnecessary Delay”).

Liveness: Something good will happen
Typical example for sequential programs: (esp. in our context)
Program termination17

Typical example for parallel programs:
A given process will eventually enter the critical section

Note: For parallel processes, liveness is affected by the
scheduling strategies.

17In the first version of the slides of lecture 1, termination was defined
misleadingly.

93 / 578

Liveness properties

So far: no(!) solution for “Eventual Entry”-property, except the
very first (which did not satisfy “Absence of Unnecessary Delay”).

Liveness: Something good will happen
Typical example for sequential programs: (esp. in our context)
Program termination17

Typical example for parallel programs:
A given process will eventually enter the critical section

Note: For parallel processes, liveness is affected by the
scheduling strategies.

17In the first version of the slides of lecture 1, termination was defined
misleadingly.

94 / 578

Liveness properties

So far: no(!) solution for “Eventual Entry”-property, except the
very first (which did not satisfy “Absence of Unnecessary Delay”).

Liveness: Something good will happen
Typical example for sequential programs: (esp. in our context)
Program termination17

Typical example for parallel programs:
A given process will eventually enter the critical section

Note: For parallel processes, liveness is affected by the
scheduling strategies.

17In the first version of the slides of lecture 1, termination was defined
misleadingly.

95 / 578

Scheduling and fairness

A command is enabled in a state if
the statement can in principle be executed next
Concurrent programs: often more than 1 statement enabled!

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

Scheduling: resolving non-determinism
A strategy such that for all points in an execution: if there is more
than one statement enabled, pick one of them.

Fairness
Informally: enabled statements should not systematically be
neglected by the scheduling strategy.

96 / 578

Scheduling and fairness

A command is enabled in a state if
the statement can in principle be executed next
Concurrent programs: often more than 1 statement enabled!

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

Scheduling: resolving non-determinism
A strategy such that for all points in an execution: if there is more
than one statement enabled, pick one of them.

Fairness
Informally: enabled statements should not systematically be
neglected by the scheduling strategy.

97 / 578

Scheduling and fairness

A command is enabled in a state if
the statement can in principle be executed next
Concurrent programs: often more than 1 statement enabled!

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

Scheduling: resolving non-determinism
A strategy such that for all points in an execution: if there is more
than one statement enabled, pick one of them.

Fairness
Informally: enabled statements should not systematically be
neglected by the scheduling strategy.

98 / 578

Scheduling and fairness

A command is enabled in a state if
the statement can in principle be executed next
Concurrent programs: often more than 1 statement enabled!

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

Scheduling: resolving non-determinism
A strategy such that for all points in an execution: if there is more
than one statement enabled, pick one of them.

Fairness
Informally: enabled statements should not systematically be
neglected by the scheduling strategy.

99 / 578

Fairness notions

Fairness: how to pick among enabled actions without being
“passed over” indefinitely

Which actions in our language are potentially non-enabled? 18

Possible status changes:
disabled → enabled (of course),
but also enabled → disabled

Differently “powerful” forms of fairness: guarantee of progress
1. for actions that are always enabled
2. for those that stay enabled
3. for those whose enabledness show “on-off” behavior

18provided the control-flow/program pointer stands in front of them.
100 / 578

Fairness notions

Fairness: how to pick among enabled actions without being
“passed over” indefinitely

Which actions in our language are potentially non-enabled? 18

Possible status changes:
disabled → enabled (of course),
but also enabled → disabled

Differently “powerful” forms of fairness: guarantee of progress
1. for actions that are always enabled
2. for those that stay enabled
3. for those whose enabledness show “on-off” behavior

18provided the control-flow/program pointer stands in front of them.
101 / 578

Fairness notions

Fairness: how to pick among enabled actions without being
“passed over” indefinitely

Which actions in our language are potentially non-enabled? 18

Possible status changes:
disabled → enabled (of course),
but also enabled → disabled

Differently “powerful” forms of fairness: guarantee of progress
1. for actions that are always enabled
2. for those that stay enabled
3. for those whose enabledness show “on-off” behavior

18provided the control-flow/program pointer stands in front of them.
102 / 578

Fairness notions

Fairness: how to pick among enabled actions without being
“passed over” indefinitely

Which actions in our language are potentially non-enabled? 18

Possible status changes:
disabled → enabled (of course),
but also enabled → disabled

Differently “powerful” forms of fairness: guarantee of progress
1. for actions that are always enabled
2. for those that stay enabled
3. for those whose enabledness show “on-off” behavior

18provided the control-flow/program pointer stands in front of them.
103 / 578

Unconditional fairness

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen, will eventually be chosen.

Example:

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

x := false is unconditional
⇒ The action will eventually be chosen

This guarantees termination

Example: “Round robin” execution

Note: if-then-else, while (b) ; are not conditional atomic
statements!

104 / 578

Unconditional fairness

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen, will eventually be chosen.

Example:

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

x := false is unconditional
⇒ The action will eventually be chosen

This guarantees termination

Example: “Round robin” execution

Note: if-then-else, while (b) ; are not conditional atomic
statements!

105 / 578

Unconditional fairness

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen, will eventually be chosen.

Example:

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

x := false is unconditional
⇒ The action will eventually be chosen

This guarantees termination

Example: “Round robin” execution

Note: if-then-else, while (b) ; are not conditional atomic
statements!

106 / 578

Unconditional fairness

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen, will eventually be chosen.

Example:

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

x := false is unconditional
⇒ The action will eventually be chosen

This guarantees termination

Example: “Round robin” execution

Note: if-then-else, while (b) ; are not conditional atomic
statements!

107 / 578

Unconditional fairness

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen, will eventually be chosen.

Example:

1 bool x := t rue ;
2
3 co whi le (x){ s k i p } ; | | x := f a l s e co

x := false is unconditional
⇒ The action will eventually be chosen

This guarantees termination

Example: “Round robin” execution

Note: if-then-else, while (b) ; are not conditional atomic
statements!

108 / 578

Weak fairness

Weak fairness
A scheduling strategy is weakly fair if

it is unconditionally fair
every conditional atomic action will eventually be chosen,
assuming that the condition becomes true and thereafter
remains true until the action is executed.

Example:

1 bool x = true , i n t y = 0 ;
2
3 co whi le (x) y = y + 1 ; | | < await y ≥ 10 ; > x = f a l s e ; oc

When y ≥ 10 becomes true, this condition remains true
This ensures termination of the program
Example: Round robin execution

109 / 578

Weak fairness

Weak fairness
A scheduling strategy is weakly fair if

it is unconditionally fair
every conditional atomic action will eventually be chosen,
assuming that the condition becomes true and thereafter
remains true until the action is executed.

Example:

1 bool x = true , i n t y = 0 ;
2
3 co whi le (x) y = y + 1 ; | | < await y ≥ 10 ; > x = f a l s e ; oc

When y ≥ 10 becomes true, this condition remains true
This ensures termination of the program
Example: Round robin execution

110 / 578

Weak fairness

Weak fairness
A scheduling strategy is weakly fair if

it is unconditionally fair
every conditional atomic action will eventually be chosen,
assuming that the condition becomes true and thereafter
remains true until the action is executed.

Example:

1 bool x = true , i n t y = 0 ;
2
3 co whi le (x) y = y + 1 ; | | < await y ≥ 10 ; > x = f a l s e ; oc

When y ≥ 10 becomes true, this condition remains true
This ensures termination of the program
Example: Round robin execution

111 / 578

Strong fairness

Example

1 bool x := t rue ; y := f a l s e ;
2
3 co
4 whi le (x) {y := t rue ; y := f a l s e }
5 | |
6 < await (y) x := f a l s e >
7 oc

Definition (Strongly fair scheduling strategy)
unconditionally fair and
each conditional atomic action will eventually be chosen, if the
condition is true infinitely often.

For the example:
under strong fairness: y true ∞-often ⇒ termination
under weak fairness: non-termination possible

112 / 578

Strong fairness

Example

1 bool x := t rue ; y := f a l s e ;
2
3 co
4 whi le (x) {y := t rue ; y := f a l s e }
5 | |
6 < await (y) x := f a l s e >
7 oc

Definition (Strongly fair scheduling strategy)
unconditionally fair and
each conditional atomic action will eventually be chosen, if the
condition is true infinitely often.

For the example:
under strong fairness: y true ∞-often ⇒ termination
under weak fairness: non-termination possible

113 / 578

Strong fairness

Example

1 bool x := t rue ; y := f a l s e ;
2
3 co
4 whi le (x) {y := t rue ; y := f a l s e }
5 | |
6 < await (y) x := f a l s e >
7 oc

Definition (Strongly fair scheduling strategy)
unconditionally fair and
each conditional atomic action will eventually be chosen, if the
condition is true infinitely often.

For the example:
under strong fairness: y true ∞-often ⇒ termination
under weak fairness: non-termination possible

114 / 578

Fairness for critical sections using locks

The CS solutions shown need to assume strong fairness to
guarantee liveness, i.e., access for a given process (i):

Steady inflow of processes which want the lock
value of lock alternates
(infinitely often) between true and false
Weak fairness:
Process i can read lock only when the value is false
Strong fairness:
Guarantees that i eventually sees that lock is true

Difficult: to make a scheduling strategy that is both practical and
strongly fair.

We look at CS solutions where access is guaranteed for weakly fair
strategies

115 / 578

Fairness for critical sections using locks

The CS solutions shown need to assume strong fairness to
guarantee liveness, i.e., access for a given process (i):

Steady inflow of processes which want the lock
value of lock alternates
(infinitely often) between true and false
Weak fairness:
Process i can read lock only when the value is false
Strong fairness:
Guarantees that i eventually sees that lock is true

Difficult: to make a scheduling strategy that is both practical and
strongly fair.

We look at CS solutions where access is guaranteed for weakly fair
strategies

116 / 578

Fairness for critical sections using locks

The CS solutions shown need to assume strong fairness to
guarantee liveness, i.e., access for a given process (i):

Steady inflow of processes which want the lock
value of lock alternates
(infinitely often) between true and false
Weak fairness:
Process i can read lock only when the value is false
Strong fairness:
Guarantees that i eventually sees that lock is true

Difficult: to make a scheduling strategy that is both practical and
strongly fair.

We look at CS solutions where access is guaranteed for weakly fair
strategies

117 / 578

Fair solutions to the CS problem

Tie-Breaker Algorithm
Ticket Algorithm
The book also describes the bakery algorithm

118 / 578

Tie-Breaker algorithm

Requires no special machine instruction (like TS)

We will look at the solution for two processes

Each process has a private lock
Each process sets its lock in the entry protocol

The private lock is read, but is not changed by the other
process

119 / 578

Tie-Breaker algorithm

Requires no special machine instruction (like TS)

We will look at the solution for two processes

Each process has a private lock
Each process sets its lock in the entry protocol

The private lock is read, but is not changed by the other
process

120 / 578

Tie-Breaker algorithm

Requires no special machine instruction (like TS)

We will look at the solution for two processes

Each process has a private lock
Each process sets its lock in the entry protocol

The private lock is read, but is not changed by the other
process

121 / 578

Tie-Breaker algorithm

Requires no special machine instruction (like TS)

We will look at the solution for two processes

Each process has a private lock
Each process sets its lock in the entry protocol

The private lock is read, but is not changed by the other
process

122 / 578

Naive solution

1 i n t i n = 1 # p o s s i b l e v a l u e s i n {1, 2}
2
3
4 process p1 { process p2 {
5 whi le (t rue) { whi le (t rue) {
6 whi le (i n =2) { s k i p } ; whi le (i n =1) { s k i p } ;
7 CS ; CS ;
8 i n := 2 ; i n := 1
9 non−CS non−CS

10 }

entry protocol: active/busy waiting
exit protocol: atomic assignment

Good solution? A solution at all? What’s good, what’s less so?
More than 2 processes?
Different execution times?

123 / 578

Tie-Breaker algorithm: Attempt 1

1 i n 1 := f a l s e , i n 2 := f a l s e ;
2

3 p roce s s p1 { p roce s s p2 {
4 wh i l e (t r ue){ wh i l e (t r ue) {
5 wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
6 i n 1 := t r ue ; i n 2 := t r ue ;
7 CS CS ;
8 i n 1 := f a l s e ; i n 2 := f a l s e ;
9 non−CS non−CS

10 } }
11 } }

What is the global invariant here?

Problem: No mutex

124 / 578

Tie-Breaker algorithm: Attempt 1

1 i n 1 := f a l s e , i n 2 := f a l s e ;
2

3 p roce s s p1 { p roce s s p2 {
4 wh i l e (t r ue){ wh i l e (t r ue) {
5 wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
6 i n 1 := t r ue ; i n 2 := t r ue ;
7 CS CS ;
8 i n 1 := f a l s e ; i n 2 := f a l s e ;
9 non−CS non−CS

10 } }
11 } }

What is the global invariant here?

Problem: No mutex

125 / 578

Tie-Breaker algorithm: Attempt 1

1 i n 1 := f a l s e , i n 2 := f a l s e ;
2

3 p roce s s p1 { p roce s s p2 {
4 wh i l e (t r ue){ wh i l e (t r ue) {
5 wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
6 i n 1 := t r ue ; i n 2 := t r ue ;
7 CS CS ;
8 i n 1 := f a l s e ; i n 2 := f a l s e ;
9 non−CS non−CS

10 } }
11 } }

What is the global invariant here?

Problem: No mutex

126 / 578

Tie-Breaker algorithm: Attempt 2

1 i n 1 := f a l s e , i n 2 := f a l s e ;
2

3 p roce s s p1 { p roce s s p2 {
4 wh i l e (t r ue){ wh i l e (t r ue) {
5 wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
6 i n 1 := t r ue ; i n 2 := t r ue ;
7 CS CS ;
8 i n 1 := f a l s e ; i n 2 := f a l s e ;
9 non−CS non−CS

10 } }
11 } }

Problem seems to be the entry protocol
Reverse the order: first “set”, then “test”

127 / 578

Tie-Breaker algorithm: Attempt 2

1 i n 1 := f a l s e , i n 2 := f a l s e ;
2

3 p roce s s p1 { p roce s s p2 {
4 wh i l e (t r ue){ wh i l e (t r ue) {
5 i n 1 := t r ue ; i n 2 := t r ue ;
6 wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
7 CS CS ;
8 i n 1 := f a l s e ; i n 2 := f a l s e ;
9 non−CS non−CS

10 } }
11 } }

Problem seems to be the entry protocol
Reverse the order: first “set”, then “test”

128 / 578

Tie-Breaker algorithm: Attempt 2

1 i n 1 := f a l s e , i n 2 := f a l s e ;
2

3 p roce s s p1 { p roce s s p2 {
4 wh i l e (t r ue){ wh i l e (t r ue) {
5 i n 1 := t r ue ; i n 2 := t r ue ;
6 wh i l e (i n2) { s k i p } ; wh i l e (i n1) { s k i p } ;
7 CS CS ;
8 i n 1 := f a l s e ; i n 2 := f a l s e ;
9 non−CS non−CS

10 } }
11 } }

Deadlock19 :-(

19Technically, it’s more of a live-lock, since the processes still are doing
“something”, namely spinning endlessly in the empty while-loops, never leaving
the entry-protocol to do real work. The situation though is analogous to a
“deadlock” conceptually.

129 / 578

Tie-Breaker algorithm: Attempt 3 (with await)

Problem: both half flagged their wish to enter ⇒ deadlock
Avoid deadlock: “tie-break”
Be fair: Don’t always give priority to one specific process
Need to know which process last started the entry protocol.
Add new variable: last

in1 := false , in2 := false ; int last

1 process p1 {
2 whi le (t rue){
3 i n 1 := t rue ;
4 l a s t := 1 ;
5 < await ((not i n 2) or
6 l a s t = 2);>
7 CS
8 i n 1 := f a l s e ;
9 non−CS

10 }
11 }

1 process p2 {
2 whi le (t rue){
3 i n 2 := t rue ;
4 l a s t := 2 ;
5 < await ((not i n 1) or
6 l a s t = 1);>
7 CS
8 i n 2 := f a l s e ;
9 non−CS

10 }
11 }

130 / 578

Tie-Breaker algorithm: Attempt 3 (with await)

Problem: both half flagged their wish to enter ⇒ deadlock
Avoid deadlock: “tie-break”
Be fair: Don’t always give priority to one specific process
Need to know which process last started the entry protocol.
Add new variable: last

in1 := false , in2 := false ; int last

1 process p1 {
2 whi le (t rue){
3 i n 1 := t rue ;
4 l a s t := 1 ;
5 < await ((not i n 2) or
6 l a s t = 2);>
7 CS
8 i n 1 := f a l s e ;
9 non−CS

10 }
11 }

1 process p2 {
2 whi le (t rue){
3 i n 2 := t rue ;
4 l a s t := 2 ;
5 < await ((not i n 1) or
6 l a s t = 1);>
7 CS
8 i n 2 := f a l s e ;
9 non−CS

10 }
11 }

131 / 578

Tie-Breaker algorithm: Attempt 3 (with await)

Problem: both half flagged their wish to enter ⇒ deadlock
Avoid deadlock: “tie-break”
Be fair: Don’t always give priority to one specific process
Need to know which process last started the entry protocol.
Add new variable: last

in1 := false , in2 := false ; int last

1 process p1 {
2 whi le (t rue){
3 i n 1 := t rue ;
4 l a s t := 1 ;
5 < await ((not i n 2) or
6 l a s t = 2);>
7 CS
8 i n 1 := f a l s e ;
9 non−CS

10 }
11 }

1 process p2 {
2 whi le (t rue){
3 i n 2 := t rue ;
4 l a s t := 2 ;
5 < await ((not i n 1) or
6 l a s t = 1);>
7 CS
8 i n 2 := f a l s e ;
9 non−CS

10 }
11 }

132 / 578

Tie-Breaker algorithm: Attempt 3 (with await)

Problem: both half flagged their wish to enter ⇒ deadlock
Avoid deadlock: “tie-break”
Be fair: Don’t always give priority to one specific process
Need to know which process last started the entry protocol.
Add new variable: last

in1 := false , in2 := false ; int last

1 process p1 {
2 whi le (t rue){
3 i n 1 := t rue ;
4 l a s t := 1 ;
5 < await ((not i n 2) or
6 l a s t = 2);>
7 CS
8 i n 1 := f a l s e ;
9 non−CS

10 }
11 }

1 process p2 {
2 whi le (t rue){
3 i n 2 := t rue ;
4 l a s t := 2 ;
5 < await ((not i n 1) or
6 l a s t = 1);>
7 CS
8 i n 2 := f a l s e ;
9 non−CS

10 }
11 }

133 / 578

Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value
while a wait-condition evaluates to true, the wait condition will
remain true.

p1 sees that the wait-condition is true:
in2 = false

in2 can eventually become true,
but then p2 must also set last to 2
Then the wait-condition to p1 still holds

last = 2
Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

134 / 578

Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value
while a wait-condition evaluates to true, the wait condition will
remain true.

p1 sees that the wait-condition is true:
in2 = false

in2 can eventually become true,
but then p2 must also set last to 2
Then the wait-condition to p1 still holds

last = 2
Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

135 / 578

Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value
while a wait-condition evaluates to true, the wait condition will
remain true.

p1 sees that the wait-condition is true:
in2 = false

in2 can eventually become true,
but then p2 must also set last to 2
Then the wait-condition to p1 still holds

last = 2
Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

136 / 578

Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value
while a wait-condition evaluates to true, the wait condition will
remain true.

p1 sees that the wait-condition is true:
in2 = false

in2 can eventually become true,
but then p2 must also set last to 2
Then the wait-condition to p1 still holds

last = 2
Then last = 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

137 / 578

Tie-Breaker algorithm (4)

1 process p1 {
2 whi le (t rue){
3 i n 1 := t rue ;
4 l a s t := 1 ;
5 whi le (i n2 and l a s t = 2){ s k i p }
6 CS
7 i n 1 := f a l s e ;
8 non−CS
9 }

10 }

Generalizable to many processes (see book)

138 / 578

Tie-Breaker algorithm (4)

1 process p1 {
2 whi le (t rue){
3 i n 1 := t rue ;
4 l a s t := 1 ;
5 whi le (i n2 and l a s t = 2){ s k i p }
6 CS
7 i n 1 := f a l s e ;
8 non−CS
9 }

10 }

Generalizable to many processes (see book)

139 / 578

Ticket algorithm

Scalability: If the Tie-Breaker algorithm is scaled up to n processes,
we get a loop with n − 1 2-process Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution to the CS problem
for n processes.

Works like the “take a number” queue at the post office (with
one loop)
A customer (process) which comes in takes a number which is
higher than the number of all others who are waiting
The customer is served when a ticket window is available and
the customer has the lowest ticket number.

140 / 578

Ticket algorithm

Scalability: If the Tie-Breaker algorithm is scaled up to n processes,
we get a loop with n − 1 2-process Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution to the CS problem
for n processes.

Works like the “take a number” queue at the post office (with
one loop)
A customer (process) which comes in takes a number which is
higher than the number of all others who are waiting
The customer is served when a ticket window is available and
the customer has the lowest ticket number.

141 / 578

Ticket algorithm

Scalability: If the Tie-Breaker algorithm is scaled up to n processes,
we get a loop with n − 1 2-process Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution to the CS problem
for n processes.

Works like the “take a number” queue at the post office (with
one loop)
A customer (process) which comes in takes a number which is
higher than the number of all others who are waiting
The customer is served when a ticket window is available and
the customer has the lowest ticket number.

142 / 578

Ticket algorithm: Sketch (n processes)

1 i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;
2
3 process [i = 1 to n] {
4 whi le (t rue) {
5 < tu rn [i] := number ; number := number +1 >;
6 < await (tu rn [i] = next)>;
7 CS
8 <next = next + 1>;
9 non−CS

10 }
11 }

The first line in the loop must be performed atomically!
await-statement: can be implemented as while-loop
Some machines have an instruction fetch-and-add (FA):
FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

143 / 578

Ticket algorithm: Sketch (n processes)

1 i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;
2
3 process [i = 1 to n] {
4 whi le (t rue) {
5 < tu rn [i] := number ; number := number +1 >;
6 < await (tu rn [i] = next)>;
7 CS
8 <next = next + 1>;
9 non−CS

10 }
11 }

The first line in the loop must be performed atomically!
await-statement: can be implemented as while-loop
Some machines have an instruction fetch-and-add (FA):
FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

144 / 578

Ticket algorithm: Sketch (n processes)

1 i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;
2
3 process [i = 1 to n] {
4 whi le (t rue) {
5 < tu rn [i] := number ; number := number +1 >;
6 < await (tu rn [i] = next)>;
7 CS
8 <next = next + 1>;
9 non−CS

10 }
11 }

The first line in the loop must be performed atomically!
await-statement: can be implemented as while-loop
Some machines have an instruction fetch-and-add (FA):
FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

145 / 578

Ticket algorithm: Implementation

1 i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;
2
3 process [i = 1 to n] {
4 whi le (t rue) {
5 t u rn [i] := FA(number , 1) ;
6 whi le (tu rn [i] != next) { s k i p } ;
7 CS
8 next := next + 1 ;
9 non−CS

10 }
11 }

FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

Without this instruction, we use an extra CS:20

CSentry; turn [i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm
(see book).

20Why?
146 / 578

Ticket algorithm: Implementation

1 i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;
2
3 process [i = 1 to n] {
4 whi le (t rue) {
5 t u rn [i] := FA(number , 1) ;
6 whi le (tu rn [i] != next) { s k i p } ;
7 CS
8 next := next + 1 ;
9 non−CS

10 }
11 }

FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

Without this instruction, we use an extra CS:20

CSentry; turn [i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm
(see book).

20Why?
147 / 578

Ticket algorithm: Implementation

1 i n t number := 1 ; nex t := 1 ; tu rn [1 : n] := ([n] 0) ;
2
3 process [i = 1 to n] {
4 whi le (t rue) {
5 t u rn [i] := FA(number , 1) ;
6 whi le (tu rn [i] != next) { s k i p } ;
7 CS
8 next := next + 1 ;
9 non−CS

10 }
11 }

FA(var, incr):< int tmp := var; var := var + incr ; return tmp;>

Without this instruction, we use an extra CS:20

CSentry; turn [i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm
(see book).

20Why?
148 / 578

Ticket algorithm: Invariant

Invariants
What is the global invariant for the ticket algorithm?

0 < next≤number

What is the local invariant for process i :

turn [i] < number
if p[i] is in the CS then turn [i] == next.

for pairs of processes i 6= j :
if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

149 / 578

Ticket algorithm: Invariant

Invariants
What is the global invariant for the ticket algorithm?

0 < next≤number

What is the local invariant for process i :

turn [i] < number
if p[i] is in the CS then turn [i] == next.

for pairs of processes i 6= j :
if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

150 / 578

Ticket algorithm: Invariant

Invariants
What is the global invariant for the ticket algorithm?

0 < next≤number

What is the local invariant for process i :

turn [i] < number
if p[i] is in the CS then turn [i] == next.

for pairs of processes i 6= j :
if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

151 / 578

Ticket algorithm: Invariant

Invariants
What is the global invariant for the ticket algorithm?

0 < next≤number

What is the local invariant for process i :
turn [i] < number
if p[i] is in the CS then turn [i] == next.

for pairs of processes i 6= j :
if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

152 / 578

Ticket algorithm: Invariant

Invariants
What is the global invariant for the ticket algorithm?

0 < next≤number

What is the local invariant for process i :
turn [i] < number
if p[i] is in the CS then turn [i] == next.

for pairs of processes i 6= j :
if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

153 / 578

Ticket algorithm: Invariant

Invariants
What is the global invariant for the ticket algorithm?

0 < next≤number

What is the local invariant for process i :
turn [i] < number
if p[i] is in the CS then turn [i] == next.

for pairs of processes i 6= j :
if turn[i] > 0 then turn[j] 6= turn[i]

This holds initially, and is preserved by all atomic statements.

154 / 578

Barrier synchronization

Computation of disjoint parts in parallel (e.g. array elements).
Processes go into a loop where each iteration is dependent on
the results of the previous.

1 process Worker [i=1 to n] {
2 whi le (t rue) {
3 t a s k i ;
4 wait u n t i l a l l n t a s k s a r e done # b a r r i e r
5 }
6 }

All processes must reach the barrier (“join”)
before any can continue.

155 / 578

Barrier synchronization

Computation of disjoint parts in parallel (e.g. array elements).
Processes go into a loop where each iteration is dependent on
the results of the previous.

1 process Worker [i=1 to n] {
2 whi le (t rue) {
3 t a s k i ;
4 wait u n t i l a l l n t a s k s a r e done # b a r r i e r
5 }
6 }

All processes must reach the barrier (“join”)
before any can continue.

156 / 578

Barrier synchronization

Computation of disjoint parts in parallel (e.g. array elements).
Processes go into a loop where each iteration is dependent on
the results of the previous.

1 process Worker [i=1 to n] {
2 whi le (t rue) {
3 t a s k i ;
4 wait u n t i l a l l n t a s k s a r e done # b a r r i e r
5 }
6 }

All processes must reach the barrier (“join”)
before any can continue.

157 / 578

Shared counter

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter :

1 i n t count := 0 ;
2 process Worker [i=1 to n] {
3 whi le (t rue) {
4 t a s k i ;
5 < count := count+1>;
6 < await (count=n)>;
7 }
8 }

Can be implemented using the FA instruction.
Disadvantages:

count must be reset between each iteration.
Must be updated using atomic operations.
Inefficient: Many processes read and write count concurrently.

158 / 578

Shared counter

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter :

1 i n t count := 0 ;
2 process Worker [i=1 to n] {
3 whi le (t rue) {
4 t a s k i ;
5 < count := count+1>;
6 < await (count=n)>;
7 }
8 }

Can be implemented using the FA instruction.
Disadvantages:

count must be reset between each iteration.
Must be updated using atomic operations.
Inefficient: Many processes read and write count concurrently.

159 / 578

Shared counter

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter :

1 i n t count := 0 ;
2 process Worker [i=1 to n] {
3 whi le (t rue) {
4 t a s k i ;
5 < count := count+1>;
6 < await (count=n)>;
7 }
8 }

Can be implemented using the FA instruction.
Disadvantages:

count must be reset between each iteration.
Must be updated using atomic operations.
Inefficient: Many processes read and write count concurrently.

160 / 578

Shared counter

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter :

1 i n t count := 0 ;
2 process Worker [i=1 to n] {
3 whi le (t rue) {
4 t a s k i ;
5 < count := count+1>;
6 < await (count=n)>;
7 }
8 }

Can be implemented using the FA instruction.
Disadvantages:

count must be reset between each iteration.
Must be updated using atomic operations.
Inefficient: Many processes read and write count concurrently.

161 / 578

Coordination using flags

Goal: Avoid too many read- and write-operations on one variable!!

Divides shared counter into several local variables.

1 Worker [i] :
2 a r r i v e [i] = 1 ;
3 < await (cont inue [i] == 1);>
4
5 Coo rd i n a t o r :
6 f o r [i=1 to n] < await (a r r i v e [i]==1);>
7 f o r [i=1 to n] cont inue [i] = 1 ;

NB: In a loop, the flags must be cleared before the next iteration!

Flag synchronization principles:
1. The process waiting for a flag is the one to reset that flag
2. A flag will not be set before it is reset

162 / 578

Coordination using flags

Goal: Avoid too many read- and write-operations on one variable!!

Divides shared counter into several local variables.

1 Worker [i] :
2 a r r i v e [i] = 1 ;
3 < await (cont inue [i] == 1);>
4
5 Coo rd i n a t o r :
6 f o r [i=1 to n] < await (a r r i v e [i]==1);>
7 f o r [i=1 to n] cont inue [i] = 1 ;

NB: In a loop, the flags must be cleared before the next iteration!

Flag synchronization principles:
1. The process waiting for a flag is the one to reset that flag
2. A flag will not be set before it is reset

163 / 578

Coordination using flags

Goal: Avoid too many read- and write-operations on one variable!!

Divides shared counter into several local variables.

1 Worker [i] :
2 a r r i v e [i] = 1 ;
3 < await (cont inue [i] == 1);>
4
5 Coo rd i n a t o r :
6 f o r [i=1 to n] < await (a r r i v e [i]==1);>
7 f o r [i=1 to n] cont inue [i] = 1 ;

NB: In a loop, the flags must be cleared before the next iteration!

Flag synchronization principles:
1. The process waiting for a flag is the one to reset that flag
2. A flag will not be set before it is reset

164 / 578

Coordination using flags

Goal: Avoid too many read- and write-operations on one variable!!

Divides shared counter into several local variables.

1 Worker [i] :
2 a r r i v e [i] = 1 ;
3 < await (cont inue [i] == 1);>
4
5 Coo rd i n a t o r :
6 f o r [i=1 to n] < await (a r r i v e [i]==1);>
7 f o r [i=1 to n] cont inue [i] = 1 ;

NB: In a loop, the flags must be cleared before the next iteration!

Flag synchronization principles:
1. The process waiting for a flag is the one to reset that flag
2. A flag will not be set before it is reset

165 / 578

Coordination using flags

Goal: Avoid too many read- and write-operations on one variable!!

Divides shared counter into several local variables.

1 Worker [i] :
2 a r r i v e [i] = 1 ;
3 < await (cont inue [i] == 1);>
4
5 Coo rd i n a t o r :
6 f o r [i=1 to n] < await (a r r i v e [i]==1);>
7 f o r [i=1 to n] cont inue [i] = 1 ;

NB: In a loop, the flags must be cleared before the next iteration!

Flag synchronization principles:
1. The process waiting for a flag is the one to reset that flag
2. A flag will not be set before it is reset

166 / 578

Synchronization using flags

Both arrays continue and arrived are initialized to 0.

1 process Worker [i = 1 to n] {
2 whi le (t rue) {
3 code to implement task i ;
4 a r r i v e [i] := 1 ;
5 < await (cont inue [i] := 1>;
6 cont inue := 0 ;
7 }
8 }

1 process Coo rd i n a t o r {
2 whi le (t rue) {
3 f o r [i = 1 to n] {
4 <await (a r r i v e d [i] = 1)>;
5 a r r i v e d [i] := 0
6 } ;
7 f o r [i = 1 to n] {
8 cont inue [i] := 1
9 }

10 }
11 }

167 / 578

Synchronization using flags

Both arrays continue and arrived are initialized to 0.

1 process Worker [i = 1 to n] {
2 whi le (t rue) {
3 code to implement task i ;
4 a r r i v e [i] := 1 ;
5 < await (cont inue [i] := 1>;
6 cont inue := 0 ;
7 }
8 }

1 process Coo rd i n a t o r {
2 whi le (t rue) {
3 f o r [i = 1 to n] {
4 <await (a r r i v e d [i] = 1)>;
5 a r r i v e d [i] := 0
6 } ;
7 f o r [i = 1 to n] {
8 cont inue [i] := 1
9 }

10 }
11 }

168 / 578

Synchronization using flags

Both arrays continue and arrived are initialized to 0.

1 process Worker [i = 1 to n] {
2 whi le (t rue) {
3 code to implement task i ;
4 a r r i v e [i] := 1 ;
5 < await (cont inue [i] := 1>;
6 cont inue := 0 ;
7 }
8 }

1 process Coo rd i n a t o r {
2 whi le (t rue) {
3 f o r [i = 1 to n] {
4 <await (a r r i v e d [i] = 1)>;
5 a r r i v e d [i] := 0
6 } ;
7 f o r [i = 1 to n] {
8 cont inue [i] := 1
9 }

10 }
11 }

169 / 578

Combined barriers

The roles of the Worker and Coordinator processes can be
combined.
In a combining tree barrier the processes are organized in a
tree structure. The processes signal arrive upwards in the tree
and continue downwards in the tree.

170 / 578

Implementation of Critical Sections

bool lock = false;
Entry: <await (!lock) lock = true>

Critical section
Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:
Busy waiting protocols are often complicated
Inefficient if there are fever processors than processes

Should not waste time executing a skip loop!

No clear distinction between variables used for synchronization
and computation!

Desirable to have a special tools for synchronization protocols

Next week we will do better: semaphores !!

171 / 578

Implementation of Critical Sections

bool lock = false;
Entry: <await (!lock) lock = true>

Critical section
Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:
Busy waiting protocols are often complicated
Inefficient if there are fever processors than processes

Should not waste time executing a skip loop!

No clear distinction between variables used for synchronization
and computation!

Desirable to have a special tools for synchronization protocols

Next week we will do better: semaphores !!

172 / 578

Implementation of Critical Sections

bool lock = false;
Entry: <await (!lock) lock = true>

Critical section
Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:
Busy waiting protocols are often complicated
Inefficient if there are fever processors than processes

Should not waste time executing a skip loop!

No clear distinction between variables used for synchronization
and computation!

Desirable to have a special tools for synchronization protocols

Next week we will do better: semaphores !!

173 / 578

Implementation of Critical Sections

bool lock = false;
Entry: <await (!lock) lock = true>

Critical section
Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:
Busy waiting protocols are often complicated
Inefficient if there are fever processors than processes

Should not waste time executing a skip loop!

No clear distinction between variables used for synchronization
and computation!

Desirable to have a special tools for synchronization protocols

Next week we will do better: semaphores !!

174 / 578

Semaphores

INF4140 - Models of concurrency
Semaphores, lecture 3

Høsten 2014

12 September, 2014

176 / 578

Overview

Last lecture: Locks and Barriers (complex techniques)
No clear separation between variables for synchronization and
variables to compute results
Busy waiting

This lecture: Semaphores (synchronization tool)
Used easily for mutual exclusion and condition synchronization.
A way to implement signaling and (scheduling).
Can be implemented in many ways.

177 / 578

Outline

Semaphores: Syntax and semantics

Synchronization examples:
Mutual exclusion (Critical Section)
Barriers (signaling events)
Producers and consumers (split binary semaphores)
Bounded buffer: resource counting
Dining philosophers: mutual exclusion – deadlock
Readers and writers: (condition synchronization – passing the
baton

178 / 578

Semaphores

Introduced by Dijkstra in 1968
“inspired” by railroad traffic synchronization
railroad semaphore indicates whether the track ahead is clear
or occupied by another train

Clear Occupied

179 / 578

Properties

Semaphores in concurrent programs: work similarly
Used to implement

mutex and
condition synchronization

Included in most standard libraries for concurrent programming
also: system calls in e.g., Linux kernel, similar in Windows etc.

180 / 578

Concept

semaphore: special kind of shared program variable (with
built-in sync. power)
value of a semaphore: a non-negative integer
can only be manipulated by two atomic operations:21

P and V

P: (Passeren) Wait for signal - want to pass

effect: wait until the value is greater than zero, and decrease the
value by one

V: (Vrijgeven) Signal an event - release

effect: increase the value by one

nowadays, for libraries or sys-calls: other names are preferred
(up/down, wait/signal, . . .)
different “flavors” of semaphores (binary vs. counting)
a mutex: often (basically) a synonym for binary semaphore

21There are different stories about what Dijkstra actually wanted V and P to
stand for. 181 / 578

Syntax and semantics

declaration of semaphores:
sem s; default initial value is zero
sem s := 1;
sem s[4] := ([4] 1);

semantics22 (via “implementation”):

P-operation P(s)
〈await(s > 0) s := s − 1〉

V-operation V(s)
〈s := s + 1〉

Important: No direct access to the value of a semaphore.
E.g. a test like

if (s = 1) then else

is seriously not allowed!

22meaning
182 / 578

Kinds of semaphores

Kinds of semaphores
General semaphore: possible values — all non-negative

integers
Binary semaphore: possible values — 0 and 1

Fairness
as for await-statements.

In most languages: FIFO (“waiting queue”): processes delayed while
executing P-operations are awaken in the order they where delayed

183 / 578

Example: Mutual exclusion (critical section)

Mutex23 implemented by a binary semaphore

25 sem mutex := 1 ;
26 process CS [i = 1 to n] {
27 whi le (t rue) {
28 P(mutex) ;
29 criticalsection ;
30 V(mutex) ;
31 noncriticalsection ;
32 }

Note:
The semaphore is initially 1
Always P before V → (used as) binary semaphore

23As mentioned: “mutex” is also used to refer to a data-structure, basically
the same as binary semaphore itself.

184 / 578

Example: Barrier synchronization

Semaphores may be used for signaling events
sem arrive1 = 0, arrive2 = 0;
process Worker1 {

. . .
V(arrive1); reach the barrier
P(arrive2); wait for other processes

. . .
}
process Worker2 {

. . .
V(arrive2); reach the barrier
P(arrive1); wait for other processes

. . .
}

Note:

signalling semaphores: usually initialized to 0 and

signal with a V and then wait with a P

185 / 578

Split binary semaphores

split binary semaphore
A set of semaphores, whose sum ≤ 1

mutex by split binary semaphores

initialization: one of the semaphores =1, all others = 0
discipline: all processes call P on a semaphore, before calling V
on (another) semaphore

⇒ code between the P and the V
all semaphores = 0
code executed in mutex

186 / 578

Example: Producer/consumer with split binary semaphores

1 T buf ; # one e lement bu f f e r , some type T
2 sem empty := 1 ;
3 sem f u l l := 0 ;

1 process Producer {
2 whi le (t rue) {
3 P(empty) ;
4 bu f f := data ;
5 V(f u l l) ;
6 }
7 }

1 process Consumer {
2 whi le (t rue) {
3 P(f u l l) ;
4 bu f f := data ;
5 V(empty) ;
6 }
7 }

Note:
remember also P/C with await + exercise 1
empty and full are both binary semaphores, together they
form a split binary semaphore.
solution works with several producers/consumers

187 / 578

Increasing buffer capacity

previous example: strong coupling, the producer must wait for
the consumer to empty the buffer before it can produce a new
entry.
easy generalization: buffer of size n.
loose coupling/asynchronous communcation ⇒ “buffering”

ring-buffer, typically represented
by an array
+ two integers rear and front.

semaphores to keep track of the number of free/used slots

front rear

Data

188 / 578

Increasing buffer capacity

previous example: strong coupling, the producer must wait for
the consumer to empty the buffer before it can produce a new
entry.
easy generalization: buffer of size n.
loose coupling/asynchronous communcation ⇒ “buffering”

ring-buffer, typically represented
by an array
+ two integers rear and front.

semaphores to keep track of the number of free/used slots
⇒general semaphore

front rear

Data

189 / 578

Producer/consumer: increased buffer capacity

1 T buf [n] # ar ray , e l ement s o f type T
2 i n t f r o n t := 0 , r e a r := 0 ; # ‘ ‘ p o i n t e r s ’ ’
3 sem empty := n ,
4 sem f u l l = 0 ;

1 process Producer {
2 whi le (t rue) {
3 P(empty) ;
4 bu f f [r e a r] := data ;
5 r e a r := (r e a r + 1) % n ;
6 V(f u l l) ;
7 }
8 }

1 process Consumer {
2 whi le (t rue) {
3 P(f u l l) ;
4 r e s u l t := bu f f [f r o n t] ;
5 f r o n t := (f r o n t + 1) % n
6 V(empty) ;
7 }
8 }

190 / 578

Producer/consumer: increased buffer capacity

1 T buf [n] # ar ray , e l ement s o f type T
2 i n t f r o n t := 0 , r e a r := 0 ; # ‘ ‘ p o i n t e r s ’ ’
3 sem empty := n ,
4 sem f u l l = 0 ;

1 process Producer {
2 whi le (t rue) {
3 P(empty) ;
4 bu f f [r e a r] := data ;
5 r e a r := (r e a r + 1) % n ;
6 V(f u l l) ;
7 }
8 }

1 process Consumer {
2 whi le (t rue) {
3 P(f u l l) ;
4 r e s u l t := bu f f [f r o n t] ;
5 f r o n t := (f r o n t + 1) % n
6 V(empty) ;
7 }
8 }

several producers or consumers?

191 / 578

Increasing the number of processes

several producers and consumers.
New synchronization problems:

Avoid that two producers deposits to buf[rear] before rear
is updated
Avoid that two consumers fetches from buf[front] before
front is updated.

Solution: additionally 2 binary semaphores for protection
mutexDeposit to deny two producers to deposit to the buffer
at the same time.
mutexFetch to deny two consumers to fetch from the buffer
at the same time.

192 / 578

Example: Producer/consumer with several processes

1 T buf [n] # ar ray , elem ’ s o f type T
2 i n t f r o n t := 0 , r e a r := 0 ; # ‘ ‘ p o i n t e r s ’ ’
3 sem empty := n ,
4 sem f u l l = 0 ;
5 sem mutexDepos it , mutexFetch := 1 ; # p r o t e c t the data s t u c t .

1 process Producer {
2 whi le (t rue) {
3 P(empty) ;
4 P(mutexDepos i t) ;
5 bu f f [r e a r] := data ;
6 r e a r := (r e a r + 1) % n ;
7 V(mutexDepos i t) ;
8 V(f u l l) ;
9 }

10 }

1 process Consumer {
2 whi le (t rue) {
3 P(f u l l) ;
4 P(mutexFetch) ;
5 r e s u l t := bu f f [f r o n t] ;
6 f r o n t := (f r o n t + 1) % n
7 V(mutexFetch) ;
8 V(empty) ;
9 }

10 }

193 / 578

Problem: Dining philosophers introduction

24image from wikipedia.org
194 / 578

Problem: Dining philosophers introduction

famous sync. problem (Dijkstra)
Five philosophers sit around a circular table.
one fork placed between each pair of philosophers
philosophers alternates between thinking and eating
philosopher needs two forks to eat (and none for thinking)

24image from wikipedia.org
195 / 578

Dining philosophers: sketch

1 process Ph i l o s o ph e r [i = 0 to 4] {
2 whi le t rue {
3 t h i n k ;
4 a c q u i r e f o r k s ;
5 ea t ;
6 r e l e a s e f o r k s ;
7 }
8 }

now: program the actions acquire forks and release forks

196 / 578

Dining philosophers: 1st attempt

forks as semaphores
let the philosophers pick up the left
fork first

1 process Ph i l o s o ph e r [i = 0 to 4] {
2 whi le t rue {
3 t h i n k ;
4 a c q u i r e f o r k s ;
5 ea t ;
6 r e l e a s e f o r k s ;
7 }
8 }

P0

P1

P2

P3

P4

F0

F1

F2

F3

F4

197 / 578

Dining philosophers: 1st attempt

forks as semaphores
let the philosophers pick up the left
fork first

1 sem f o r k [5] := ([5] 1) ;
2 process Ph i l o s o ph e r [i = 0 to 4] {
3 whi le t rue {
4 t h i n k ;
5 P(f o r k [i] ;
6 P(f o r k [(i +1)%5]);
7 ea t ;
8 V(f o r k [i] ;
9 V(f o r k [(i +1)%5]);

10 }
11 }

P0

P1

P2

P3

P4

F0

F1

F2

F3

F4

ok solution?

198 / 578

Example: Dining philosophers 2nd attempt

breaking the symmetry
To avoid deadlock, let 1 philospher (say 4) grab the right fork first

1 process Ph i l o s o ph e r [i = 0 to 3] {
2 whi le t rue {
3 t h i n k ;
4 P(f o r k [i] ;
5 P(f o r k [(i +1)%5]);
6 ea t ;
7 V(f o r k [i] ;
8 V(f o r k [(i +1)%5]);
9 }

10 }

1 process Ph i l o s oph e r 4 {
2 whi le t rue {
3 t h i n k ;
4 P(f o r k [4] ;
5 P(f o r k [0]) ;
6 ea t ;
7 V(f o r k [4] ;
8 V(f o r k [0]) ;
9 }

10 }

199 / 578

Example: Dining philosophers 2nd attempt

breaking the symmetry
To avoid deadlock, let 1 philospher (say 4) grab the right fork first

1 process Ph i l o s o ph e r [i = 0 to 3] {
2 whi le t rue {
3 t h i n k ;
4 P(f o r k [i] ;
5 P(f o r k [(i +1)%5]);
6 ea t ;
7 V(f o r k [i] ;
8 V(f o r k [(i +1)%5]);
9 }

10 }

1 process Ph i l o s oph e r 4 {
2 whi le t rue {
3 t h i n k ;
4 P(f o r k [0]) ;
5 P(f o r k [4] ;
6 ea t ;
7 V(f o r k [4] ;
8 V(f o r k [0]) ;
9 }

10 }

200 / 578

Dining philosphers

important illustration of problems with concurrency:
deadlock
but also other aspects: liveness and fairness etc.

resource access
connection to mutex/critical sections

201 / 578

Example: Readers/Writers overview

Classical synchronization problem
Reader and writer processes, sharing access to a “database”

readers: read-only from the database
writers: update (and read from) the database

202 / 578

Example: Readers/Writers overview

Classical synchronization problem
Reader and writer processes, sharing access to a “database”

readers: read-only from the database
writers: update (and read from) the database

R/R access unproblematic, W/W or W/R: interference
writers need mutually exclusive access
When no writers have access, many readers may access the
database

203 / 578

Readers/Writers approaches

Dining philosophers: Pair of processes compete for access to
“forks”
Readers/writers: Different importantclasses of processes
competes for access to the database

Readers compete with writers
Writers compete both with readers and other writers

General synchronization problem:
readers: must wait until no writers are active in DB
writers: must wait until no readers or writers are active in DB

here: two different approaches
1. Mutex: easy to implement, but “unfair”
2. Condition synchronization:

Using a split binary semaphore
Easy to adapt to different scheduling strategies

204 / 578

Readers/writers with mutex (1)

sem rw := 1

1 process Reader [i=1 to M] {
2 whi le (t rue) {
3 . . .
4 P(rw) ;
5
6 read from DB
7
8 V(rw) ;
9 }

10 }

1 process Wr i t e r [i=1 to N] {
2 whi le (t rue) {
3 . . .
4 P(rw) ;
5
6 write to DB
7
8 V(rw) ;
9 }

10 }

205 / 578

Readers/writers with mutex (1)

sem rw := 1

1 process Reader [i=1 to M] {
2 whi le (t rue) {
3 . . .
4 P(rw) ;
5
6 read from DB
7
8 V(rw) ;
9 }

10 }

1 process Wr i t e r [i=1 to N] {
2 whi le (t rue) {
3 . . .
4 P(rw) ;
5
6 write to DB
7
8 V(rw) ;
9 }

10 }

safety ok
but: unnessessarily cautious
We want more than one reader simultaneously.

206 / 578

Readers/writers with mutex (2)

Initially:

1 i n t nr := 0 ; # nunber o f a c t i v e r e a d e r s
2 sem rw := 1 # lo c k f o r r e a d e r / w r i t e r mutex

1 process Reader [i=1 to M] {
2 whi le (t rue) {
3 . . .
4 < nr := nr + 1 ;
5 i f (n=1) P(rw) > ;
6
7 read from DB
8
9 < nr := nr − 1 ;

10 i f (n=0) V(rw) > ;
11 }
12
13 }

1 process Wr i t e r [i=1 to N] {
2 whi le (t rue) {
3 . . .
4
5 P(rw) ;
6
7 write to DB
8
9

10 V(rw) ;
11 }
12
13 }

207 / 578

Readers/writers with mutex (2)

Initially:

1 i n t nr := 0 ; # nunber o f a c t i v e r e a d e r s
2 sem rw := 1 # lo c k f o r r e a d e r / w r i t e r mutex

1 process Reader [i=1 to M] {
2 whi le (t rue) {
3 . . .
4 < nr := nr + 1 ;
5 i f (n=1) P(rw) > ;
6
7 read from DB
8
9 < nr := nr − 1 ;

10 i f (n=0) V(rw) > ;
11 }
12
13 }

1 process Wr i t e r [i=1 to N] {
2 whi le (t rue) {
3 . . .
4
5 P(rw) ;
6
7 write to DB
8
9

10 V(rw) ;
11 }
12
13 }

Semaphore inside await statement? Don’t try that at home.

208 / 578

Readers/writers with mutex (3)

1 i n t nr = 0 ; # number o f a c t i v e r e a d e r s
2 sem rw = 1 ; # lo ck f o r r e a d e r / w r i t e r e x c l u s i o n
3 sem mutexR = 1 ; # mutex f o r r e a d e r s
4
5 process Reader [i=1 to M] {
6 whi le (t rue) {
7 . . .
8 P(mutexR)
9 nr := nr + 1 ;

10 i f (nr=1) P(rw) ;
11 V(mutexR)
12
13 read from DB
14
15 P(mutexR)
16 nr := nr − 1 ;
17 i f (nr=0) V(rw) ;
18 V(mutexR)
19 }
20 }

209 / 578

Readers/writers with mutex (3)

1 i n t nr = 0 ; # number o f a c t i v e r e a d e r s
2 sem rw = 1 ; # lo ck f o r r e a d e r / w r i t e r e x c l u s i o n
3 sem mutexR = 1 ; # mutex f o r r e a d e r s
4
5 process Reader [i=1 to M] {
6 whi le (t rue) {
7 . . .
8 P(mutexR)
9 nr := nr + 1 ;

10 i f (nr=1) P(rw) ;
11 V(mutexR)
12
13 read from DB
14
15 P(mutexR)
16 nr := nr − 1 ;
17 i f (nr=0) V(rw) ;
18 V(mutexR)
19 }
20 }

“Fairness”
What happens if we have a constant stream of readers?

210 / 578

Readers/writers with mutex (3)

1 i n t nr = 0 ; # number o f a c t i v e r e a d e r s
2 sem rw = 1 ; # lo ck f o r r e a d e r / w r i t e r e x c l u s i o n
3 sem mutexR = 1 ; # mutex f o r r e a d e r s
4
5 process Reader [i=1 to M] {
6 whi le (t rue) {
7 . . .
8 P(mutexR)
9 nr := nr + 1 ;

10 i f (nr=1) P(rw) ;
11 V(mutexR)
12
13 read from DB
14
15 P(mutexR)
16 nr := nr − 1 ;
17 i f (nr=0) V(rw) ;
18 V(mutexR)
19 }
20 }

“Fairness”
“Reader’s preference”

211 / 578

Readers/writers with condition synchronization: overview

previous mutex solution solved two separate synchronization
problems

Readers and. writers for access to the database
Reader vs. reader for access to the counter

Now: a solution based on condition synchronization

212 / 578

Invariant

reasonable invarianta
a2nd point: technically, not an invariant.

1. When a writer access the DB, no one else can
2. When no writers access the DB, one or more readers may

introduce two counters:
nr: number of active readers
nw: number of active writers

The invariant may be:
RW: (nr = 0 or nw = 0) and nw ≤ 1

213 / 578

Code for “counting” readers and writers

Reader: Writer:
< nr := nr + 1; > < nw := nw + 1; >
read from DB write to DB
< nr := nr - 1; > < nw := nw - 1; >

maintain invariant ⇒ add sync-code
decrease counters: not dangerous
before increasing though:

before increasing nr: nw = 0
before increasing nw: nr = 0 and nw = 0

214 / 578

condition synchronization: without semaphores

Initially:

1 i n t nr := 0 ; # nunber o f a c t i v e r e a d e r s
2 i n t nw := 0 ; # number o f a c t i v e w r i t e r s
3 sem rw := 1 # lo c k f o r r e a d e r / w r i t e r mutex
4
5 ## I n v a r i a n t RW: (nr = 0 or nw = 0) and nw <= 1

1 process Reader [i=1 to M]{
2 whi le (t rue) {
3 . . .
4 < await (nw=0)
5 nr := nr+1>;
6 read from DB ;
7 < nr := nr − 1>
8 }
9 }

1 process Wr i t e r [i=1 to N]{
2 whi le (t rue) {
3 . . .
4 < await (nr = 0 and nw = 0)
5 nw := nw+1>;
6 write to DB ;
7 < nw := nw − 1>
8 }
9 }

215 / 578

condition synchr.: converting to split binary semaphores

implementation of await’s: possible via split binary semaphores
May be used to implement different synchronization problems
with different guards B1, B2...

General pattern

entrya semaphore e, initialized to 1

For each guard Bi :

associate 1 counter and
1 delay-semaphore

both initialized to 0

semaphore: delay the processes waiting for Bi

counter: count the number of processes waiting for Bi

aEntry to the administractive CS’s, not entry to data-base access

⇒ for readers/writers problem: 3 semaphores and 2 counters:
sem e = 1;
sem r = 0; int dr = 0; # condition reader: nw == 0
sem w = 0; int dw = 0; # condition writer: nr == 0 and nw == 0 216 / 578

Condition synchr.: converting to split binary semaphores (2)

e, r and w form a split binary semaphore.

All execution paths start with a P-operation and end with a
V-operation → Mutex

Signaling
We need a signal mechanism SIGNAL to pick which semaphore to
signal.

SIGNAL: make sure the invariant holds
Bi holds when a process enters CR because either:

the process checks itself,
or

217 / 578

Condition synchr.: converting to split binary semaphores (2)

e, r and w form a split binary semaphore.

All execution paths start with a P-operation and end with a
V-operation → Mutex

Signaling
We need a signal mechanism SIGNAL to pick which semaphore to
signal.

SIGNAL: make sure the invariant holds
Bi holds when a process enters CR because either:

the process checks itself,
or the process is only signaled if Bi holds

and another pitfall:

218 / 578

Condition synchr.: converting to split binary semaphores (2)

e, r and w form a split binary semaphore.

All execution paths start with a P-operation and end with a
V-operation → Mutex

Signaling
We need a signal mechanism SIGNAL to pick which semaphore to
signal.

SIGNAL: make sure the invariant holds
Bi holds when a process enters CR because either:

the process checks itself,
or the process is only signaled if Bi holds

and another pitfall: Avoid deadlock by checking the counters
before the delay semaphores are signaled.

r is not signalled (V(r)) unless there is a delayed reader
w is not signalled (V(w)) unless there is a delayed writer

219 / 578

Condition synchr.: Reader

1 i n t nr := 0 , nw = 0 ; # cond i t i o n v a r i a b l e s (as b e f o r e)
2 sem e := 1 ; # de l a y semaphore
3 i n t dr := 0 ; sem r := 0 ; # de l a y coun t e r + sem f o r r e a d e r
4 i n t dw := 0 ; sem w := 0 ; # de l a y coun t e r + sem f o r w r i t e r
5 # i n v a r i a n t RW: (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

1 process Reader [i=1 to M]{ # en t r y c o n d i t i o n : nw = 0
2 whi le (t rue) {
3 . . .
4 P(e) ;
5 i f (nw > 0) { dr := dr + 1 ; # < awa i t (nw=0)
6 V(e) ; # nr :=nr+1 >
7 P(r) } ;
8 nr := nr+1; SIGNAL ;
9

10 read from DB ;
11
12 P(e) ; nr := nr −1; SIGNAL ; # < nr :=nr−1 >
13 }
14 }

220 / 578

With condition synchronization: Writer

1 process Wr i t e r [i=1 to N]{ # en t r y c o n d i t i o n : nw = 0 and nr = 0
2 whi le (t rue) {
3 . . .
4 P(e) ; # < awa i t (nr=0 ∧ nw=0)
5 i f (nr > 0 or nw > 0) { # nw:=nw+1 >
6 dw := dw + 1 ;
7 V(e) ;
8 P(w) } ;
9 nw:=nw+1; SIGNAL ;

10
11 write to DB ;
12
13 P(e) ; nw:=nw −1; SIGNAL # < nw:=nw−1>
14 }
15 }

221 / 578

With condition synchronization: Signalling

SIGNAL

1 i f (nw = 0 and dr > 0) {
2 dr := dr −1; V(r) ; # awake r e a d e r
3 }
4 e l s e i f (nr = 0 and nw = 0 and dw > 0) {
5 dw := dw −1; V(w) ; # awake w r i t e r
6 }
7 e l s e
8 V(e) ; # r e l e a s e e n t r y l o c k

222 / 578

Monitors

INF4140 - Models of concurrency
Monitors, lecture 4

Høsten 2014

19. Sep 2014

224 / 578

Overview

Concurrent execution of different processes
Communication by shared variables

Processes may interfere
x := 0; co x := x + 1 || x := x + 2 oc

final value of x will be 1, 2, or 3

await language – atomic regions
x := 0; co <x := x + 1> || <x := x + 2> oc

final value of x will be 3

special tools for synchronization:
Last week: semaphores
Today: monitors

225 / 578

Outline

Semaphores: review

Monitors:
Main ideas

Syntax and semantics
Condition variables
Signaling disciplines for monitors

Synchronization problems:
Bounded buffer
Readers/writers
Interval timer
Shortest-job next scheduling
Sleeping barber

226 / 578

Semaphores

Used as “synchronization variables”

Declaration: sem s = 1;

Manipulation: Only two operations, P(s) and V (s)

Advantage: Separation of business and synchronization code

Disadvantage: Programming with semaphores can be tricky:

Forgotten P or V operations
Too many P or V operations
They are shared between processes

Global knowledge
May need to examine all processes to see how a semaphore
works

227 / 578

Monitors

Monitor
“Abstract data type + synchronization”

program modules with more structure than semaphores
monitor encapsulates data, which can only be observed and
modified by the monitor’s procedures.

contains variables that describe the state
variables can be changed only through the available procedures

implicit mutex: only a procedure may be active at a time.
A procedure: mutex access to the data in the monitor
2 procedures in the same monitor: never executed concurrently

Condition synchronization:25 is given by condition variables
At a lower level of abstraction: monitors can be implemented
using locks or semaphores

25block a process until a particular condition holds.
228 / 578

Usage

processs = active ⇔ Monitor: = passive/re-active
a procedure is active, if a statement in the procedure is
executed by some process

all shared variables: inside the monitor
processes communicate by calling monitor procedures
processes do not need to know all the implementation details

Only the visible effects of the called procedure are important

the implementation can be changed, if visible effect remains
the same
Monitors and processes can be developed relatively
independent ⇒ Easier to understand and develop parallel
programs

229 / 578

Syntax & semantics

1 monitor name {
2 mon . v a r i a b l e s # sha r ed g l o b a l v a r i a b l e s
3 i n i t i a l i z a t i o n
4 p r o c edu r e s
5 }

monitor: a form of abstract data type:
only the procedures’ names visible from outside the monitor:

call name.opname(arguments)

statements inside a monitor: no access to variables outside the
monitor
monitor variables: initialized before the monitor is used

monitor invariant: used to describe the monitor’s inner states
230 / 578

Condition variables

monitors contain special type of variables: cond (condition)
used for synchronizaton/to delay processes
each such variable is associated with a wait condition
“value” of a condition variable: queue of delayed processes
value: not directly accessible by programmer
Instead, manipulate it by special operations

cond cv; # declares a condition variable cv
empty(cv); # asks if the queue on cv is empty
wait(cv); # causes the process to wait in the queue to cv
signal(cv); # wakes up a process in the queue to cv
signal_all(cv); # wakes up all processes in the queue to cv

231 / 578

entry queue inside monitor

cv queue

call

call

mon. free

sw

wait
sw

sc

232 / 578

Implementation of semaphores

A monitor with P and V operations:

1 monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 whi le (s=0) { wait (pos) } ;
7 s := s − 1
8 }
9

10
11 procedure Vsem () {
12 s := s+1;
13 s i g n a l (pos) ;
14 }
15 }

233 / 578

Signaling disciplines

signal on a condition variable cv roughly has the following
effect:

empty queue: no effect
the process at the head of the queue to cv is woken up

wait and signal constitute a FIFO signaling strategy

When a process executes signal(cv), then it is inside the
monitor. If a waiting process is woken up, there would be two
active processes in the monitor.

2 disciplines to provide mutex:
Signal and Wait (SW): the signaller waits, and the signalled
process gets to execute immediately
Signal and Continue (SC): the signaller continues, and the
signalled process executes later

234 / 578

Signalling disciplines

Is this a FIFO semaphore assuming SW or SC?

1 monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 whi le (s=0) { wait (pos) } ;
7 s := s − 1
8 }
9

10
11 procedure Vsem () {
12 s := s+1;
13 s i g n a l (pos) ;
14 }
15 }

235 / 578

Signalling disciplines

FIFO semaphore for SW

1 monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 whi le (s=0) { wait (pos) } ;
7 s := s − 1
8 }
9

10
11 procedure Vsem () {
12 s := s+1;
13 s i g n a l (pos) ;
14 }
15 }

236 / 578

Signalling disciplines

FIFO semaphore for SW

1 monitor Semaphore { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 i f (s=0) { wait (pos) } ;
7 s := s − 1
8 }
9

10
11 procedure Vsem () {
12 s := s+1;
13 s i g n a l (pos) ;
14 }
15 }

237 / 578

FIFO semaphore

FIFO semaphore with SC: can be achieved by explicit transfer of
control inside the monitor (forward the condition).

1 monitor Semaphore_f i fo { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 ; # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 i f (s=0)
7 wait (pos) ;
8 e l s e
9 s := s − 1

10 }
11
12
13 procedure Vsem () {
14 i f empty (pos)
15 s := s + 1
16 e l s e
17 s i g n a l (pos) ;
18 }
19 }

238 / 578

Bounded buffer synchronization (1)

buffer of size n (“channel”, “pipe”)
producer: performs put operations on the buffer.
consumer: performs get operations on the buffer.
count: number of items in the buffer
two access operations (“methods”)

put operations must wait if buffer full
get operations must wait if buffer empty

assume SC discipline26

26It’s the commonly used one in practical languages/OS.
239 / 578

Bounded buffer synchronization (2)

When a process is woken up, it goes back to the
monitor’s entry queue

Competes with other processes for entry to the monitor
Arbitrary delay between awakening and start of execution

=⇒ re-test the wait condition, when execution starts
E.g.: put process wakes up when the buffer is not full

Other processes can perform put operations before the
awakened process starts up
Must therefore re-check that the buffer is not full

240 / 578

Bounded buffer synchronization monitors (3)

monitor Bounded_Buffer {
typeT buf[n]; int count := 0;
cond not_full, not_empty;

procedure put(typeT data){
while (count = n) wait(not_full);
Put element into buf
count := count + 1; signal(not_empty);

}

procedure get(typeT &result) {
while (count = 0) wait(not_empty);
Get element from buf
count := count - 1; signal(not_full);

}
}

241 / 578

Bounded buffer synchronization: client-sides

process Producer[i = 1 to M]{
while (true){

. . .
call Bounded_Buffer.put(data);

}
}
process Consumer[i = 1 to N]{

while (true){
. . .

call Bounded_Buffer.get(result);
}

}

242 / 578

Readers/writers problem

Reader and writer processes share a common resource
(“database”)
Reader’s transactions can read data from the DB
Write transactions can read and update data in the DB
Assume:

DB is initially consistent and that
Each transaction, seen in isolation, maintains consistency

To avoid interference between transactions, we require that
writers: exclusive access to the DB.
No writer: an arbitrary number of readers can access
simultaneously

243 / 578

Monitor solution to the reader/writer problem (2)

database cannot be encapsulated in a monitor, as the readers
will not get shared access
monitor instead used to give access to the processes
processes don’t enter the critical section (DB) until they have
passed the RW_Controller monitor

Monitor procedures:
request_read: requests read access
release_read: reader leaves DB
request_write: requests write access
release_write: writer leaves DB

244 / 578

Invariants and signalling

Assume that we have two counters as local variables in the monitor:
nr — number of readers
nw — number of writers

Invariant

We want RW to be a monitor invariant

chose carefully condition variables for “communication”
(waiting/signaling)

Let two condition variables oktoread og oktowrite regulate
waiting readers and waiting writers, respectively.

245 / 578

Invariants and signalling

Assume that we have two counters as local variables in the monitor:
nr — number of readers
nw — number of writers

Invariant
RW: (nr = 0 or nw = 0) and nw ≤ 1

We want RW to be a monitor invariant

chose carefully condition variables for “communication”
(waiting/signaling)

Let two condition variables oktoread og oktowrite regulate
waiting readers and waiting writers, respectively.

246 / 578

1 monitor RW_Control ler { # RW (nr = 0 or nw = 0) and nw ≤ 1
2 i n t nr :=0 , nw:=0
3 cond oktoread ; # s i g n a l l e d when nw = 0
4 cond oktowr i te ; # s ig ’ ed when nr = 0 and nw = 0
5
6 procedure r eques t_read () {
7 whi le (nw > 0) wait (oktoread) ;
8 nr := nr + 1 ;
9 }

10 procedure r e l e a s e_ r e ad () {
11 nr := nr − 1 ;
12 i f nr = 0 s i g n a l (oktowr i te) ;
13 }
14
15 procedure r e que s t_wr i t e () {
16 whi le (nr > 0 or nw > 0) wait (oktowr i te) ;
17 nw := nw + 1 ;
18 }
19
20 procedure r e l e a s e_w r i t e () {
21 nw := nw −1;
22 s i g n a l (oktowr i te) ; # wake up 1 w r i t e r
23 s i g n a l_a l l (oktoread) ; # wake up a l l r e a d e r s
24 }
25 }

247 / 578

Invariant

monitor invariant I : describe the monitor’s inner state
expresses relationship between monitor variables
maintained by execution of procedures:

must hold: after initialization
must hold: when a procedure terminates
must hold: when we suspend execution due to a call to wait

⇒ can assume that the invariant holds after wait and when a
procedure starts

Should be as strong as possible

248 / 578

Monitor solution to reader/writer problem (6)

RW: (nr = 0 or nw = 0) and nw ≤ 1

procedure request_read() {
May assume that the invariant holds here
while (nw > 0) {

the invariant holds here
wait(oktoread);
May assume that the invariant holds here

}
Here, we know that nw = 0...
nr := nr + 1;
...thus: invariant also holds after increasing nr

}

249 / 578

Time server

Monitor that enables sleeping for a given amount of time
Resource: a logical clock (tod)
Provides two operations:

delay(interval) the caller wishes to sleep for interval
time
tick increments the logical clock with one tick
Called by the hardware, preferably with high execution priority

Each process which calls delay computes its own time for
wakeup: wake_time := tod + interval;
Waits as long as tod < wake_time

Wait condition is dependent on local variables

Covering condition:
all processes are woken up when it is possible for some to
continue
Each process checks its condition and sleeps again if this does
not hold

250 / 578

Time server: covering condition

Invariant: CLOCK : tod ≥ 0 ∧ tod increases monotonically by 1

monitor Timer { int tod = 0; # Time Of Day
cond check; # signalled when tod is increased

procedure delay(int interval) {
int wake_time;
wake_time = tod + interval;
while (wake_time > tod) wait(check);

}

procedure tick() {
tod = tod + 1;
signal_all(check);

}
}

Not very effective if many processes will wait for a long time
Can give many false alarms

251 / 578

Prioritized waiting

Can also give additional argument to wait: wait(cv, rank)
Process waits in the queue to cv in ordered by the argument
rank.
At signal:
Process with lowest rank is awakened first

Call to minrank(cv) returns the value of rank to the first
process in the queue (with the lowest rank)

The queue is not modified (no process is awakened)

Allows more efficient implementation of Timer

252 / 578

Time server: Prioritized wait

Uses prioritized waiting to order processes by check

The process is awakened only when tod ≥ wake_time

Thus we do not need a while loop for delay

monitor Timer {
int tod = 0; # Invariant: CLOCK
cond check; # signalled when minrank(check) ≤ tod

procedure delay(int interval) {
int wake_time;
wake_time := tod + interval;
if (wake_time > tod) wait(check, wake_time);

}

procedure tick() {
tod := tod + 1;
while (!empty(check) && minrank(check) ≤ tod)
signal(check);

}
}

253 / 578

Shortest-Job-Next allocation

Competition for a shared resource
A monitor administrates access to the resource
Call to request(time)

Caller needs access for time interval time
If the resource is free: caller gets access directly

Call to release
The resource is released
If waiting processes: The resource is allocated to the waiting
process with lowest value of time

Implemented by prioritized wait

254 / 578

Shortest-Job-Next allocation (2)

1 monitor Shortest_Job_Next {
2 bool f r e e = t rue ;
3 cond t u rn ;
4
5 procedure r e q u e s t (i n t t ime) {
6 i f (f r e e)
7 f r e e := f a l s e
8 e l s e
9 wait (turn , t ime)

10 }
11
12 procedure r e l e a s e () {
13 i f (empty (tu rn))
14 f r e e := t rue ;
15 e l s e
16 s i g n a l (tu rn) ;
17 }

255 / 578

256 / 578

The story of the sleeping barber

barbershop: with two doors and some chairs.
customers: come in through one door and leave through the
other. Only one customer sits the he barber chair at a time.
Without customers: barber sleeps in one of the chairs.
When a customer arrives and the barber sleeps ⇒ barber is
woken up and the customer takes a seat.
barber busy ⇒ the customer takes a nap
Once served, barber lets customer out the exit door.
If there are waiting customers, one of these is woken up.
Otherwise the barber sleeps again.

257 / 578

Interface

Assume the following monitor procedures
Client: get_haircut: called by the customer, returns when haircut is

done
Server: barber calls:

get_next_customer: called by the barber to serve a customer
finish_haircut: called by the barber to let a customer out
of the barbershop

Rendez-vous
Similar to a two-process barrier: Both parties must arrive before
either can continue.a

The barber must wait for a customer
Customer must wait until the barber is available

The barber can have rendezvous with an arbitrary customer.
aLater, in the context of message passing, will have a closer look at making

rendez-vous synchronization (using channels), but the pattern “2 partners must
be present at a point at the same time” is analogous.

258 / 578

Organize the synch.: Identify the synchronization needs

1. barber must wait until
1.1 customer sits in chair
1.2 customer left barbershop

2. customer must wait until
2.1 the barber is available
2.2 the barber opens the exit door

client perspective:
two phases (during get_haircut)
1. “entering”

trying to get hold of barber,
sleep otherwise

2. “leaving”:

between the phases: suspended
Processes signal when one of the wait conditions is satisfied.

259 / 578

Organize the synchronization: state

3 var’s to synchronize the processes:
barber, chair and open (initially 0)

binary variables, alternating between 0 and 1:
for entry-rendevouz
1. barber = 1 : the barber is ready for a new customer
2. chair = 1: the customer sits in a chair, the barber hasn’t

begun to work
for exit-sync
3. open = 1: exit door is open, the customer has not yet left

260 / 578

Sleeping barber

1 monitor Barber_Shop {
2 i n t ba rbe r := 0 , c h a i r := 0 , open := 0 ;
3 cond b a r b e r_a v a i l a b l e ; # s i g n a l l e d when ba rbe r > 0
4 cond cha i r_occup i ed ; # s i g n a l l e d when c h a i r > 0
5 cond door_open ; # s i g n a l l e d when open > 0
6 cond cu s t ome r_ l e f t ; # s i g n a l l e d when open = 0
7
8 procedure get_haircut () {
9 whi le (ba rb e r = 0) wait (b a r b e r_a v a i l a b l e) ; # RV with ba rb e r

10 ba rbe r := ba rb e r − 1 ;
11 c h a i r := c h a i r + 1 ; s i g n a l (cha i r_occup i ed) ;
12
13 whi le (open = 0) wait (door_open) ; # l e a v e shop
14 open := open − 1 ; s i g n a l (cu s t ome r_ l e f t) ;
15 }
16 procedure get_next_customer () { # RV with c l i e n t
17 ba rbe r := ba rb e r + 1 ; s i g n a l (b a r b e r_a v a i l a b l e) ;
18 whi le (c h a i r = 0) wait (cha i r_occup i ed) ;
19 c h a i r := c h a i r − 1 ;
20 }
21 procedure f in i shed_cut () {
22 open := open + 1 ; s i g n a l (door_open) ; # get r i d o f customer
23 whi le (open > 0) wait (cu s t ome r_ l e f t) ;
24 }

261 / 578

Sleeping barber

1 monitor Barber_Shop {
2 i n t ba rbe r := 0 , c h a i r := 0 , open := 0 ;
3 cond b a r b e r_a v a i l a b l e ; # s i g n a l l e d when ba rbe r > 0
4 cond cha i r_occup i ed ; # s i g n a l l e d when c h a i r > 0
5 cond door_open ; # s i g n a l l e d when open > 0
6 cond cu s t ome r_ l e f t ; # s i g n a l l e d when open = 0
7
8 procedure get_haircut () {
9 whi le (ba rb e r = 0) wait (b a r b e r_a v a i l a b l e) ; # RV with ba rb e r

10 ba rbe r := ba rb e r − 1 ;
11 c h a i r := c h a i r + 1 ; s i g n a l (cha i r_occup i ed) ;
12
13 whi le (open = 0) wait (door_open) ; # l e a v e shop
14 open := open − 1 ; s i g n a l (cu s t ome r_ l e f t) ;
15 }
16 procedure get_next_customer () { # RV with c l i e n t
17 ba rbe r := ba rb e r + 1 ; s i g n a l (b a r b e r_a v a i l a b l e) ;
18 whi le (c h a i r = 0) wait (cha i r_occup i ed) ;
19 c h a i r := c h a i r − 1 ;
20 }
21 procedure f in i shed_cut () {
22 open := open + 1 ; s i g n a l (door_open) ; # get r i d o f customer
23 whi le (open > 0) wait (cu s t ome r_ l e f t) ;
24 }

262 / 578

Sleeping barber

1 monitor Barber_Shop {
2 i n t ba rbe r := 0 , c h a i r := 0 , open := 0 ;
3 cond b a r b e r_a v a i l a b l e ; # s i g n a l l e d when ba rbe r > 0
4 cond cha i r_occup i ed ; # s i g n a l l e d when c h a i r > 0
5 cond door_open ; # s i g n a l l e d when open > 0
6 cond cu s t ome r_ l e f t ; # s i g n a l l e d when open = 0
7
8 procedure get_haircut () {
9 whi le (ba rb e r = 0) wait (b a r b e r_a v a i l a b l e) ; # RV with ba rb e r

10 ba rbe r := ba rb e r − 1 ;
11 c h a i r := c h a i r + 1 ; s i g n a l (cha i r_occup i ed) ;
12
13 whi le (open = 0) wait (door_open) ; # l e a v e shop
14 open := open − 1 ; s i g n a l (cu s t ome r_ l e f t) ;
15 }
16 procedure get_next_customer () { # RV with c l i e n t
17 ba rbe r := ba rb e r + 1 ; s i g n a l (b a r b e r_a v a i l a b l e) ;
18 whi le (c h a i r = 0) wait (cha i r_occup i ed) ;
19 c h a i r := c h a i r − 1 ;
20 }
21 procedure f in i shed_cut () {
22 open := open + 1 ; s i g n a l (door_open) ; # get r i d o f customer
23 whi le (open > 0) wait (cu s t ome r_ l e f t) ;
24 }

263 / 578

Program analysis

INF4140 - Models of concurrency
Program Analysis, lecture 5

Høsten 2014

26.9.2014

265 / 578

Program correctness

Is my program correct?
Central question for this and the next lecture.

Does a given program behave as intended?
Surprising behavior?

x := 5; { x = 5 }〈x := x + 1〉; { x =? }
clear: x = 5 immediately after first assignment
Will this still hold when the second assignment is executed?

Depends on other processes

What will be the final value of x?

Today: Basic machinery for program reasoning
Next week: Extending this machinery to the concurrent setting

266 / 578

Concurrent executions

Concurrent program: several threads operating on (here)
shared variables
Parallel updates to x and y :

co 〈x := x × 3; 〉 ‖ 〈y := y × 2; 〉 oc

Every concurrent execution can be written as a sequence of
atomic operations (gives one history)
Two possible histories for the above program
Generally, if n processes executes m atomic operations each:

(n ∗m)!

m!n
If n=3 and m=4:

(3 ∗ 4)!
4!3

= 34650

267 / 578

How to verify program properties?

Testing or debugging increases confidence in the program
correctness, but does not guarantee correctness

Program testing can be an effective way to show the presence
of bugs, but not their absence

Operational reasoning (exhaustive case analysis) tries all
possible executions of a program

Formal analysis (assertional reasoning) allows to deduce the
correctness of a program without executing it

Specification of program behavior
Formal argument that the specification is correct

268 / 578

States

A state of a program consists of the values of the program
variables at a point in time, example: { x = 2 ∧ y = 3 }
The state space of a program is given by the different values
that the declared variables can take
Sequential program: one execution thread operates on its own
state space
The state may be changed by assignments (“imperative”)

Example

{ x = 5 ∧ y = 5 }x := x ∗ 2;{ x = 10 ∧ y = 5 }y := y ∗ 2;{ x = 10 ∧ y = 10 }

269 / 578

Executions

Given program S as sequence S1; S2; . . . ;Sn;, starting in a
state p0:

where p1, p2, . . . pn are the different states during execution
Can be documented by: {p0}S1{p1}S2{p2} . . . {pn−1}Sn{pn}
p0, pn gives an external specification of the program:
{p0}S{pn}
We often refer to p0 as the initial state and pn as the final
state

Example (from previous slide)

{ x = 5 ∧ y = 5 } x := x ∗ 2; y := y ∗ 2; { x = 10 ∧ y = 10 }

270 / 578

Assertions

Want to express more general properties of programs, like

{ x = y }x := x ∗ 2;y := y ∗ 2;{ x = y }

If the assertion x = y holds, when the program starts, x = y
will also hold when/if the program terminates
Does not talk about particular values of x and y , but about
relations between their values
Assertions characterise sets of states

Example
The assertion x = y describes all states where the values of x and y
are equal, like {x = −1 ∧ y = −1}, {x = 1 ∧ y = 1}, . . .

271 / 578

Assertions

An assertion P can be viewed as a set of states where P is
true:

x = y All states where x has the same value
as y

x ≤ y : All states where the value of x is less
or equal to the value of y

x = 2 ∧ y = 3 Only one state (if x and y are the only
variables)

true All states
false No state

Example

{ x = y }x := x ∗ 2;{ x = 2 ∗ y }y := y ∗ 2;{x = y}

Then this must also hold for particular values of x and y satisfying
the initial assertion, like x = y = 5

272 / 578

Formal analysis of programs

Establish program properties, using a system for formal
reasoning
Help in understanding how a program behaves
Useful for program construction
Look at logics for formal analysis
basis of analysis tool

Formal system
Axioms: Defines the meaning of individual program statements
Rules: Derive the meaning of a program from the individual
statements in the program

273 / 578

Logics and formal systems

Our formal system consists of:
A set of symbols (constants, variables,...)
A set of formulas (meaningful combination of symbols)
A set of axioms (assumed to be true)
A set of inference rules of the form:

Inference rule
H1 . . . Hn

C

Where each Hi is an assumption, and C is the conclusion
The conclusion is true if all the assumptions are true
The inference rules specify how to derive additional true
formulas from axioms and other true formulas.

274 / 578

Symbols

(program + extra) variables: x , y , z , ...

Relation symbols: ≤,≥, . . .
Function symbols: +,−, . . ., and constants
0, 1, 2, . . . , true, false
Equality (also a relation symbol): =

275 / 578

Formulas of first-order logic

Meaningful combination of symbols

Assume that A and B are formulas, then the following are also
formulas:

¬A means “not A”
A ∨ B means “A or B”
A ∧ B means “A and B”

A⇒ B means “A implies B”

If x is a variable and A, the following are formulas:27

∀x : A(x) means “A is true for all values of x”
∃x : A(x) means “there is (at least) one value of x such that A is true”

27A(x) to indicate that, here, A (typically) contains x .
276 / 578

Examples of axioms and rules

Typical axioms:
A ∨ ¬A
A⇒ A

Typical rules:

A B
And-I

A ∧ B

A
Or-I

A ∨ B

A⇒ B A
Or-E

B

Example

x = 5 y = 5
And-I

x = 5 ∧ y = 5

x = 5
Or-I

x = 5 ∨ y = 5

x ≥ 0⇒ y ≥ 0 x ≥ 0
Or-E

y ≥ 0

277 / 578

Important terms

Interpretation: describe each formula as either true or false
Proof: derivation tree where all leaf nodes are axioms
Theorems: a “formula” derivable in a given proof system
Soundness (of the logic): If we can prove (“derive”) some
formula P (in the logic) then P is actually (semantically) true
Completeness: If a formula P is true, it can be proven

278 / 578

Program Logic (PL)

PL lets us express and prove properties about programs
Formulas are of the form

“Hoare triple”

{ P1 } S { P2 }

S : program statement(s)
P, P1, P ′, Q . . . : assertions over program states (including
¬,∧,∨,∃,∀)
In above triple P1: Pre-condition, and P2 post-condition of S

Example

{ x = y } x := x ∗ 2;y := y ∗ 2; { x = y }

279 / 578

The proof system PL (Hoare logic)

Express and prove program properties
{P} S {Q}

P,Q may be seen as a specification of the program S
Code analysis by proving the specification (in PL)
No need to execute the code in order to do the analysis
An interpretation maps triples to true or false

{ x = 0 } x := x + 1; { x = 1 } should be true
{ x = 0 } x := x + 1; { x = 0 } should be false

280 / 578

Reasoning about programs

Basic idea: Specify what the program is supposed to do (pre-
and post-conditions)
Pre- and post-conditions are given as assertions over the
program state
Use PL for amathematical argument that the program satisfies
its specification

281 / 578

Interpretation

Interpretation (“semantics”) of triples is related to code execution

Partial correctness interpretation
{P} S {Q} is true/holds, if the following is the case:

If the initial state of S satisfies P (P holds for the initial state
of S),
and ifa S terminates,
then Q is true in the final state of S

aThus: if S does not terminate, all bets are off. . .

Expresses partial correctness (termination of S is assumed)

Example
{x = y} x := x ∗ 2;y := y ∗ 2; {x = y} is true
if the initial state satisfies x = y and, in case the execution
terminates, then the final state satisfies x = y

282 / 578

Examples

Some true formulas:

{ x = 0 } x := x + 1; { x = 1 }
{ x = 4 } x := 5; { x = 5 }
{ true } x := 5; { x = 5 }
{ y = 4 } x := 5; { y = 4 }
{ x = 4 } x := x + 1; { x = 5 }

{ x = a ∧ y = b } x = x + y ; { x = a + b ∧ y = b }
{ x = 4 ∧ y = 7 } x := x + 1; { x = 5 ∧ y = 7 }
{ x = y } x := x + 1; y := y + 1; { x = y }

Some formulas that are not true:

{ x = 0 } x := x + 1; { x = 0 }
{ x = 4 } x := 5; { x = 4 }

{ x = y } x := x + 1; y := y − 1; { x = y }
{ x > y } x := x + 1; y := y + 1; { x < y }

283 / 578

Partial correctness

The interpretation of { P } S { Q } assumes/ignores
termination of S , termination is not proven.
The assertions (P , Q) express safety properties
The pre- and postconditions restrict possible states

The assertion true can be viewed as all states. The assertion false
can be viewed as no state. What does each of the following triple
express?

{ P } S { false }

S does not terminate

{ P } S { true }

trivially true

{ true } S { Q }

Q holds after S in any case
(provided S terminates)

{ false } S { Q }

trivially true

284 / 578

Partial correctness

The interpretation of { P } S { Q } assumes/ignores
termination of S , termination is not proven.
The assertions (P , Q) express safety properties
The pre- and postconditions restrict possible states

The assertion true can be viewed as all states. The assertion false
can be viewed as no state. What does each of the following triple
express?

{ P } S { false } S does not terminate
{ P } S { true }

trivially true

{ true } S { Q }

Q holds after S in any case
(provided S terminates)

{ false } S { Q }

trivially true

285 / 578

Partial correctness

The interpretation of { P } S { Q } assumes/ignores
termination of S , termination is not proven.
The assertions (P , Q) express safety properties
The pre- and postconditions restrict possible states

The assertion true can be viewed as all states. The assertion false
can be viewed as no state. What does each of the following triple
express?

{ P } S { false } S does not terminate
{ P } S { true } trivially true
{ true } S { Q }

Q holds after S in any case
(provided S terminates)

{ false } S { Q }

trivially true

286 / 578

Partial correctness

The interpretation of { P } S { Q } assumes/ignores
termination of S , termination is not proven.
The assertions (P , Q) express safety properties
The pre- and postconditions restrict possible states

The assertion true can be viewed as all states. The assertion false
can be viewed as no state. What does each of the following triple
express?

{ P } S { false } S does not terminate
{ P } S { true } trivially true
{ true } S { Q } Q holds after S in any case

(provided S terminates)
{ false } S { Q }

trivially true

287 / 578

Partial correctness

The interpretation of { P } S { Q } assumes/ignores
termination of S , termination is not proven.
The assertions (P , Q) express safety properties
The pre- and postconditions restrict possible states

The assertion true can be viewed as all states. The assertion false
can be viewed as no state. What does each of the following triple
express?

{ P } S { false } S does not terminate
{ P } S { true } trivially true
{ true } S { Q } Q holds after S in any case

(provided S terminates)
{ false } S { Q } trivially true

288 / 578

Proof system PL

A proof system consists of axioms and rules
here: structural analysis of programs

Axioms for basic statements:
x := e, skip,...

Rules for composed statements:
S1;S2, if, while, await, co . . . oc, . . .

Formulas in PL
formulas = triples
theorems = derivable formulas
hopefully: all derivable formulas are also “really” (=
semantically) true
derivation: starting from axioms, using derivation rules

H1 H2 . . . Hn

C

axioms: can be seen as rules without premises
289 / 578

Soundness

If a triple { P } S { Q } is a theorem in PL (i.e., derivable), the
triple is actually true!

Example: we want

{ x = 0 } x := x + 1 { x = 1 }

to be a theorem (since it was interpreted as true),
but

{ x = 0 } x := x + 1 { x = 0 }

should not be a theorem (since it was interpreted as false)

Soundness: All theorems in PL are true

If we can use PL to prove some property of a program, then this
property will hold for all executions of the program

290 / 578

Textual substitution

(Textual) substitution
Px←e means, all free occurrences of x in P are replaced by
expression e.

Example

(x = 1)x←(x+1) ⇔ x + 1 = 1
(x + y = a)y←(y+x) ⇔ x + (y + x) = a
(y = a)x←(x+y) ⇔ y = a

Substitution propagates into formulas:

(¬A)x←e ⇔ ¬(Ax←e)
(A ∧ B)x←e ⇔ Ax←e ∧ Bx←e

(A ∨ B)x←e ⇔ Ax ←e ∨ Bx←e

291 / 578

Remark on textual substitution

Px←e

Only free occurrences of x are substituted
Variable occurrences may be bound by quantifiers, then that
occurrence of the variable is not free (but bound)

Example (Substitution)

(∃y : x + y > 0)x←1 ⇔

∃y : 1+ y > 0

(∃x : x + y > 0)x←1 ⇔

∃x : x + y > 0

(∃x : x + y > 0)y←x ⇔

∃z : z + x > 0

Correspondingly for ∀

292 / 578

Remark on textual substitution

Px←e

Only free occurrences of x are substituted
Variable occurrences may be bound by quantifiers, then that
occurrence of the variable is not free (but bound)

Example (Substitution)

(∃y : x + y > 0)x←1 ⇔ ∃y : 1+ y > 0
(∃x : x + y > 0)x←1 ⇔

∃x : x + y > 0

(∃x : x + y > 0)y←x ⇔

∃z : z + x > 0

Correspondingly for ∀

293 / 578

Remark on textual substitution

Px←e

Only free occurrences of x are substituted
Variable occurrences may be bound by quantifiers, then that
occurrence of the variable is not free (but bound)

Example (Substitution)

(∃y : x + y > 0)x←1 ⇔ ∃y : 1+ y > 0
(∃x : x + y > 0)x←1 ⇔ ∃x : x + y > 0
(∃x : x + y > 0)y←x ⇔

∃z : z + x > 0

Correspondingly for ∀

294 / 578

Remark on textual substitution

Px←e

Only free occurrences of x are substituted
Variable occurrences may be bound by quantifiers, then that
occurrence of the variable is not free (but bound)

Example (Substitution)

(∃y : x + y > 0)x←1 ⇔ ∃y : 1+ y > 0
(∃x : x + y > 0)x←1 ⇔ ∃x : x + y > 0
(∃x : x + y > 0)y←x ⇔ ∃z : z + x > 0

Correspondingly for ∀

295 / 578

The assignment axiom – Motivation

Given by backward construction over the assignment:

Given the postcondition to the assignment, we may derive the
precondition!

What is the precondition?

{ ? } x := e { x = 5 }

If the assignment x = e should terminate in a state where x has
the value 5, the expression e must have the value 5 before the
assignment:

{ e = 5 } x := e { x = 5 }
{ (x = 5)x←e } x := e { x = 5 }

296 / 578

Axiom of assignment

“Backwards reasoning:” Given a postcondition, we may construct
the precondition:

Axiom for the assignment statement

{ Px←e } x := e { P } Assign

If the assignment x := e should lead to a state that satisfies P , the
state before the assignment must satisfy P where x is replaced by
e.

297 / 578

Proving an assignment

To prove the triple { P }x := e{ Q } in PL, we must show that the
precondition P implies Qx←e

P ⇒ Qx←e { Qx←e } x := e { Q }

{ P } x := e { Q }

The blue implication is a logical proof obligation. In this course we
only convince ourself that these are true (we do not prove them
formally).

Qx←e is the largest set of states such that the assignment is
guaranteed to terminate with Q

largest set corresponds to weakest condition ⇒
weakest-precondition reasoning
We must show that the set of states P is within this set

298 / 578

Examples

true ⇒ 1 = 1
{ true } x := 1 { x = 1 }

x = 0⇒ x + 1 = 1
{ x = 0 } x := x + 1 { x = 1 }

(x = a ∧ y = b)⇒ x + y = a + b ∧ y = b
{ x = a ∧ y = b } x := x + y { x = a + b ∧ y = b }

x = a⇒ 0 ∗ y + x = a
{ x = a } q := 0 { q ∗ y + x = a }

y > 0⇒ y ≥ 0
{ y > 0 }x := y{ x ≥ 0 }

299 / 578

Axiom of skip

The skip statement does nothing

Axiom:
{ P } skip { P } Skip

300 / 578

PL inference rules

{ P } S1 { R } { R } S2 { Q }
Seq

{ P } S1;S2 { Q }

{ P ∧ B } S { Q } P ∧ ¬B ⇒ Q
Cond′

{ P } if B then S { Q }

{ I ∧ B } S { I }
While

{ I } while B do S { I ∧ ¬B }

{ P } S { Q } P ′ ⇒ P Q ⇒ Q ′

Consequence
{ P ′ } S { Q ′ }

Blue: logical proof obligations
the rule for while needs a loop invariant!
for-loop: exercise 2.22!

301 / 578

Sequential composition and consequence

Backward construction over assignments:

x = y ⇒ 2 ∗ x = 2 ∗ y

{ x = y } x := x ∗ 2 { x = 2 ∗ y } { (x = y)y←2y } y := y ∗ 2 { x = y }

{ x = y } x := x ∗ 2; y := y ∗ 2 { x = y }

Sometimes we don’t bother to write down the assignment axiom:
(q ∗ y) + x = a⇒ ((q + 1) ∗ y) + x − y = a

{ (q ∗ y) + x = a } x := x − y ; { ((q + 1) ∗ y) + x = a }

{ (q ∗ y) + x = a } x := x − y ; q := q + 1 { (q ∗ y) + x = a }

302 / 578

Logical variables

Do not occur in program text
Used only in assertions
May be used to “freeze” initial values of variables
May then talk about these values in the postcondition

Example

{ x = x0 } if (x < 0) then x := −x { x ≥ 0∧(x = x0∨x = −x0) }

where (x = x0 ∨ x = −x0) states that
the final value of x equals the initial value, or
the final value of x is the negation of the initial value

303 / 578

Example: if statement

Verification of:

{ x = x0 } if (x < 0) then x := −x { x ≥ 0∧(x = x0∨x = −x0) }

{P ∧ B} S {Q} (P ∧ ¬B)⇒ Q
Cond′

{ P } if B then S { Q }

{ P ∧ B } S { Q }:
{ x = x0 ∧ x < 0 } x := −x { x ≥ 0 ∧ (x = x0 ∨ x = −x0) }
Backward construction (assignment axiom) gives the
implication:
x = x0 ∧ x < 0⇒ (−x ≥ 0 ∧ (−x = x0 ∨ −x = −x0))

P ∧ ¬B ⇒ Q:
x = x0 ∧ x ≥ 0⇒ (x ≥ 0 ∧ (x = x0 ∨ x = −x0))

304 / 578

Example: if statement

Verification of:

{ x = x0 } if (x < 0) then x := −x { x ≥ 0∧(x = x0∨x = −x0) }

{P ∧ B} S {Q} (P ∧ ¬B)⇒ Q
Cond′

{ P } if B then S { Q }

{ P ∧ B } S { Q }:
{ x = x0 ∧ x < 0 } x := −x { x ≥ 0 ∧ (x = x0 ∨ x = −x0) }
Backward construction (assignment axiom) gives the
implication:
x = x0 ∧ x < 0⇒ (−x ≥ 0 ∧ (−x = x0 ∨ −x = −x0))

P ∧ ¬B ⇒ Q:
x = x0 ∧ x ≥ 0⇒ (x ≥ 0 ∧ (x = x0 ∨ x = −x0))

305 / 578

INF4140 - Models of concurrency
Program Analysis, lecture 6

Høsten 2014

3.10.2014

306 / 578

Program Analysis

Program Logic (PL)

PL lets us express and prove properties about programs
Formulas are on the form

“triple”

{ P } S { Q }

S : program statement(s)
P and Q: assertions over program states
P: Pre-condition
Q: Post-condition

If we can use PL to prove some property of a program, then this
property will hold for all executions of the program

308 / 578

PL rules from last week

{ P } S1 { R } { R } S2 { Q }
Seq

{ P } S1;S2 { Q }

{ P ∧ B } S { Q } P ∧ ¬B ⇒ Q
Cond′

{ P } if B then S { Q }

{ I ∧ B } S { I }
While

{ I } while B do S { I ∧ ¬B }

{ P } S { Q } P ′ ⇒ P Q ⇒ Q ′

Consequence
{ P ′ } S { Q ′ }

309 / 578

While rule

Cannot control the execution in the same manner as for if
statements

Cannot tell from the code how many times the loop body will
be executed

{ y ≥ 0 } while (y > 0) y := y − 1

Cannot speak about the state after the first, second, third
iteration

Solution: Find an assertion I that is maintained by the loop
body

Loop invariant: express a property preserved by the loop
Often hard to find suitable loop invariants

This course is not an exercise in finding complicated invariants

310 / 578

While rule

{ I ∧ B } S { I }
While

{ I } while B do S { I ∧ ¬B }

Can use this rule to reason about the more general case:

{ P } while B do S { Q }

where
P need not be the loop invariant
Q need not match (I ∧ ¬B) syntactically

Combine While-rule with Consequence-rule to prove:
Entry: P ⇒ I

Loop: { I ∧ B } S { I }
Exit: I ∧ ¬B ⇒ Q

311 / 578

While rule: example

{ 0 ≤ n } k := 0; { k ≤ n } while (k < n) k := k + 1; { k = n }

Composition rule splits a proof in two: assignment and loop.
Let k ≤ n be the loop invariant

Entry: k ≤ n follows from itself
Loop:

k < n⇒ k + 1 ≤ n

{ k ≤ n ∧ k < n } k := k + 1 { k ≤ n }
Exit: (k ≤ n ∧ ¬(k < n))⇒ k = n

312 / 578

Await statement

Rule for await

{ P ∧ B } S { Q }
Await

{ P } 〈await(B) S〉 { Q }

Remember: we are reasoning about safety properties
Termination is assumed/ignored
the rule does not speak about waiting or progress

313 / 578

Concurrent execution

Assume two statements S1 and S2 such that:

{ P1 } 〈S1〉 { Q1 } and { P2 } 〈S2〉 { Q2 }

Note: to avoid further complications right now: Si ’s are enclosed
into “〈atomic brackets〉”.
First attempt for a co . . . oc rule in PL:

{ P1 } 〈S1〉 { Q1 } { P2 } 〈S2〉 { Q2 }
Par

{ P1 ∧ P2 } co〈S1〉 ‖ 〈S2〉 oc { Q1 ∧ Q2 }

Example (Problem with this rule)

{ x = 0 } 〈x := x + 1〉 { x = 1 } { x = 0 } 〈x := x + 2〉 { x = 2 }

{ x = 0 } co〈x := x + 1〉 ‖ 〈x = x + 2〉 oc { x = 1 ∧ x = 2 }

but this conclusion is not true: the postcondition should be x = 3!

314 / 578

Concurrent execution

Assume two statements S1 and S2 such that:

{ P1 } 〈S1〉 { Q1 } and { P2 } 〈S2〉 { Q2 }

Note: to avoid further complications right now: Si ’s are enclosed
into “〈atomic brackets〉”.
First attempt for a co . . . oc rule in PL:

{ P1 } 〈S1〉 { Q1 } { P2 } 〈S2〉 { Q2 }
Par

{ P1 ∧ P2 } co〈S1〉 ‖ 〈S2〉 oc { Q1 ∧ Q2 }

Example (Problem with this rule)

{ x = 0 } 〈x := x + 1〉 { x = 1 } { x = 0 } 〈x := x + 2〉 { x = 2 }

{ x = 0 } co〈x := x + 1〉 ‖ 〈x = x + 2〉 oc { x = 1 ∧ x = 2 }

but this conclusion is not true: the postcondition should be x = 3!

315 / 578

Concurrent execution

Assume two statements S1 and S2 such that:

{ P1 } 〈S1〉 { Q1 } and { P2 } 〈S2〉 { Q2 }

Note: to avoid further complications right now: Si ’s are enclosed
into “〈atomic brackets〉”.
First attempt for a co . . . oc rule in PL:

{ P1 } 〈S1〉 { Q1 } { P2 } 〈S2〉 { Q2 }
Par

{ P1 ∧ P2 } co〈S1〉 ‖ 〈S2〉 oc { Q1 ∧ Q2 }

Example (Problem with this rule)

{ x = 0 } 〈x := x + 1〉 { x = 1 } { x = 0 } 〈x := x + 2〉 { x = 2 }

{ x = 0 } co〈x := x + 1〉 ‖ 〈x = x + 2〉 oc { x = 1 ∧ x = 2 }

but this conclusion is not true: the postcondition should be x = 3!

316 / 578

Interference problem

S1 { x = 0 } 〈x := x + 1〉 { x = 1 }

S2 { x = 0 } 〈x := x + 2〉 { x = 2 }

execution of S2 interferes with pre- and postconditions of S1

The assertion x = 0 need not hold when S1 starts execution
execution of S1 interferes with pre- and postconditions of S2

The assertion x = 0 need not hold when S2 starts execution

Solution: weaken the assertions to account for the other process:

S1 { x = 0∨x = 2 } 〈x := x + 1〉 { x = 1∨x = 3 }

S2 { x = 0∨x = 1 } 〈x := x + 2〉 { x = 2∨x = 3 }

317 / 578

Interference problem

S1 { x = 0 } 〈x := x + 1〉 { x = 1 }

S2 { x = 0 } 〈x := x + 2〉 { x = 2 }

execution of S2 interferes with pre- and postconditions of S1

The assertion x = 0 need not hold when S1 starts execution
execution of S1 interferes with pre- and postconditions of S2

The assertion x = 0 need not hold when S2 starts execution

Solution: weaken the assertions to account for the other process:

S1 { x = 0∨x = 2 } 〈x := x + 1〉 { x = 1∨x = 3 }

S2 { x = 0∨x = 1 } 〈x := x + 2〉 { x = 2∨x = 3 }

318 / 578

Interference problem

Now we can try to apply the rule:

{ x = 0 ∨ x = 2 } 〈x := x + 1〉 { x = 1 ∨ x = 3 }
{ x = 0 ∨ x = 1 } 〈x := x + 2〉 { x = 2 ∨ x = 3 }
{ PRE } co〈x := x + 1〉 ‖ 〈x := x + 2〉 oc { POST }

where:

PRE : (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)
POST : (x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3)

which gives:

{ x = 0 } co ‖ x = x + 1 ‖ 〈x := x + 2〉 oc { x = 3 }

319 / 578

Interference problem

Now we can try to apply the rule:

{ x = 0 ∨ x = 2 } 〈x := x + 1〉 { x = 1 ∨ x = 3 }
{ x = 0 ∨ x = 1 } 〈x := x + 2〉 { x = 2 ∨ x = 3 }
{ PRE } co〈x := x + 1〉 ‖ 〈x := x + 2〉 oc { POST }

where:

PRE : (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)
POST : (x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3)

which gives:

{ x = 0 } co ‖ x = x + 1 ‖ 〈x := x + 2〉 oc { x = 3 }

320 / 578

Concurrent execution

Assume { Pi } Si { Qi } for all S1, . . . , Sn

{ Pi } Si { Qi } are interference free
Cooc

{ P1 ∧ . . . ∧ Pn } coS1 ‖ . . . ‖ Sn oc { Q1 ∧ . . . ∧ Qn }

Interference freedom
A process interferes with (the specification of) another process, if
its execution changes the values of the assertionsa of the other
process.

aOnly “critical assertions” considered

assertions inside awaits: not endagered
critical assertions or critical conditions: assertions outside
await statement bodies.28

28More generally one could say: outside mutex-protected sections.
321 / 578

Interference freedom

Interference freedom
S : statement some process, with pre-condition pre(S)
C : critical assertion in another process
S does not interfere with C , if

{ C ∧ pre(S) } S { C }

is derivable in PL (= theorem).

“C is invariant under the execution of the other process”

{ P1 } S1 { Q1 } { P2 } S2 { Q2 }

{ P1 ∧ P2 } coS1 ‖ S2 oc { Q1 ∧ Q2 }

Four interference freedom requirements:

{P2 ∧ P1} S1 {P2} {P1 ∧ P2} S2 {P1}
{Q2 ∧ P1} S1 {Q2} {Q1 ∧ P2} S2 {Q1}

322 / 578

“Avoiding” interference: Weakening assertions

S1 : { x = 0 } < x := x + 1;> { x = 1 }
S2 : { x = 0 } < x := x + 2;> { x = 2 }

Here we have interference, for instance the precondition of S1 is not
maintained by execution of S2:

{ (x = 0) ∧ (x = 0) } x := x + 2 { x = 0 }

is not true

However, after weakening:

S1 : { x = 0 ∨ x = 2 } 〈x := x + 1〉 { x = 1 ∨ x = 3 }
S2 : { x = 0 ∨ x = 1 } 〈x := x + 2〉 { x = 2 ∨ x = 3 }

{ (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1) } x := x + 2 { x = 0 ∨ x = 2 }

(Correspondingly for the other three critical conditions)

323 / 578

Avoiding interference: Disjoint variables

V set: global variables referred (i.e. read or written) to by a
process
W set: global variables written to by a process
Reference set: global variables in critical assertions/conditions
of one process

S1 and S2: in 2 different processes. No interference, if:
W set of S1 is disjoint from reference set of S2

W set of S2 is disjoint from reference set of S1

Alas: variables in a critical condition of one process will often be
among the written variables of another

324 / 578

Avoiding interference: Global invariants

global invariants
Some conditions. that only refer to global (shared) variables
Holds initially
Preserved by all assignments

We avoid interference if critical conditions are on the form {I ∧ L}
where:

I is a global invariant
L only refers to local variables of the considered process

325 / 578

Avoiding interference: Synchronization

Hide critical conditions
MUTEX to critical sections

co . . . ;S ; . . . ‖ . . . ; S1; { C }S2; . . . oc

S might interfere with C
Hide the critical condition by a critical region:

co . . . ;S ; . . . ‖ . . . ; 〈S1; { C }S2〉; . . . oc

326 / 578

Example: Producer/ consumer synchronization

Let process Producer deliver data to a Consumer process

PC : c ≤ p ≤ c + 1∧ (p = c + 1)⇒ (buf = a[p − 1])

Let PC be a global invariant of the program:

1
2 i n t buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 whi le (p < N) { whi le (c < N) {
7 < await (p = c) ; > < await (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

327 / 578

Example: Producer/ consumer synchronization

Let process Producer deliver data to a Consumer process

PC : c ≤ p ≤ c + 1∧ (p = c + 1)⇒ (buf = a[p − 1])

Let PC be a global invariant of the program:

1
2 i n t buf , p := 0 ; c := 0 ;
3
4 process Producer { process Consumer {
5 i n t a [N] ; . . . i n t b [N] ; . . .
6 whi le (p < N) { whi le (c < N) {
7 < await (p = c) ; > < await (p > c) ; >
8 buf := a [p] ; b [c] := buf ;
9 p := p+1; c := c+1;

10 } }
11 } }

328 / 578

Example: Producer

Loop invariant of Producer:
IP : PC ∧ p ≤ n

process Producer dir0o
int a[n];
{ IPdir } // entering loop
while (p < n) dir0o { IP ∧ p < n }

< await (p == c); > { IP ∧ p < n ∧ p = c }
{ IP p←p+1buf←a[p] }

buf = a[p]; { IP p←p+1 }
p = p + 1; dir0oIPdir

dir dir0oIP ∧ ¬(p < n)dir // exit loop
⇔ dir0oPC ∧ p = ndir

dir

Proof obligation:
{ IP ∧ p < n ∧ p = c } ⇒ { IP }p←p+1buf←a[p]

329 / 578

Example: Producer

Loop invariant of Producer:
IP : PC ∧ p ≤ n

process Producer dir0o
int a[n];
{ IPdir } // entering loop
while (p < n) dir0o { IP ∧ p < n }

< await (p == c); > { IP ∧ p < n ∧ p = c }
{ IP p←p+1buf←a[p] }

buf = a[p]; { IP p←p+1 }
p = p + 1; dir0oIPdir

dir dir0oIP ∧ ¬(p < n)dir // exit loop
⇔ dir0oPC ∧ p = ndir

dir

Proof obligation:
{ IP ∧ p < n ∧ p = c } ⇒ { IP }p←p+1buf←a[p]

330 / 578

Example: Producer

Loop invariant of Producer:
IP : PC ∧ p ≤ n

process Producer dir0o
int a[n];
{ IPdir } // entering loop
while (p < n) dir0o { IP ∧ p < n }

< await (p == c); > { IP ∧ p < n ∧ p = c }
{ IP p←p+1buf←a[p] }

buf = a[p]; { IP p←p+1 }
p = p + 1; dir0oIPdir

dir dir0oIP ∧ ¬(p < n)dir // exit loop
⇔ dir0oPC ∧ p = ndir

dir

Proof obligation:
{ IP ∧ p < n ∧ p = c } ⇒ { IP }p←p+1buf←a[p]

331 / 578

Example: Producer

Loop invariant of Producer:
IP : PC ∧ p ≤ n

process Producer dir0o
int a[n];
{ IPdir } // entering loop
while (p < n) dir0o { IP ∧ p < n }

< await (p == c); > { IP ∧ p < n ∧ p = c }
{ IP p←p+1buf←a[p] }

buf = a[p]; { IP p←p+1 }
p = p + 1; dir0oIPdir

dir dir0oIP ∧ ¬(p < n)dir // exit loop
⇔ dir0oPC ∧ p = ndir

dir

Proof obligation:
{ IP ∧ p < n ∧ p = c } ⇒ { IP }p←p+1buf←a[p]

332 / 578

Example: Producer

Loop invariant of Producer:
IP : PC ∧ p ≤ n

process Producer dir0o
int a[n];
{ IPdir } // entering loop
while (p < n) dir0o { IP ∧ p < n }

< await (p == c); > { IP ∧ p < n ∧ p = c }
{ IP p←p+1buf←a[p] }

buf = a[p]; { IP p←p+1 }
p = p + 1; dir0oIPdir

dir dir0oIP ∧ ¬(p < n)dir // exit loop
⇔ dir0oPC ∧ p = ndir

dir

Proof obligation:
{ IP ∧ p < n ∧ p = c } ⇒ { IP }p←p+1buf←a[p]

333 / 578

Example: Producer

Loop invariant of Producer:
IP : PC ∧ p ≤ n

process Producer dir0o
int a[n];
{ IPdir } // entering loop
while (p < n) dir0o { IP ∧ p < n }

< await (p == c); > { IP ∧ p < n ∧ p = c }
{ IP p←p+1buf←a[p] }

buf = a[p]; { IP p←p+1 }
p = p + 1; dir0oIPdir

dir dir0oIP ∧ ¬(p < n)dir // exit loop
⇔ dir0oPC ∧ p = ndir

dir

Proof obligation:
{ IP ∧ p < n ∧ p = c } ⇒ { IP }p←p+1buf←a[p]

334 / 578

Example: Consumer

Loop invariant of Consumer:
IC : PC ∧ c ≤ n ∧ b[0 : c − 1] = a[0 : c − 1]

process Consumer dir0o
int b[n];
dir0oIC dir // entering loop
while (c < n) dir0o dir0oIC ∧ c < ndir

< await (p > c) ; > dir0oIC ∧ c < n ∧ p > cdir
dir0oIC dir c←c+1,b[c]←buf

b[c] = buf; dir0oIC dir c←c+1
c = c + 1; dir0oIC dir

dir dir0oIC ∧ ¬(c < n)dir // exit loop
⇔ dir0oPC ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]dir

dir

Proof Obligation:
dir0oIC ∧ c < n ∧ p > cdir ⇒ dir0oIC dir c←c+1,b[c]←buf

335 / 578

Example: Consumer

Loop invariant of Consumer:
IC : PC ∧ c ≤ n ∧ b[0 : c − 1] = a[0 : c − 1]

process Consumer dir0o
int b[n];
dir0oIC dir // entering loop
while (c < n) dir0o dir0oIC ∧ c < ndir

< await (p > c) ; > dir0oIC ∧ c < n ∧ p > cdir
dir0oIC dir c←c+1,b[c]←buf

b[c] = buf; dir0oIC dir c←c+1
c = c + 1; dir0oIC dir

dir dir0oIC ∧ ¬(c < n)dir // exit loop
⇔ dir0oPC ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]dir

dir

Proof Obligation:
dir0oIC ∧ c < n ∧ p > cdir ⇒ dir0oIC dir c←c+1,b[c]←buf

336 / 578

Example: Consumer

Loop invariant of Consumer:
IC : PC ∧ c ≤ n ∧ b[0 : c − 1] = a[0 : c − 1]

process Consumer dir0o
int b[n];
dir0oIC dir // entering loop
while (c < n) dir0o dir0oIC ∧ c < ndir

< await (p > c) ; > dir0oIC ∧ c < n ∧ p > cdir
dir0oIC dir c←c+1,b[c]←buf

b[c] = buf; dir0oIC dir c←c+1
c = c + 1; dir0oIC dir

dir dir0oIC ∧ ¬(c < n)dir // exit loop
⇔ dir0oPC ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]dir

dir

Proof Obligation:
dir0oIC ∧ c < n ∧ p > cdir ⇒ dir0oIC dir c←c+1,b[c]←buf

337 / 578

Example: Consumer

Loop invariant of Consumer:
IC : PC ∧ c ≤ n ∧ b[0 : c − 1] = a[0 : c − 1]

process Consumer dir0o
int b[n];
dir0oIC dir // entering loop
while (c < n) dir0o dir0oIC ∧ c < ndir

< await (p > c) ; > dir0oIC ∧ c < n ∧ p > cdir
dir0oIC dir c←c+1,b[c]←buf

b[c] = buf; dir0oIC dir c←c+1
c = c + 1; dir0oIC dir

dir dir0oIC ∧ ¬(c < n)dir // exit loop
⇔ dir0oPC ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]dir

dir

Proof Obligation:
dir0oIC ∧ c < n ∧ p > cdir ⇒ dir0oIC dir c←c+1,b[c]←buf

338 / 578

Example: Consumer

Loop invariant of Consumer:
IC : PC ∧ c ≤ n ∧ b[0 : c − 1] = a[0 : c − 1]

process Consumer dir0o
int b[n];
dir0oIC dir // entering loop
while (c < n) dir0o dir0oIC ∧ c < ndir

< await (p > c) ; > dir0oIC ∧ c < n ∧ p > cdir
dir0oIC dir c←c+1,b[c]←buf

b[c] = buf; dir0oIC dir c←c+1
c = c + 1; dir0oIC dir

dir dir0oIC ∧ ¬(c < n)dir // exit loop
⇔ dir0oPC ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]dir

dir

Proof Obligation:
dir0oIC ∧ c < n ∧ p > cdir ⇒ dir0oIC dir c←c+1,b[c]←buf

339 / 578

Example: Consumer

Loop invariant of Consumer:
IC : PC ∧ c ≤ n ∧ b[0 : c − 1] = a[0 : c − 1]

process Consumer dir0o
int b[n];
dir0oIC dir // entering loop
while (c < n) dir0o dir0oIC ∧ c < ndir

< await (p > c) ; > dir0oIC ∧ c < n ∧ p > cdir
dir0oIC dir c←c+1,b[c]←buf

b[c] = buf; dir0oIC dir c←c+1
c = c + 1; dir0oIC dir

dir dir0oIC ∧ ¬(c < n)dir // exit loop
⇔ dir0oPC ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]dir

dir

Proof Obligation:
dir0oIC ∧ c < n ∧ p > cdir ⇒ dir0oIC dir c←c+1,b[c]←buf

340 / 578

Example: Producer/Consumer

The final state of the program satisfies:

PC ∧ p = n ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]

which ensures that all elements in a are received and occur in the
same order in b

Interference freedom is ensured by the global invariant and
await-statements

If we combine the two assertions after the await statements, we
get:

IP ∧ p < n ∧ p = c ∧ IC ∧ c < n ∧ p > c

which gives false!
At any time, only one process can be after the await statement!

341 / 578

Example: Producer/Consumer

The final state of the program satisfies:

PC ∧ p = n ∧ c = n ∧ b[0 : c − 1] = a[0 : c − 1]

which ensures that all elements in a are received and occur in the
same order in b

Interference freedom is ensured by the global invariant and
await-statements

If we combine the two assertions after the await statements, we
get:

IP ∧ p < n ∧ p = c ∧ IC ∧ c < n ∧ p > c

which gives false!
At any time, only one process can be after the await statement!

342 / 578

Monitor invariant

monitor name dir0o
monitor variables # shared global variable
initialization # for the monitor’s procedures
procedures

dir

A monitor invariant (I): used to describe the monitor’s inner
state
Express relationship between monitor variables
Maintained by execution of procedures:

Must hold after initialization
Must hold when a procedure terminates

Should be as strong as possible!

343 / 578

Monitor invariant

monitor name dir0o
monitor variables # shared global variable
initialization # for the monitor’s procedures
procedures

dir

A monitor invariant (I): used to describe the monitor’s inner
state
Express relationship between monitor variables
Maintained by execution of procedures:

Must hold after initialization
Must hold when a procedure terminates
Must hold when we suspend execution due to a call to wait
Can assume that the invariant holds after wait and when a
procedure starts

Should be as strong as possible!
344 / 578

Axioms for signal and continue (1)

Assume that the monitor invariant I and predicate P doe not
mention cv. Then we can set up the following axioms:

{ I } wait(cv) { I }
{ P } signal(cv) { P } for arbitrary P
{ P } signal_all(cv) { P } for arbitrary P

345 / 578

Monitor solution to reader/writer problem

Verification of the invariant over request_read

I : (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

procedure request_read() {
{ I }
while (nw > 0) { { I ∧ nw > 0 }

{ I } wait(oktoread); { I }
} { I ∧ nw = 0 }
{ I nr←nr+1 }
nr = nr + 1;
{ I }

}

(I ∧ nw > 0)⇒ I
(I ∧ nw = 0)⇒ I nr←nr+1

346 / 578

Monitor solution to reader/writer problem

Verification of the invariant over request_read

I : (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

procedure request_read() {
{ I }
while (nw > 0) { { I ∧ nw > 0 }

{ I } wait(oktoread); { I }
} { I ∧ nw = 0 }
{ I nr←nr+1 }
nr = nr + 1;
{ I }

}

(I ∧ nw > 0)⇒ I
(I ∧ nw = 0)⇒ I nr←nr+1

347 / 578

Monitor solution to reader/writer problem

Verification of the invariant over request_read

I : (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

procedure request_read() {
{ I }
while (nw > 0) { { I ∧ nw > 0 }

{ I } wait(oktoread); { I }
} { I ∧ nw = 0 }
{ I nr←nr+1 }
nr = nr + 1;
{ I }

}

(I ∧ nw > 0)⇒ I
(I ∧ nw = 0)⇒ I nr←nr+1

348 / 578

Monitor solution to reader/writer problem

Verification of the invariant over request_read

I : (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

procedure request_read() {
{ I }
while (nw > 0) { { I ∧ nw > 0 }

{ I } wait(oktoread); { I }
} { I ∧ nw = 0 }
{ I nr←nr+1 }
nr = nr + 1;
{ I }

}

(I ∧ nw > 0)⇒ I
(I ∧ nw = 0)⇒ I nr←nr+1

349 / 578

Monitor solution to reader/writer problem

Verification of the invariant over request_read

I : (nr = 0 ∨ nw = 0) ∧ nw ≤ 1

procedure request_read() {
{ I }
while (nw > 0) { { I ∧ nw > 0 }

{ I } wait(oktoread); { I }
} { I ∧ nw = 0 }
{ I nr←nr+1 }
nr = nr + 1;
{ I }

}

(I ∧ nw > 0)⇒ I
(I ∧ nw = 0)⇒ I nr←nr+1

350 / 578

Axioms for Signal and Continue (2)

Assume that the invariant can mention the number of processes in
the queue to a condition variable.

Let #cv be the number of proc’s waiting in the queue to cv .
The test empty(cv) thus corresponds to #cv = 0

wait(cv) is modelled as an extension of the queue followed by
processor release:

wait(cv) : {?} #cv = #cv + 1; {I} “sleep′′{I}

by assignment axiom:

wait(cv) : {I#cv←#cv+1; #cv := #cv + 1; { I } “sleep′′{ I }

351 / 578

Axioms for Signal and Continue (2)

Assume that the invariant can mention the number of processes in
the queue to a condition variable.

Let #cv be the number of proc’s waiting in the queue to cv .
The test empty(cv) thus corresponds to #cv = 0

wait(cv) is modelled as an extension of the queue followed by
processor release:

wait(cv) : {?} #cv = #cv + 1; {I} “sleep′′{I}

by assignment axiom:

wait(cv) : {I#cv←#cv+1; #cv := #cv + 1; { I } “sleep′′{ I }

352 / 578

Axioms for Signal and Continue (2)

Assume that the invariant can mention the number of processes in
the queue to a condition variable.

Let #cv be the number of proc’s waiting in the queue to cv .
The test empty(cv) thus corresponds to #cv = 0

wait(cv) is modelled as an extension of the queue followed by
processor release:

wait(cv) : {?} #cv = #cv + 1; {I} “sleep′′{I}

by assignment axiom:

wait(cv) : {I#cv←#cv+1; #cv := #cv + 1; { I } “sleep′′{ I }

353 / 578

Axioms for Signal and Continue (2)

Assume that the invariant can mention the number of processes in
the queue to a condition variable.

Let #cv be the number of proc’s waiting in the queue to cv .
The test empty(cv) thus corresponds to #cv = 0

wait(cv) is modelled as an extension of the queue followed by
processor release:

wait(cv) : {?} #cv = #cv + 1; {I} “sleep′′{I}

by assignment axiom:

wait(cv) : {I#cv←#cv+1; #cv := #cv + 1; { I } “sleep′′{ I }

354 / 578

Axioms for Signal and Continue (2)

Assume that the invariant can mention the number of processes in
the queue to a condition variable.

Let #cv be the number of proc’s waiting in the queue to cv .
The test empty(cv) thus corresponds to #cv = 0

wait(cv) is modelled as an extension of the queue followed by
processor release:

wait(cv) : {?} #cv = #cv + 1; {I} “sleep′′{I}

by assignment axiom:

wait(cv) : {I#cv←#cv+1; #cv := #cv + 1; { I } “sleep′′{ I }

355 / 578

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

signal_all(cv): { P#cv←0 } #cv := 0 {P}

356 / 578

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

signal_all(cv): { P#cv←0 } #cv := 0 {P}

357 / 578

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

signal_all(cv): { P#cv←0 } #cv := 0 {P}

358 / 578

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

signal_all(cv): { P#cv←0 } #cv := 0 {P}

359 / 578

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

signal_all(cv): { P#cv←0 } #cv := 0 {P}

360 / 578

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

signal_all(cv): { P#cv←0 } #cv := 0 {P}

361 / 578

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the
queue is not empty:

signal(cv) : { ? } if (#cv 6= 0) #cv := #cv − 1 { P }

signal(cv) : {((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv←#cv−1}
if (#cv 6= 0) #cv := #cv − 1
{P}

signal_all(cv): { P#cv←0 } #cv := 0 {P}

362 / 578

Axioms for Signal and Continue (4)

Together this gives:

Axioms for monitor communication

{ I#cv ←(#cv+1) } wait(cv) { I } wait

{ ((#cv = 0)⇒ P) ∧ ((#cv 6= 0)⇒ P#cv ←(#cv−1)) } signal(cv) { P } Signal

{ P#cv ←0 } signal_all(cv) { P } SignalAll

If we know that #cv 6= 0 whenever we signal, then the axiom for
signal(cv) be simplified to:

{ P#cv ←(#cv−1) } signal(cv) { P }

Note! #cv is not allowed in statements!, Only used for reasoning

363 / 578

Example: FIFO semaphore verification (1)

1 monitor Semaphore_f i fo { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 ; # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 i f (s=0)
7 wait (pos) ;
8 e l s e
9 s := s − 1

10 }
11
12
13 procedure Vsem () {
14 i f empty (pos)
15 s := s + 1
16 e l s e
17 s i g n a l (pos) ;
18 }
19 }

Consider the following monitor invariant:

s ≥ 0 ∧ (s > 0⇒ #pos = 0)

No process is waiting if the semaphore value is positive 364 / 578

Example: FIFO semaphore verification (1)

1 monitor Semaphore_f i fo { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 ; # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 i f (s=0)
7 wait (pos) ;
8 e l s e
9 s := s − 1

10 }
11
12
13 procedure Vsem () {
14 i f empty (pos)
15 s := s + 1
16 e l s e
17 s i g n a l (pos) ;
18 }
19 }

Consider the following monitor invariant:

s ≥ 0 ∧ (s > 0⇒ #pos = 0)

No process is waiting if the semaphore value is positive 365 / 578

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

366 / 578

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

367 / 578

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

368 / 578

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

369 / 578

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

370 / 578

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

371 / 578

Example: FIFO semaphore verification: Psem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Psem() {
{I}

if (s=0) {I ∧ s = 0}
{I#pos←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s := s-1; {I}

{I}
}

372 / 578

Example: FIFO semaphore verification (3)

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

This gives two proof obligations:
If-branch:

(I ∧ s = 0) ⇒ I#pos←(#pos+1)
s = 0 ⇒ s ≥ 0 ∧ (s > 0⇒ #pos + 1 = 0)
s = 0 ⇒ s ≥ 0

Else branch:

(I ∧ s 6= 0) ⇒ Is←(s−1)
(s > 0 ∧#pos = 0) ⇒ s − 1 ≥ 0 ∧ (s − 1 ≥ 0⇒ #pos = 0)
(s > 0 ∧#pos = 0) ⇒ s > 0 ∧#pos = 0

373 / 578

Example: FIFO semaphore verification (3)

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

This gives two proof obligations:
If-branch:

(I ∧ s = 0) ⇒ I#pos←(#pos+1)
s = 0 ⇒ s ≥ 0 ∧ (s > 0⇒ #pos + 1 = 0)
s = 0 ⇒ s ≥ 0

Else branch:

(I ∧ s 6= 0) ⇒ Is←(s−1)
(s > 0 ∧#pos = 0) ⇒ s − 1 ≥ 0 ∧ (s − 1 ≥ 0⇒ #pos = 0)
(s > 0 ∧#pos = 0) ⇒ s > 0 ∧#pos = 0

374 / 578

Example: FIFO semaphore verification: Vsem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Vsem() dir0o
{I}

if empty(pos) {I ∧#pos = 0}
{Is←(s+1)}s:=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos←(#pos−1)} signal(pos); {I}

{I}
dir

375 / 578

Example: FIFO semaphore verification: Vsem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Vsem() dir0o
{I}

if empty(pos) {I ∧#pos = 0}
{Is←(s+1)}s:=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos←(#pos−1)} signal(pos); {I}

{I}
dir

376 / 578

Example: FIFO semaphore verification: Vsem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Vsem() dir0o
{I}

if empty(pos) {I ∧#pos = 0}
{Is←(s+1)}s:=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos←(#pos−1)} signal(pos); {I}

{I}
dir

377 / 578

Example: FIFO semaphore verification: Vsem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Vsem() dir0o
{I}

if empty(pos) {I ∧#pos = 0}
{Is←(s+1)}s:=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos←(#pos−1)} signal(pos); {I}

{I}
dir

378 / 578

Example: FIFO semaphore verification: Vsem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Vsem() dir0o
{I}

if empty(pos) {I ∧#pos = 0}
{Is←(s+1)}s:=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos←(#pos−1)} signal(pos); {I}

{I}
dir

379 / 578

Example: FIFO semaphore verification: Vsem

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

procedure Vsem() dir0o
{I}

if empty(pos) {I ∧#pos = 0}
{Is←(s+1)}s:=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos←(#pos−1)} signal(pos); {I}

{I}
dir

380 / 578

Example: FIFO semaphore verification (5)

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

As above, this gives two proof obligations:
If-branch:

(I ∧#pos = 0) ⇒ Is←(s+1)
(s ≥ 0 ∧#pos = 0) ⇒ s + 1 ≥ 0 ∧ (s + 1 > 0⇒ #pos = 0)
(s ≥ 0 ∧#pos = 0) ⇒ s + 1 ≥ 0 ∧#pos = 0

Else branch:

(I ∧#pos 6= 0) ⇒ I#pos←(#pos−1)
(s = 0 ∧#pos 6= 0) ⇒ s ≥ 0 ∧ (s > 0⇒ #pos − 1 = 0)
s = 0 ⇒ s ≥ 0

381 / 578

Example: FIFO semaphore verification (5)

I : s ≥ 0 ∧ (s > 0⇒ #pos = 0)

As above, this gives two proof obligations:
If-branch:

(I ∧#pos = 0) ⇒ Is←(s+1)
(s ≥ 0 ∧#pos = 0) ⇒ s + 1 ≥ 0 ∧ (s + 1 > 0⇒ #pos = 0)
(s ≥ 0 ∧#pos = 0) ⇒ s + 1 ≥ 0 ∧#pos = 0

Else branch:

(I ∧#pos 6= 0) ⇒ I#pos←(#pos−1)
(s = 0 ∧#pos 6= 0) ⇒ s ≥ 0 ∧ (s > 0⇒ #pos − 1 = 0)
s = 0 ⇒ s ≥ 0

382 / 578

Java concurrency

INF4140 - Models of concurrency
Java concurrency, lecture 7

Høsten 2014

10. 10. 2014

384 / 578

Outline

1. Monitors: review

2. Threads in Java:
Thread classes and Runnable interfaces
Interference and Java threads
Synchronized blocks and methods: (atomic regions and
monitors)

3. Example: The ornamental garden

4. Thread communication & condition synchronization (wait and
signal/notify)

5. Example: Mutual exclusion

6. Example: Readers/writers

385 / 578

Short recap of monitors

monitor encapsulates data, which can only be observed and
modified by the monitor’s procedures

Contains variables that describe the state
variables can be accessed/changed only through the available
procedures

Implicit mutex: Only a procedure may be active at a time.
2 procedures in the same monitor: never executed concurrently

Condition synchronization: block a process until a particular
condition holds, achieved through condition variables.

Signaling disciplines

Signal and wait (SW): the signaller waits, and the signalled process
gets to execute immediately

Signal and continue (SC): the signaller continues, and the signalled
process executes later

386 / 578

Java

From Wikipedia:29

" ... Java is a general-purpose, concurrent, class-based,
object-oriented language ..."

29But it’s correct nonetheless . . .
387 / 578

Threads in Java

A thread in Java
unit of concurrency30

identity, accessible via static method
Thread.CurrentThread()31

has its own stack / execution context
access to shared state
shared mutable state: heap structured into objects

privacy restrictions possible
what are private fields?

may be created (and deleted) dynamically

30as such, roughly corresponding to the concept of “processes” from previous
lecctures.

31What’s the difference to this?
388 / 578

Thread class

Thread

run()

MyThread

run()

The Thread class executes instructions from its
method run(). The actual code executed depends on
the implementation provided for run() in a derived
class.

1 c l a s s MyThread extends Thread {
2 pub l i c vo id run () {
3 //
4 }
5 }
6 // C r e a t i n g a th r ead o b j e c t :
7 Thread a = new MyThread () ;
8 a . s t a r t () ;

389 / 578

Runnable interface

As Java does not support multiple inheritance, we often implement
the run() method in a class not derived from Thread but from the
interface Runnable.

Runnable

run()

MyRun

run()

public interface Runnable {
public abstract void run();

}

class MyRun implements Runnable {
public void run() {

 //
 }
}

Thread
target

1 // C r e a t i n g a th r ead o b j e c t :
2 Runnable b = new MyRun () ;
3 new Thread (b) . s t a r t () ;

390 / 578

Threads in Java

steps to create a thread in Java and get it running:

1. Define class that
extends the Java Thread class or
implements the Runnable interface

2. define run method inside the new class32

3. create an instance of the new class.
4. start the thread.

32overriding, late-binding.
391 / 578

Interference and Java threads

1 . . .
2 c l a s s Sto r e {
3 p r i v a t e i n t data = 0 ;
4 pub l i c vo id update () { data++; }
5 }
6 . . .
7
8 // i n a method :
9 Sto r e s = new Sto r e () ; // the t h r e ad s below have a c c e s s to s

10 t1 = new FooThread (s) ; t1 . s t a r t () ;
11 t2 = new FooThread (s) ; t2 . s t a r t () ;

t1 and t2 execute s.update() concurrently!
Interference between t1 and t2 ⇒ may lose updates to data.

392 / 578

Synchronization

avoid interference ⇒ threads “synchronize” access to shared data
1. One unique lock for each object o.
2. mutex: at most one thread t can lock o at any time.33

3. 2 “flavors”

“synchronized block”

1 synchron ized (o) { B }

synchronized method
whole method body of m “protected”a:

1 synchron ized Type m(. . .) { . . . }

aassuming that other methods play according to the rules as well etc.

33but: in a re-entrant manner!
393 / 578

Protecting the initialization

Solution to earlier problem: lock the Store objects before executing
problematic method:

1 c l a s s S to r e {
2 p r i v a t e i n t data = 0 ;
3
4 p u b l i c vo id update () {
5 synchron ized (t h i s) { data++; }
6 }
7 }

or

1 c l a s s S to r e {
2 p r i v a t e i n t data = 0 ;
3
4 p u b l i c synchron ized vo id update () { data++; }
5 }
6 . . .
7
8 // i n s i d e a method :
9 Sto r e s = new Sto r e () ;

394 / 578

Java Examples

Book:
Concurrency: State Models &
Java Programs, 2nd Edition

Jeff Magee & Jeff Kramer

Wiley

Examples in Java:
http://www.doc.ic.ac.uk/~jnm/book/

395 / 578

http://www.doc.ic.ac.uk/~jnm/book/

Ornamental garden problem

people enter an ornamental garden through either of 2
turnstiles.
problem: the number of people present at any time.

The concurrent program consists of:

2 threads
shared counter object

396 / 578

Ornamental garden problem: Class diagram

The Turnstile thread simulates the periodic arrival of a visitor to
the garden every second by sleeping for a second and then invoking
the increment() method of the counter object.

397 / 578

Counter

1
2 c l a s s Counter {
3
4 i n t va lue = 0 ;
5 NumberCanvas d i s p l a y ;
6
7 Counter (NumberCanvas n) {
8 d i s p l a y = n ;
9 d i s p l a y . s e t v a l u e (va lue) ;

10 }
11
12 vo id increment () {
13 i n t temp = va lue ; // read [v]
14 S imu la t e . HWinterrupt () ;
15 va lue = temp + 1 ; // w r i t e [v+1]
16 d i s p l a y . s e t v a l u e (va lue) ;
17 }
18 }

398 / 578

Turnstile

1
2 c l a s s Tu rn s t i l e extends Thread {
3 NumberCanvas d i s p l a y ; // i n t e r f a c e
4 Counter people ; // sha r ed data
5
6 Turn s t i l e (NumberCanvas n , Counter c) { // c o n s t r u c t o r
7 d i s p l a y = n ;
8 people = c ;
9 }

10
11 pub l i c vo id run () {
12 t r y {
13 d i s p l a y . s e t v a l u e (0) ;
14 f o r (i n t i = 1 ; i <= Garden .MAX; i++) {
15 Thread . s l e e p (5 0 0) ; // 0 .5 second
16 d i s p l a y . s e t v a l u e (i) ;
17 people . i n c r ement () ; // inc r ement the coun t e r
18 }
19 } catch (I n t e r r u p t e dE x c e p t i o n e) { }
20 }
21 }

399 / 578

Ornamental Garden Program

The Counter object and Turnstile threads are created by the go()
method of the Garden applet:

1 p r i v a t e vo id go () {
2 coun t e r = new Counter (counterD) ;
3 west = new Turn s t i l e (westD , coun t e r) ;
4 e a s t = new Turn s t i l e (eastD , coun t e r) ;
5 west . s t a r t () ;
6 e a s t . s t a r t () ;
7 }

400 / 578

Ornamental Garden Program: DEMO

DEMO

After the East and West turnstile threads have each incremented
its counter 20 times, the garden people counter is not the sum of
the counts displayed. Counter increments have been lost. Why?

401 / 578

Avoid interference by synchronization

1
2 c l a s s Synch ron i z edCounte r extends Counter {
3
4 Synch ron i z edCounte r (NumberCanvas n) {
5 super (n) ;
6 }
7
8 synchron ized vo id i n c r ement () {
9 super . i n c r ement () ;

10 }
11 }

402 / 578

Mutual Exclusion: The Ornamental Garden - DEMO

DEMO

403 / 578

Monitors

each object
has attached to it a unique lock
and thus: can act as monitor

3 important monitor operations34
o.wait(): release lock on o, enter o’s wait queue and wait
o.notify(): wake up one thread in o’s wait queue
o.notifyAll(): wake up all threads in o’s wait queue

executable by a thread “inside” the monitor represented by o

executing thread must hold the lock of o/ executed within
synchronized portions of code
typical use: this.wait() etc.
note: notify does not operate on a thread-identity35

⇒
1 Thread t = new MyThread () ;
2 . . .
3 t . n o t i f y () ; ; // most l y to be nonsense

34there are more
35technically, a thread identity is represented by a “thread object” though.

Note also : Thread.suspend() and Thread.resume() are deprecated.
404 / 578

Condition synchronization, scheduling, and signaling

quite simple/weak form of monitors in Java
only one (implicit) condition variable per object: availability of
the lock. threads that wait on o (o.wait()) are in this queue
no built-in support for general-purpose condition variables.
ordering of wait “queue”: implementation-dependent (usually
FIFO)
signaling discipline: S & C
awakened thread: no advantage in competing for the lock to o.
note: monitor-protection not enforced

private field modifier 6= instance private
not all methods need to be synchronized36

besides that: there’s re-entrance!

36remember: find of oblig-1.
405 / 578

A semaphore implementation in Java

1 // down () = P op e r a t i o n
2 // up () = V op e r a t i o n
3
4 pub l i c c l a s s Semaphore {
5 p r i v a t e i n t v a l u e ;
6
7 pub l i c Semaphore (i n t i n i t i a l) {
8 v a l u e = i n i t i a l ;
9 }

10
11 synchron ized pub l i c vo id up () {
12 ++va l u e ;
13 n o t i f yA l l () ; }
14
15 synchron ized pub l i c vo id down () throws Inte r ruptedExcept ion {
16 whi le (v a l u e==0) wait () ; // the we l l−known wh i l e−cond−wa i t p a t t e r n
17 − −v a l u e ; }
18 }

cf. also java.util.concurrency.Semaphore (acquire/release + more
methods)

406 / 578

Mutual exclusion with sempahores

407 / 578

Mutual exclusion with sempahores

1
2 c l a s s MutexLoop implements Runnable {
3
4 Semaphore mutex ;
5
6 MutexLoop (Semaphore sema) {mutex=sema ; }
7
8 pub l i c vo id run () {
9 t r y {

10 whi le (t rue) {
11 whi le (! ThreadPane l . r o t a t e ()) ;
12 // get mutual e x c l u s i o n
13 mutex . down () ;
14 whi le (ThreadPane l . r o t a t e ()) ; // c r i t i c a l s e c t i o n
15 // r e l e a s e mutual e x c l u s i o n
16 mutex . up () ;
17 }
18 } catch (I n t e r r u p t e dE x c e p t i o n e){}
19 }
20 }

DEMO

408 / 578

Readers and writers problem (again. . .)

A shared database is accessed by two kinds of processes. Readers
execute transactions that examine the database while Writers both
examine and update the database. A Writer must have exclusive
access to the database; any number of Readers may concurrently
access it.

409 / 578

Interface R/W

1
2 i n t e r f a c e ReadWrite {
3
4 pub l i c vo id acquireRead () throws I n t e r r u p t e dE x c e p t i o n ;
5
6 pub l i c vo id re leaseRead () ;
7
8 pub l i c vo id acqu i reWrite () throws I n t e r r u p t e dE x c e p t i o n ;
9

10 pub l i c vo id re l easeWr i te () ;
11 }

410 / 578

Reader client code

1
2 c l a s s Reader imp lements Runnable {
3
4 ReadWrite monitor_ ;
5
6 Reader (ReadWrite monitor) {
7 monitor_ = monitor ;
8 }
9

10 p u b l i c vo id run () {
11 t r y {
12 whi le (t rue) {
13 whi le (! ThreadPane l . r o t a t e ()) ;
14 // begin c r i t i c a l s e c t i o n
15 monitor_ . a cqu i r eRead () ;
16 whi le (ThreadPane l . r o t a t e ()) ;
17 monitor_ . r e l e a s eRead () ;
18 }
19 } ca tch (I n t e r r u p t e dE x c e p t i o n e){}
20 }
21 }

411 / 578

Writer client code

1
2 c l a s s Writer imp lements Runnable {
3
4 ReadWrite monitor_ ;
5
6 Writer (ReadWrite monitor) {
7 monitor_ = monitor ;
8 }
9

10 p u b l i c vo id run () {
11 t r y {
12 whi le (t rue) {
13 whi le (! ThreadPane l . r o t a t e ()) ;
14 // begin c r i t i c a l s e c t i o n
15 monitor_ . a c qu i r eWr i t e () ;
16 whi le (ThreadPane l . r o t a t e ()) ;
17 monitor_ . r e l e a s eW r i t e () ;
18 }
19 } ca tch (I n t e r r u p t e dE x c e p t i o n e){}
20 }
21 }

412 / 578

R/W monitor (regulate readers)

1
2 c l a s s ReadWri teSafe implements ReadWrite {
3 p r i v a t e i n t r e a d e r s =0;
4 p r i v a t e boo l ean w r i t i n g = f a l s e ;
5
6 p u b l i c s y n c h r on i z e d vo id acquireRead ()
7 throws I n t e r r u p t e dE x c e p t i o n {
8 whi le (w r i t i n g) wait () ;
9 ++r e a d e r s ;

10 }
11
12 p u b l i c s y n c h r on i z e d vo id re leaseRead () {
13 − −r e a d e r s ;
14 i f (r e a d e r s==0) n o t i f yA l l () ;
15 }
16
17 p u b l i c s y n c h r on i z e d vo id a cqu i r eWr i t e () { . . . }
18
19 p u b l i c s y n c h r on i z e d vo id r e l e a s eW r i t e () { . . . }
20 }

413 / 578

R/W monitor (regulate readers)

1
2 c l a s s ReadWri teSafe implements ReadWrite {
3 p r i v a t e i n t r e a d e r s =0;
4 p r i v a t e boo l ean w r i t i n g = f a l s e ;
5
6 p u b l i c s y n c h r on i z e d vo id acquireRead ()
7 throws I n t e r r u p t e dE x c e p t i o n {
8 whi le (w r i t i n g) wait () ;
9 ++r e a d e r s ;

10 }
11
12 p u b l i c s y n c h r on i z e d vo id re leaseRead () {
13 − −r e a d e r s ;
14 i f (r e a d e r s==0) n o t i f yA l l () ;
15 }
16
17 p u b l i c s y n c h r on i z e d vo id a cqu i r eWr i t e () { . . . }
18
19 p u b l i c s y n c h r on i z e d vo id r e l e a s eW r i t e () { . . . }
20 }

414 / 578

R/W monitor (regulate writers)

1
2 c l a s s ReadWri teSafe implements ReadWrite {
3 p r i v a t e i n t r e a d e r s =0;
4 p r i v a t e boolean w r i t i n g = f a l s e ;
5
6 pub l i c synchron ized vo id acqu i r eRead () { . . . }
7
8 pub l i c synchron ized vo id r e l e a s eRead () { . . . }
9

10 pub l i c synchron ized vo id acqui reWrite ()
11 throws I n t e r r u p t e dE x c e p t i o n {
12 whi le (r e ad e r s >0 | | w r i t i n g) wait () ;
13 w r i t i n g = t rue ;
14 }
15
16 pub l i c synchron ized vo id re l easeWr i te () {
17 w r i t i n g = f a l s e ;
18 n o t i f yA l l () ;
19 }
20 }

DEMO

415 / 578

Fairness

416 / 578

“Fairness”: regulating readers

1
2 c l a s s ReadWr i t eFa i r implements ReadWrite {
3
4 p r i v a t e i n t r e a d e r s =0;
5 p r i v a t e boolean w r i t i n g = f a l s e ;
6 p r i v a t e i n t waitingW = 0 ; // no o f wa i t i n g Wr i t e r s .
7 p r i v a t e boolean reade r s tu rn = f a l s e ;
8
9 synchron ized pub l i c vo id acquireRead ()

10 throws I n t e r r u p t e dE x c e p t i o n {
11 whi le (w r i t i n g | | (waitingW>0 && ! r eade r s tu rn)) wait () ;
12 ++r e a d e r s ;
13 }
14
15 synchron ized pub l i c vo id re leaseRead () {
16 − −r e a d e r s ;
17 r eade r s tu rn=f a l s e ;
18 i f (r e a d e r s==0) n o t i f yA l l () ;
19 }
20
21 synchron ized pub l i c vo id a cqu i r eWr i t e () { . . . }
22 synchron ized pub l i c vo id r e l e a s eW r i t e () { . . . }
23 }

417 / 578

“Fairness”: regulating writers

1
2 c l a s s ReadWr i t eFa i r implements ReadWrite {
3
4 p r i v a t e i n t r e a d e r s =0;
5 p r i v a t e boolean w r i t i n g = f a l s e ;
6 p r i v a t e i n t waitingW = 0 ; // no o f wa i t i n g Wr i t e r s .
7 p r i v a t e boolean reade r s tu rn = f a l s e ;
8
9 synchron ized pub l i c vo id acqu i r eRead () { . . . }

10 synchron ized pub l i c vo id r e l e a s eRead () { . . . }
11
12 synchron ized pub l i c vo id acqu i reWrite ()
13 throws I n t e r r u p t e dE x c e p t i o n {
14 ++waitingW ;
15 whi le (r e ad e r s >0 | | w r i t i n g) wait () ;
16 −−waitingW ; w r i t i n g = t rue ;
17 }
18
19 synchron ized pub l i c vo id re l easeWr i te () {
20 w r i t i n g = f a l s e ; r eade r s tu rn=t rue ;
21 n o t i f yA l l () ;
22 }
23 }

418 / 578

Readers and Writers problem

DEMO

419 / 578

Java concurrency

there’s (much) more to it than what we discussed
(synchronization, monitors) (see java.util.concurrency)
Java’s memory model: since Java 1: loooong, hot debate
connections to

GUI-programming (swing/awt/events) and to
RMI etc.

major clean-up/repair since Java 5
better “thread management”
Lock class (allowing new Lock() and non block-structured
locking)
one simplification here: Java has a (complex!) weak memory
model (out-of-order execution, compiler optimization)
not discussed here volatile

420 / 578

General advice

shared, mutable state is more than a bit tricky,a watch out!
work thread-local if possible

make variables immutable if possible

keep things local: encapsulate state

learn from tried-and-tested concurrent design patterns

aand pointer aliasing and a weak memory model makes it worse.

golden rule
never, ever allow (real, unprotected) races

unfortunately: no silver bullet
for instance: “synchronize everything as much as possible”: not
just inefficient, but mostly nonsense

⇒ concurrent programmig remains a bit of an art

see for instance [Goetz et al., 2006] or [Lea, 1999]
421 / 578

Message passing and channels

INF4140 - Models of concurrency
Message passing and channels

Høsten 2014

17. Oct. 2014

Outline

Course overview:
Part I: concurrent programming; programming with shared
variables
Part II: “distributed” programming

Outline: asynchronous and synchronous message passing
Concurrent vs. distributed programming37

Asynchronous message passing: channels, messages, primitives
Example: filters and sorting networks
From monitors to client–server applications
Comparison of message passing and monitors
About synchronous message passing

37The dividing line is not absolute. One can make perfectly good use of
channels and message passing also in a non-distributed setting.

424 / 578

Shared memory vs. distributed memory

more traditional system architectures have one shared memory:
many processors access the same physical memory
example: fileserver with many processors on one motherboard

Distributed memory architectures:
Processor has private memory and communicates over a
“network” (inter-connect)
Examples:

Multicomputer: asynchronous multi-processor with distributed
memory (typically contained inside one case)
Workstation clusters: PC’s in a local network
Grid system: machines on the Internet, resource sharing
cloud computing: cloud storage service
NUMA-architectures
cluster computing . . .

425 / 578

Shared memory concurrency in the real world

shared memory

thread0 thread1
the memory architecture does not reflect
reality
out-of-order executions:

modern systems: complex memory
hierarchies, caches, buffers. . .
compiler optimizations,

426 / 578

SMP, multi-core architecture, and NUMA

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

CPU0 CPU1

CPU2CPU3

Mem. Mem.

Mem.Mem.

427 / 578

Concurrent vs. distributed programming

Concurrent programming:
Processors share one memory
Processors communicate via reading and writing of shared
variables

Distributed programming:
Memory is distributed
⇒ processes cannot share variables (directly)
Processes communicate by sending and receiving messages via
shared channels
or (in future lectures): communication via RPC and rendezvous

428 / 578

Asynchronous message passing: channel abstraction

Channel: abstraction, e.g., of a physical communication network38

One–way from sender(s) to receiver(s)
unbounded FIFO (queue) of waiting messages
preserves message order
atomic access
error–free
typed

Variants: errors possible, untyped, . . .

38but remember also: producer-consumer problem
429 / 578

Asynchronous message passing: primitives

Channel declaration

chan c(type1id1, . . . , typenidn);

Messages: n-tuples of values of the respective types

communication primitives:

send c(expr1, . . . , exprn);
Non-blocking, i.e. asynchronous
receive c(var1, . . . , varn);
Blocking: receiver waits until message is sent on the channel
empty (c);
True if channel is empty

P1 P2
c

send receive

430 / 578

Example: message passing

A B
foo

send receive

(x,y) =

1 chan f oo (i n t) ;
2
3 process A {
4 send f oo (1) ;
5 send f oo (2) ;
6 }

7
8 process B {
9 r e ce i v e f oo (x) ;

10 r e ce i v e f oo (y) ;
11 }

431 / 578

Example: message passing

A B
foo

send receive

(x,y) = (1,2)

1 chan f oo (i n t) ;
2
3 process A {
4 send f oo (1) ;
5 send f oo (2) ;
6 }

7
8 process B {
9 r e ce i v e f oo (x) ;

10 r e ce i v e f oo (y) ;
11 }

432 / 578

Example: shared channel

A1

B

send
foo

receive

A2
send

(x,y) =

1 process A1 {
2 send f oo (1) ;
3 }
4

5 process A2 {
6 send f oo (2) ;
7 }
8
9 process B {

10 r e ce i v e f oo (x) ;
11 r e ce i v e f oo (y) ;
12 }

433 / 578

Example: shared channel

A1

B

send
foo

receive

A2
send

(x,y) = (1,2) or (2,1)

1 process A1 {
2 send f oo (1) ;
3 }
4

5 process A2 {
6 send f oo (2) ;
7 }
8
9 process B {

10 r e ce i v e f oo (x) ;
11 r e ce i v e f oo (y) ;
12 }

434 / 578

Asynchronous message passing and semaphores

Comparison with general semaphores:

channel ' semaphore
send ' V

receive ' P

Number of messages in queue = value of semaphore

(Ignores content of messages)

435 / 578

Filters: one–way interaction

Filter F
= process which:

receives messages on input channels,
sends messages on output channels, and
output is a function of the input (and the initial state).

out

outreceive

F

receive

1

n

.

.

.

in

in

1

n

.

.

.

send

send

A filter is specified as a predicate.
Some computations can naturally be seen as a composition of
filters.
cf. stream processing/programming (feedback loops) and
dataflow programming

436 / 578

Example: A single filter process

Problem: Sort a list of n numbers into ascending order.

process Sort with input channels input and output channel
output.

Define:
n : number of values sent to output.
sent[i] : i ’th value sent to output.

Sort predicate
∀i : 1 ≤ i < n.

(
sent[i] ≤ sent[i + 1]

)
∧ values sent to output are a permutation of values
from input.

437 / 578

Filter for merging of streams

Problem: Merge two sorted input streams into one sorted stream.

Process Merge with input channels in1 and in2 and output channel
out:

1 i n 1 : 1 4 9 . . .
2 out : 1 2 4 5 8 9 . . .
3 i n 2 : 2 5 8 . . .

Special value EOS marks the end of a stream.

Define:
n : number of values sent to out.
sent[i] : i ’th value sent to out.

The following shall hold when Merge terminates:

in1 and in2 are empty ∧ sent[n + 1] = EOS
∧ ∀i : 1 ≤ i < n

(
sent[i] ≤ sent[i + 1]

)
∧ values sent to out are a permutation of values from
in1 and in2

438 / 578

Example: Merge process

1 chan i n1 (i n t) , i n 2 (i n t) , out (i n t) ;
2
3 process Merge {
4 i n t v1 , v2 ;
5 r e c e i v e i n 1 (v1) ; # read the f i r s t two
6 r e c e i v e i n 2 (v2) ; # inpu t v a l u e s
7
8 whi le (v1 6= EOS and v2 6= EOS) {
9 i f (v1 ≤ v2)

10 { send out (v1) ; r e c e i v e i n 1 (v1) ; }
11 e l s e # (v1 > v2)
12 { send out (v2) ; r e c e i v e i n 2 (v2) ; }
13 }
14
15 # consume the r e s t
16 # of the non−empty i npu t channe l
17 whi le (v2 6= EOS)
18 { send out (v2) ; r e ce i v e i n 2 (v2) ; }
19 whi le (v1 6= EOS)
20 { send out (v1) ; r e ce i v e i n 1 (v1) ; }
21 send out (EOS) ; # add s p e c i a l v a l u e to out
22 }

439 / 578

Sorting network

We now build a network that sorts n numbers.

We use a collection of Merge processes with tables of shared input
and output channels.

Merge
Value 2

Value n

Value n-1

Value 1

.

.

.

Merge

Merge
Sorted
stream

.

.

.

(Assume: number of input values n is a power of 2)

440 / 578

Client-server applications using messages

Server: process, repeatedly handling requests from client processes.

Goal: Programming client and server systems with asynchronous
message passing.

1 chan r e q u e s t (i n t c l i e n t ID , . . .) ,
2 r e p l y [n] (. . .) ;
3
4 c l i e n t nr . i s e r ve r
5 i n t i d ; # c l i e n t i d .
6
7 whi le (t rue) { # s e r v e r l oop
8 send r e q u e s t (i , a r g s) ; −→ r e c e i v e r e q u e s t (id , v a r s) ;

9
...

...
...

10 r e ce i v e r e p l y [i] (v a r s) ; ←− send r e p l y [i d] (r e s u l t s) ;
11 }

441 / 578

Monitor implemented using message passing

Classical monitor:
controlled access to shared resource
Permanent variables (monitor variables): safeguard the
resource state
access to a resource via procedures
procedures: executed under mutual exclusion
condition variables for synchronization

also implementable by server process + message passing
Called “active monitor” in the book: active process (loop), instead
of passive procedures.39

39In practice: server may spawn local threads, one per request.
442 / 578

Allocator for multiple–unit resources

Multiple–unit resource: a resource consisting of multiple units

Examples: memory blocks, file blocks.
Users (clients) need resources, use them, and return them to the
allocator (“free” the resources).

here simplification: users get and free one resource at a time.
two versions:
1. monitor
2. server and client processes, message passing

443 / 578

Allocator as monitor

Uses “passing the condition” pattern ⇒ simplifies later translation
to a server process

Unallocated (free) units are represented as a set,
type set, with operations insert and remove.

444 / 578

Recap: “semaphore monitor” with “passing the condition”

1 monitor Semaphore_f i fo { # moni to r i n v a r i a n t : s ≥ 0
2 i n t s := 0 ; # va l u e o f the semaphore
3 cond pos ; # wai t c o n d i t i o n
4
5 procedure Psem () {
6 i f (s=0)
7 wait (pos) ;
8 e l s e
9 s := s − 1

10 }
11
12
13 procedure Vsem () {
14 i f empty (pos)
15 s := s + 1
16 e l s e
17 s i g n a l (pos) ;
18 }
19 }

(Fig. 5.3 in Andrews [Andrews, 2000])

445 / 578

Allocator as a monitor

1 monitor Resou r c e_A l l o ca to r {
2 i n t a v a i l := MAXUNITS;
3 s e t u n i t s := . . . # i n i t i a l v a l u e s ;
4 cond f r e e ; # s i g n a l l e d when p r o c e s s wants a u n i t
5
6 procedure acqu i re (i n t &id) { # var . paramete r
7 i f (a v a i l = 0)
8 wait (f r e e) ;
9 e l s e

10 a v a i l := a v a i l −1;
11 remove (un i t s , i d) ;
12 }
13
14 procedure r e l e a s e (i n t i d) {
15 i n s e r t (un i t s , i d) ;
16 i f (empty (f r e e))
17 a v a i l := a v a i l +1;
18 e l s e
19 s i g n a l (f r e e) ; # pa s s i n g the c o n d i t i o n
20 }
21 }

([Andrews, 2000, Fig. 7.6])

446 / 578

Allocator as a server process: code design

1. interface and “data structure”
2. control structure: nested if-statement (2 levels):
3. synchronization, scheduling, and mutex

447 / 578

Allocator as a server process: code design

1. interface and “data structure”
1.1 allocator with two types of operations: get unit, free unit
1.2 1 request channel40 ⇒ must be encoded in the arguments to a

request.

2. control structure: nested if-statement (2 levels):
3. synchronization, scheduling, and mutex

40Alternatives exist
448 / 578

Allocator as a server process: code design

1. interface and “data structure”
1.1 allocator with two types of operations: get unit, free unit
1.2 1 request channel40 ⇒ must be encoded in the arguments to a

request.
2. control structure: nested if-statement (2 levels):

2.1 first checks type operation,
2.2 proceeds correspondingly to monitor-if.

3. synchronization, scheduling, and mutex

40Alternatives exist
449 / 578

Allocator as a server process: code design

1. interface and “data structure”
1.1 allocator with two types of operations: get unit, free unit
1.2 1 request channel40 ⇒ must be encoded in the arguments to a

request.
2. control structure: nested if-statement (2 levels):

2.1 first checks type operation,
2.2 proceeds correspondingly to monitor-if.

3. synchronization, scheduling, and mutex
3.1 cannot wait (wait(free)) when no unit is free.
3.2 must save the request and return to it later
⇒ queue of pending requests (queue; insert, remove).

3.3 request: “synchronous/blocking” call ⇒ “ack”-message back
3.4 no internal parallelism ⇒ mutex

40Alternatives exist
450 / 578

Channel declarations:

1 t ype op_kind = enum(ACQUIRE , RELEASE) ;
2 chan r e q u e s t (i n t c l i e n t ID , op_kind kind , i n t un i t ID) ;
3 chan r e p l y [n] (i n t un i t ID) ;

451 / 578

Allocator: client processes

1 process C l i e n t [i = 0 to n−1] {
2 i n t un i t ID ;
3 send r e q u e s t (i , ACQUIRE , 0) # make r e q u e s t
4 r e c e i v e r e p l y [i] (un i t ID) ; # works as ‘ ‘ i f synchronous ’ ’
5 . . . # use r e s o u r c e un i t ID
6 send r e q u e s t (i , RELEASE , un i t ID) ; # f r e e r e s o u r c e
7 . . .
8 }

(Fig. 7.7(b) in Andrews)

452 / 578

Allocator: server process

1 process Resou r c e_A l l o ca to r {
2 i n t a v a i l := MAXUNITS;
3 s e t u n i t s := . . . # i n i t i a l v a l u e
4 queue pending ; # i n i t i a l l y empty
5 i n t c l i e n t ID , un i t ID ; op_kind k ind ; . . .
6 whi le (t rue) {
7 r e ce i v e r e q u e s t (c l i e n t ID , k ind , un i t ID) ;
8 i f (k ind = ACQUIRE) {
9 i f (a v a i l = 0) # save r e q u e s t

10 i n s e r t (pending , c l i e n t I D) ;
11 e l s e { # per fo rm r e qu e s t now
12 a v a i l := a v a i l −1;
13 remove (un i t s , un i t ID) ;
14 send r e p l y [c l i e n t I D] (un i t ID) ;
15 }
16 }
17 e l s e { # kind = RELEASE
18 i f empty (pending) { # re t u r n u n i t s
19 a v a i l := a v a i l +1; i n s e r t (un i t s , un i t ID) ;
20 } e l s e { # a l l o c a t e s to wa i t i n g c l i e n t
21 remove (pending , c l i e n t I D) ;
22 send r e p l y [c l i e n t I D] (un i t ID) ;
23 } } } } # Fig . 7 . 7 i n Andrews (r e w r i t t e n)

453 / 578

Allocator as a monitor

1 monitor Resou r c e_A l l o ca to r {
2 i n t a v a i l := MAXUNITS;
3 s e t u n i t s := . . . # i n i t i a l v a l u e s ;
4 cond f r e e ; # s i g n a l l e d when p r o c e s s wants a u n i t
5
6 procedure acqu i re (i n t &id) { # var . paramete r
7 i f (a v a i l = 0)
8 wait (f r e e) ;
9 e l s e

10 a v a i l := a v a i l −1;
11 remove (un i t s , i d) ;
12 }
13
14 procedure r e l e a s e (i n t i d) {
15 i n s e r t (un i t s , i d) ;
16 i f (empty (f r e e))
17 a v a i l := a v a i l +1;
18 e l s e
19 s i g n a l (f r e e) ; # pa s s i n g the c o n d i t i o n
20 }
21 }

([Andrews, 2000, Fig. 7.6])

454 / 578

Duality: monitors, message passing

monitor-based programs message-based programs
monitor variables local server variables
process-IDs request channel, operation types
procedure call send request(), receive reply[i]()
go into a monitor receive request()
procedure return send reply[i]()
wait statement save pending requests in a queue
signal statement get and process pending request (reply)
procedure body branches in if statement wrt. op. type

455 / 578

Synchronous message passing

Primitives:
New primitive for sending:
synch_send c(expr1, . . . , exprn);

Blocking send:
sender waits until message is received by channel,
i.e. sender and receiver “synchronize” sending and receiving of
message

Otherwise: like asynchronous message passing:
receive c(var1, . . . , varn);
empty(c);

456 / 578

Synchronous message passing: discussion

Advantages:
Gives maximum size of channel.
Sender synchronises with receiver
⇒ receiver has at most 1 pending message per channel per
sender
⇒ sender has at most 1 unsent message

Disadvantages:
reduced parallellism: when 2 processes communicate, 1 is
always blocked.
higher risk of deadlock.

457 / 578

Example: blocking with synchronous message passing

1 chan v a l u e s (i n t) ;
2
3 process Producer {
4 i n t data [n] ;
5 f o r [i = 0 to n−1] {
6 . . . # computat ion . . . ;
7 synch_send v a l u e s (data [i]) ;
8 } }
9

10 process Consumer {
11 i n t r e s u l t s [n] ;
12 f o r [i = 0 to n−1] {
13 r e ce i v e v a l u e s (r e s u l t s [i]) ;
14 . . . # computat ion . . . ;
15 } }

458 / 578

Example: blocking with synchronous message passing

1 chan v a l u e s (i n t) ;
2
3 process Producer {
4 i n t data [n] ;
5 f o r [i = 0 to n−1] {
6 . . . # computat ion . . . ;
7 synch_send v a l u e s (data [i]) ;
8 } }
9

10 process Consumer {
11 i n t r e s u l t s [n] ;
12 f o r [i = 0 to n−1] {
13 r e ce i v e v a l u e s (r e s u l t s [i]) ;
14 . . . # computat ion . . . ;
15 } }

Assume both producer and
consumer vary in time
complexity.
Communication using
synch_send/receive will
block.

With asynchronous
message passing, the
waiting is reduced.

459 / 578

Example:

1 chan i n1 (i n t) , i n 2 (i n t) ;
2
3 process P1 {
4 i n t v1 = 1 , v2 ;
5 synch_send i n 2 (v1) ;
6 r e c e i v e i n 1 (v2) ;
7 }
8
9 process P2 {

10 i n t v1 , v2 = 2 ;
11 synch_send i n 1 (v2) ;
12 r e c e i v e i n 2 (v1) ;
13 }

460 / 578

Example: deadlock using synchronous message passing

1 chan i n1 (i n t) , i n 2 (i n t) ;
2
3 process P1 {
4 i n t v1 = 1 , v2 ;
5 synch_send i n 2 (v1) ;
6 r e c e i v e i n 1 (v2) ;
7 }
8
9 process P2 {

10 i n t v1 , v2 = 2 ;
11 synch_send i n 1 (v2) ;
12 r e c e i v e i n 2 (v1) ;
13 }

P1 and P2 block on
synch_send – deadlock.
One process must be modified
to do receive first
⇒ asymmetric solution.

461 / 578

Example: deadlock using synchronous message passing

1 chan i n1 (i n t) , i n 2 (i n t) ;
2
3 process P1 {
4 i n t v1 = 1 , v2 ;
5 synch_send i n 2 (v1) ;
6 r e c e i v e i n 1 (v2) ;
7 }
8
9 process P2 {

10 i n t v1 , v2 = 2 ;
11 synch_send i n 1 (v2) ;
12 r e c e i v e i n 2 (v1) ;
13 }

P1 and P2 block on
synch_send – deadlock.
One process must be modified
to do receive first
⇒ asymmetric solution.

With asynchronous message
passing (send) all goes well.

462 / 578

INF4140 - Models of concurrency
RPC and Rendezvous

INF4140

24 Oct. 2014

RPC and Rendezvous

Outline

More on asynchronous message passing
interacting processes with different patterns of communication
summary

remote procedure calls
concept, syntax, and meaning
examples: time server, merge filters, exchanging values

Rendez-vous
concept, syntax, and meaning
examples: buffer, time server, exchanging values

combinations of RPC, rendezvous and message passing
Examples: bounded buffer, readers/writers

465 / 578

Interacting peers (processes): exchanging values example

Look at processes as peers.

Example: Exchanging values
Consider n processes P[0], . . . , P[n − 1], n > 1
every process has a number, stored in local variable v

Goal: all processes knows the largest and smallest number.
simplistic problem, but “characteristic” of distributed
computation and information distribution

466 / 578

Different communication patters

P1

P2

P3

P4P5

P0 P0

P1 P2

P3

P4P5

P0

P1 P2

P3

P4P5

centralized symetrical ring shaped

467 / 578

Centralized solution

Process P[0] is the
coordinator process:

P[0] does the calculation
The other processes sends
their values to P[0] and
waits for a reply.

P1

P2

P3

P4P5

P0

Number of messages:41(number of send:)
P[0]: n − 1

P[1], . . . , P[n − 1]: (n − 1)
Total: (n − 1) + (n − 1) = 2(n − 1) messages

repeated “computation”

Number of channels: n

41For now in the pics: 1 line = 1 message (not 1 channel), but the notation
in the pics is not 100% consistent.

468 / 578

Centralized solution: code

1 chan v a l u e s (i n t) ,
2 r e s u l t s [1 . . n−1](i n t sma l l e s t , i n t l a r g e s t) ;
3
4 process P [0] { # coo r d i n a t o r p r o c e s s
5 i n t v := . . . ;
6 i n t new , sm a l l e s t := v , l a r g e s t := v ; # i n i t i a l i z a t i o n
7 # get v a l u e s and s t o r e the l a r g e s t and sma l l e s t
8 f o r [i = 1 to n−1] {
9 r e ce i v e v a l u e s (new) ;

10 i f (new < sma l l e s t) sm a l l e s t := new ;
11 i f (new > l a r g e s t) l a r g e s t := new ;
12 }
13 # send r e s u l t s
14 f o r [i = 1 to n−1]
15 send r e s u l t s [i] (sma l l e s t , l a r g e s t) ;
16 }
17 process P [i = 1 to n−1] {
18 i n t v := . . . ;
19 i n t sma l l e s t , l a r g e s t ;
20
21 send v a l u e s (v) ;
22 r e c e i v e r e s u l t s [i] (sma l l e s t , l a r g e s t) ; }
23 # Fig . 7 .11 i n Andrews (c o r r e c t e d a bug)

469 / 578

Symmetric solution

P0

P1 P2

P3

P4P5

“Single-programme, multiple data (SPMD)”-solution:

Each process executes the same code
and shares the results with all other processes.

Number of messages:
n processes sending n − 1 messages each,
Total: n(n − 1) messages.

Number of (bi-directional) channels: n(n − 1)

470 / 578

Symmetric solution: code

1 chan v a l u e s [n] (i n t) ;
2
3 process P [i = 0 to n−1] {
4 i n t v := . . . ;
5 i n t new , sm a l l e s t := v , l a r g e s t := v ;
6
7 # send v to a l l n−1 o th e r p r o c e s s e s
8 f o r [j = 0 to n−1 s t j 6= i]
9 send v a l u e s [j] (v) ;

10
11 # get n−1 v a l u e s
12 # and s t o r e the sm a l l e s t and l a r g e s t .
13 f o r [j = 1 to n−1] { # j not used i n the l oop
14 r e ce i v e v a l u e s [i] (new) ;
15 i f (new < sma l l e s t) sm a l l e s t := new ;
16 i f (new > l a r g e s t) l a r g e s t := new ;
17 }
18 } # Fig . 7 .12 from Andrews

471 / 578

Ring solution

P0

P1 P2

P3

P4P5

Almost symmetrical, except P[0], P[n − 2] and P[n − 1].

Each process executes the same code and sends the results to the
next process (if necessary).

Number of messages:
P[0]: 2

P[1], . . . , P[n − 3]: (n − 3)× 2
P[n − 2]: 1
P[n − 1]: 1

2+ 2(n − 3) + 1+ 1 = 2(n − 1) messages sent.

Number of channels: n .
472 / 578

Ring solution: code (1)

1 chan v a l u e s [n] (i n t sma l l e s t , i n t l a r g e s t) ;
2
3 process P [0] { # s t a r t s the exchange
4 i n t v := . . . ;
5 i n t sm a l l e s t := v , l a r g e s t := v ;
6 # send v to the next p roce s s , P [1]
7 send v a l u e s [1] (sma l l e s t , l a r g e s t) ;
8 # get the g l o b a l sm a l l e s t and l a r g e s t from P[n−1]
9 # and send them to P [1]

10 r e c e i v e v a l u e s [0] (sma l l e s t , l a r g e s t) ;
11 send v a l u e s [1] (sma l l e s t , l a r g e s t) ;
12 }

473 / 578

Ring solution: code (2)

1 process P [i = 1 to n−1] {
2 i n t v := . . . ;
3 i n t sma l l e s t , l a r g e s t ;
4 # get sm a l l e s t and l a r g e s t so f a r ,
5 # and update them by compar ing them to v
6 r e c e i v e v a l u e s [i] (sma l l e s t , l a r g e s t)
7 i f (v < sma l l e s t) sm a l l e s t := v ;
8 i f (v > l a r g e s t) l a r g e s t := v ;
9 # forward the r e s u l t , and wa i t f o r the g l o b a l r e s u l t

10 send v a l u e s [(i +1) mod n] (sma l l e s t , l a r g e s t) ;
11 i f (i < n−1)
12 r e ce i v e v a l u e s [i] (sma l l e s t , l a r g e s t) ;
13 # forward the g l o b a l r e s u l t , but not from P[n−1] to P [0]
14 i f (i < n−2)
15 send v a l u e s [i +1](sma l l e s t , l a r g e s t) ;
16 } # Fig . 7 .13 from Andrews (mod i f i e d)

474 / 578

Message passing: Summary

Message passing: well suited to programming filters and interacting
peers (where processes communicates one way by one or more
channels).
May be used for client/server applications, but:

Each client must have its own reply channel
In general: two way communication needs two channels

⇒ many channels

RPC and rendezvous are better suited for client/server applications.

475 / 578

Remote Procedure Call: main idea

1 CALLER CALLEE
2
3 at computer A at computer B

op foo(FORMALS); # declaration

...
call foo(ARGS); -----> proc foo(FORMALS) # new process

...
<----- end;

...

476 / 578

RPC (cont.)

RPC: combines elements from monitors and message passing

As ordinary procedure call, but caller and callee may be on
different machines.42

Caller: blocked until called procedure is done, as with monitor
calls and synchronous message passing.
Asynchronous programming: not supported directly
A new process handles each call.
Potentially two way communication: caller sends arguments
and receives return values.

42cf. RMI
477 / 578

RPC: module, procedure, process

Module: new program component – contains both
procedures and processes.

1 module M
2 heade r s o f e xpo r t ed o p e r a t i o n s ;
3 body
4 v a r i a b l e d e c l a r a t i o n s ;
5 i n i t i a l i z a t i o n code ;
6 p r o c edu r e s f o r expo r t ed o p e r a t i o n s ;
7 l o c a l p r o c edu r e s and processes ;
8 end M

Modules may be executed on different machines
M has: procedures and processes

may share variables
execute concurrently ⇒ must be synchronized to achieve
mutex
May only communicate with processes in M ′ by procedures
exported by M ′

478 / 578

RPC: operations

Declaration of operation O:

op O(formal parameters.) [returns result] ;

Implementation of operation O:

proc O(formal identifiers.) [returns result identifier]{
declaration of local variables;
statements
}

Call of operation O in module M:43

call M.O(arguments)

Processes: as before.

43Cf. static/class methods
479 / 578

Synchronization in modules

RPC: primarily a communication mechanism
within the module: in principle allowed:

more than one process
shared data

⇒ need for synchronization
two approaches
1. “implicit”:

as in monitors: mutex built-in
additionally condition variables (or semaphores)

2. “explicit”:44

user-programmed mutex and synchronization (like
semaphorse, local monitors etc)

44assumed in the following
480 / 578

Example: Time server (RPC)

module providing timing services to processes in other
modules.
interface: two visible operations:

get_time() returns int – returns time of day
delay(int interval) – let the caller sleep a given number of time
units

multiple clients: may call get_time and delay at the same time
⇒ Need to protect the variables.

internal process that gets interrupts from machine clock and
updates tod

481 / 578

Time server code (rpc)

1 module TimeServer
2 op get_time () r e tu rn s i n t ;
3 op de l a y (i n t i n t e r v a l) ;
4 body
5 i n t tod := 0 ; # time o f day
6 sem m := 1 ; # f o r mutex
7 sem d [n] := ([n] 0) ; # f o r de l a y ed p r o c e s s e s
8 queue o f (i n t waketime , i n t p roce s s_ id) napQ ;
9 ## when m = 1 , tod < waketime f o r d e l a y ed p r o c e s s e s

10 proc get_time () r e tu rn s t ime { t ime := tod ; }
11
12 proc de l a y (i n t i n t e r v a l) {
13 P(m) ; # assume un ique myid and i [0 , n−1]
14 i n t waketime := tod + i n t e r v a l ;
15 i n s e r t (waketime , myid) at a p p r o p r i a t e p l a c e i n napQ ;
16 V(m) ;
17 P(d [myid]) ; # Wait to be awoken
18 }
19 process Clock . . .

20
...

21 end TimeServer

482 / 578

Time server code: clock process

1 process Clock {
2 i n t i d ; s t a r t hardware t ime r ;
3 whi le (t rue) {
4 wait f o r i n t e r r u p t , then r e s t a r t hardware t ime r
5 tod := tod + 1 ;
6 P(m) ; # mutex
7 whi le (tod ≥ sm a l l e s t waketime on napQ) {
8 remove (waketime , i d) from napQ ; # book−keep i ng
9 V(d [i d]) ; # awake p r o c e s s

10 }
11 V(m) ; # mutex
12 } }
13 end TimeServer # Fig . 8 . 1 o f Andrews

483 / 578

Rendezvous

RPC:
offers inter-module communication
synchronization (often): must be programmed explicitly

Rendezvous:
Known from the language Ada (US DoD)
Combines communication and synchronization between
processes
No new process created for each call
instead: perform ‘rendezvous’ with existing process
Operations are executed one at the time

synch_send and receive may be considered as primitive rendezvous.
cf. also join-synchronization

484 / 578

Rendezvous: main idea

1 CALLER CALLEE
2
3 at computer A at computer B

op foo(FORMALS); # declaration

... ... # existing process
call foo(ARGS); -----> in foo(FORMALS) ->

BODY;
<----- ni

...

485 / 578

Rendezvous: module declaration

1 module M
2 op O1 (t yp e s) ;
3 . . .
4 op On (t yp e s) ;
5 body
6
7 process P1 {
8 v a r i a b l e d e c l a r a t i o n s ;
9 whi le (t rue) # standa rd p a t t e r n

10 i n O1 (f o rma l s) and B1 −> S1 ;
11 . . .
12 [] On (f o rma l s) and Bn −> Sn ;
13 n i
14 }
15 . . . o th e r p r o c e s s e s
16 end M

486 / 578

Calls and input statements

Call:

1 c a l l Oi (expr1, . . . , exprm) ;

Input statement, multiple guarded expressions:

1 i n O1(v1, . . . vm1) and B1 −> S1 ;
2 . . .
3 [] On(v1, . . . vmn) and Bn −> Sn ;
4 n i

The guard consists of:
and Bi – synchronization expression (optional)
Si – statements (one or more)

The variables v1, . . . , vmi may be referred by Bi

and Si may read/write to them.45

45once again: no side-effects in B!!!
487 / 578

Semantics of input statement

Consider the following:

1 i n . . .
2 [] Oi (vi , . . . , vmi) and Bi −> Si ;
3 . . .
4 n i

The guard succeeds when Oi is called and Bi is true (or omitted).

Execution of the in statement:
Delays until a guard succeeds
If more than one guard succeed, the oldest call is served46

Values are returned to the caller
The the call- and in-statements terminates

46this may be changed using additional syntax (by), see [Andrews, 2000].
488 / 578

Different variants

different versions of rendezvous, depending on the language
origin: ADA (accept-statement) (see [Andrews, 2000, Section
8.6])
design variation points

synchronization expressions or not?
scheduling expressions or not?
can the guard inspect the values for input variables or not?
non-determinism
checking for absence of messages? priority
checking in more than one operation?

489 / 578

Bounded buffer with rendezvous

1 module BoundedBuffer
2 op d e p o s i t (TypeT) , f e t c h (r e s u l t TypeT) ;
3 body
4 process Bu f f e r {
5 elem buf [n] ;
6 i n t f r o n t := 0 , r e a r := 0 , count := 0 ;
7 whi le (t rue)
8 i n d e p o s i t (i tem) and count < n −>
9 buf [r e a r] := i tem ; count++;

10 r e a r := (r e a r +1) mod n ;
11 [] f e t c h (i tem) and count > 0 −>
12 i t em := buf [f r o n t] ; count−−;
13 f r o n t := (f r o n t +1) mod n ;
14 n i
15 }
16 end BoundedBuffer # Fig . 8 . 5 o f Andrews

490 / 578

Example: time server (rendezvous)

1 module TimeServer
2 op get_time () r e t u r n s i n t ;
3 op de l a y (i n t) ; # ab s o l u t e waketime as argument
4 op t i c k () ; # c a l l e d by the c l o c k i n t e r r u p t h and l e r
5 body
6 process Timer {
7 i n t tod := 0 ;
8 s t a r t t ime r ;
9 whi le (t rue)

10 i n get_time () r e t u r n s t ime −> time := tod ;
11 [] d e l a y (waketime) and waketime <= tod −> sk i p ;
12 [] t i c k () −> { tod++; r e s t a r t t ime r ; }
13 n i
14 }
15 end TimeServer # Fig . 8 . 7 o f Andrews

491 / 578

RPC, rendezvous and message passing

We do now have several combinations:
invocation service effect
call proc procedure call (RPC)
call in rendezvous
send proc dynamic process creation
send in asynchronous message passing

492 / 578

RPC, rendezvous and message passing

We do now have several combinations:
invocation service effect
call proc procedure call (RPC)
call in rendezvous
send proc dynamic process creation
send in asynchronous message passing

in addition (not in Andrews)
asynchronous procedure call, wait-by-necessity, futures

493 / 578

Rendezvous, message passing and semaphores

Comparing input statements and receive:

in O(a1, . . . ,an) ->v1=a1,. . . ,vn=an ni ⇐⇒ receive O(v1, . . . , vn)

Comparing message passing and semaphores:

send O() and receive O() ⇐⇒ V(O) and P(O)

494 / 578

Bounded buffer: procedures and “semaphores (simulated by
channels)”

1 module BoundedBuffer
2 op d e p o s i t (typeT) , f e t c h (r e s u l t typeT) ;
3 body
4 elem buf [n] ;
5 i n t f r o n t = 0 , r e a r = 0 ;
6 # l o c a l o p e r a t i o n to s imu l a t e semaphores
7 op empty () , f u l l () , mutexD () , mutexF () ; // o p e r a t i o n s
8 send mutexD () ; send mutexF () ; # i n i t . " semaphores " to 1
9 f o r [i = 1 to n] # i n i t . empty−"semaphore " to n

10 send empty () ;
11
12 proc d e p o s i t (i tem) {
13 r e ce i v e empty () ; r e c e i v e mutexD () ;
14 buf [r e a r] = item ; r e a r = (r e a r +1) mod n ;
15 send mutexD () ; send f u l l () ;
16 }
17 proc f e t c h (i tem) {
18 r e ce i v e f u l l () ; r e ce i v e mutexF () ;
19 i t em = buf [f r o n t] ; f r o n t = (f r o n t +1) mod n ;
20 send mutexF () ; send empty () ;
21 }
22 end BoundedBuffer # Fig . 8 .12 o f Andrews

495 / 578

The primitive ?O in rendezvous

New primitive on operations, similar to empty(. . .) for condition
variables and channels.

?O means number of pending invocations of operation O.

Useful in the input statement to give priority:

1 i n
2 O1 . . . −> S1 ;
3 []
4 O2 . . . and (?O1 = 0) −> S2 ;
5
6 n i

Here O1 has a higher priority than O2.

496 / 578

Readers and writers

1 module ReadersWriters
2 op r ead (r e s u l t t yp e s) ; # use s RPC
3 op w r i t e (t yp e s) ; # use s r endezvous
4 body
5 op s t a r t r e a d () , endread () ; # l o c a l ops .
6 . . . da tabase (DB) . . . ;
7
8 proc r ead (v a r s) {
9 c a l l s t a r t r e a d () ; # get read a c c e s s

10 . . . r ead v a r s from DB . . . ;
11 send endread () ; # f r e e DB
12 }
13 process Wr i t e r {
14 i n t nr := 0 ;
15 whi le (t rue)
16 i n s t a r t r e a d () −> nr++;
17 [] endread () −> nr−−;
18 [] w r i t e (v a r s) and nr = 0 −>
19 . . . w r i t e v a r s to DB . . . ;
20 n i
21 }
22 end ReadersWriters

497 / 578

Readers and writers: prioritize writers

1 module Reade r sWr i t e r s
2 op r ead (r e s u l t typeT) ; # use s RPC
3 op w r i t e (typeT) ; # use s r endezvous
4 body
5 op s t a r t r e a d () , endread () ; # l o c a l ops .
6 . . . da tabase (DB) . . . ;
7
8 proc r ead (v a r s) {
9 c a l l s t a r t r e a d () ; # get read a c c e s s

10 . . . r ead v a r s from DB . . . ;
11 send endread () ; # f r e e DB
12 }
13 process Wr i t e r {
14 i n t nr := 0 ;
15 whi le (t rue)
16 i n s t a r t r e a d () and ? w r i t e = 0 −> nr++;
17 [] endread () −> nr−−;
18 [] w r i t e (v a r s) and nr = 0 −>
19 . . . w r i t e v a r s to DB . . . ;
20 n i
21 }
22 end Reade r sWr i t e r s

498 / 578

Asynchronous Communication I

INF4140 - Models of concurrency
Asynchronous Communication, lecture 10

INF4140

7.11.2014

500 / 578

Asynchronous Communication:
Semantics, specification and reasoning

Where are we?
part one: shared variable systems

programming
synchronization
reasoning by invariants and Hoare logic

part two: communicating systems
message passing
channels
rendezvous

What is the connection?
What is the semantic understanding of message passing?
How can we understand concurrency?
How to understand a system by looking at each component?
How to specify and reason about asynchronous systems?

501 / 578

Overview

Clarifying the semantic questions above, by means of histories:
describing interaction
capturing interleaving semantics for concurrent systems
Focus: asynchronous communication systems without channels

Plan today
histories from the outside view of components

describing overall understanding of a (sub)system
Histories from the inside view of a component

describing local understanding of a single process
The connection between the inside and outside view

the composition rule

502 / 578

What kind of system? Agent network systems

Two kinds of settings for concurrent systems, based on the notion
of:

processes — without self identity, but with named channels.
Channels often FIFO.
object (agent) — with self identity, but without channels,
sending messages to named objects through a network. In
general, a network gives no FIFO guarantee, nor guarantee of
successful transmission.

We use the latter here, since it is a very general setting. The
process/channel setting may be obtained by representing each
combination of object and message kind as a channel.

in the following we consider agent/network systems!

503 / 578

Programming asynchronous agent systems

New syntax statements for sending and receiving:
send statement: send B : m(e)
means that the current agent sends message m to agent B
where e is an (optional) list of actual parameters.
fixed receive statement: await B : m(w)
wait for a message m from a specific agent B , and receive
parameters in the variable list w . We say that the message is
then consumed.
open receive statement: await X ?m(w)
wait for a message m from any agent X and receive
parameters in w (consuming the message).
The variable X will be set to the agent that sent the message.
choice operator [] to select between alternative statement
lists, starting with receive statements.

Here m is a message name, B the name of an agent, e expressions,
X and w variables.

504 / 578

Example: Coin machine

Consider an agent C which changes “5 krone” coins and “1 krone”
coins into “10 krone” coins. It receives five and one messages and
sends out ten messages as soon as possible, in the sense that the
number of messages sent out should equal the total amount of
kroner received divided by 10.

We imagine here a fixed user agent U, both producing the five and
one messages and consuming the ten messages. The code of the
agent C is given below, using b (balance) as a local variable
initialized to 0.

505 / 578

Example: Coin machine (Cont)

1 loop
2 while b < 10
3 do
4 (await U: f i v e ; b:=b+5)
5 []
6 (await U: one ; b:=b+1)
7 od ;
8 send U: ten ;
9 b:=b−10

10 end

choice operator []47

selects 1 enabled branch
non-deterministic choice if both branches are enabled

47In the literature, also + as notation can often be found.
506 / 578

Interleaving semantics of concurrent systems

behavior of a concurrent system: may be described as set of
executions,
1 execution: sequence of atomic interaction events,
other names for it: trace, history, execution, (interaction)
sequence . . . 48

Interleaving semantics
Concurrency is expressed by the set of all possible interleavings.

remember also: “sequential consistency” from the WMM part.
note: for each interaction sequence, all interactions are ordered
sequentially, and their “visible” concurrency

48message sequence (charts) in UML etc.
507 / 578

Regular expressions

very well known and widely used “format” to descibe
“languages” (= sets finite “words” over given a given
“alphabet”)

508 / 578

A way to describe (sets of) traces

Example (Reg-Expr)
a, b: atomic interactions.
Assume them to “run” concurrently

⇒ two possible interleavings, described by

[[a.b] + [b.a]] (3)

Parallel composition of a∗ and b∗:

(a + b)∗ (4)

Remark: notation for reg-expr’s
Different notations exist. E.g.: some write a|b for the
alternative/non-deterministic choice between a and b. We use +
instead

to avoid confusion with parallel composition
be consistent with common use of regexp. for describing
concurrent behavior

Note: earlier version of this lecture used |.

509 / 578

Safety and liveness & traces

We may let each interaction sequence reflect all interactions in an
execution, called the trace, and the set of all possible traces is then
called the trace set.

terminating system: finite traces49

non-terminating systems: infinite traces
trace set semantics in the general case: both finite and infinite
traces
2 conceptually important classes of properties50

safety (“nothing wrong will happen”)
liveness (“something good will happen”)

49Be aware: typically an infinite set of finite traces.
50Safety etc. it’s not a property, it’s a “property/class of properties”

510 / 578

Safety and liveness & histories

often: concentrate on finite traces
reasons

conceptually/theoretically simpler
connection to monitoring
connection to checking (violations of) safety prop’s

our terminology: history = trace up to a given execution point
(thus finite)
note: In contrast to the book, histories are here finite initial
parts of a trace (prefixes)
sets of histories are

prefix closed
if a history h is in the set, then every prefix (initial part) of h is also
in the set.

sets of histories: can be used capture safety, but not liveness

511 / 578

Simple example: histories and trace set
Consider a system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case
there will be an infinite trace
with only “hi-B”

hiB∞ + hiB+hiA hiB∗ + hiB+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will
end with “hiA” after finitely
many “hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).

Trace set: {[hiB]∞}, {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}

a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hiA” after finitely many
“hiB ” ’s.

Trace set: {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}

an “eager” B will reply within a fixed number of “hiB ” ’s, for instance
before A says “hiB ” three times.

Trace set: {[hiB] [hiA]}, {[hiB] [hiB] [hiA]}
Histories: ∅, {[hiB]}, {[hiB] [hiA]}, {[hiB] [hiB]}, {[hiB] [hiB] [hiA]}

512 / 578

Simple example: histories and trace set
Consider a system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case
there will be an infinite trace
with only “hi-B”

hiB∞ + hiB+hiA hiB∗ + hiB+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will
end with “hiA” after finitely
many “hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).
Trace set: {[hiB]∞}, {[hiB]+ [hiA]}

Histories: {[hiB]∗}, {[hiB]+ [hiA]}

a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hiA” after finitely many
“hiB ” ’s.

Trace set: {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}

an “eager” B will reply within a fixed number of “hiB ” ’s, for instance
before A says “hiB ” three times.

Trace set: {[hiB] [hiA]}, {[hiB] [hiB] [hiA]}
Histories: ∅, {[hiB]}, {[hiB] [hiA]}, {[hiB] [hiB]}, {[hiB] [hiB] [hiA]}

513 / 578

Simple example: histories and trace set
Consider a system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case
there will be an infinite trace
with only “hi-B”

hiB∞ + hiB+hiA hiB∗ + hiB+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will
end with “hiA” after finitely
many “hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).
Trace set: {[hiB]∞}, {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hiA” after finitely many
“hiB ” ’s.

Trace set: {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}

an “eager” B will reply within a fixed number of “hiB ” ’s, for instance
before A says “hiB ” three times.

Trace set: {[hiB] [hiA]}, {[hiB] [hiB] [hiA]}
Histories: ∅, {[hiB]}, {[hiB] [hiA]}, {[hiB] [hiB]}, {[hiB] [hiB] [hiA]}

514 / 578

Simple example: histories and trace set
Consider a system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case
there will be an infinite trace
with only “hi-B”

hiB∞ + hiB+hiA hiB∗ + hiB+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will
end with “hiA” after finitely
many “hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).
Trace set: {[hiB]∞}, {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hiA” after finitely many
“hiB ” ’s.
Trace set: {[hiB]+ [hiA]}

Histories: {[hiB]∗}, {[hiB]+ [hiA]}

an “eager” B will reply within a fixed number of “hiB ” ’s, for instance
before A says “hiB ” three times.

Trace set: {[hiB] [hiA]}, {[hiB] [hiB] [hiA]}
Histories: ∅, {[hiB]}, {[hiB] [hiA]}, {[hiB] [hiB]}, {[hiB] [hiB] [hiA]}

515 / 578

Simple example: histories and trace set
Consider a system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case
there will be an infinite trace
with only “hi-B”

hiB∞ + hiB+hiA hiB∗ + hiB+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will
end with “hiA” after finitely
many “hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).
Trace set: {[hiB]∞}, {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hiA” after finitely many
“hiB ” ’s.
Trace set: {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
an “eager” B will reply within a fixed number of “hiB ” ’s, for instance
before A says “hiB ” three times.

Trace set: {[hiB] [hiA]}, {[hiB] [hiB] [hiA]}
Histories: ∅, {[hiB]}, {[hiB] [hiA]}, {[hiB] [hiB]}, {[hiB] [hiB] [hiA]}

516 / 578

Simple example: histories and trace set
Consider a system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case
there will be an infinite trace
with only “hi-B”

hiB∞ + hiB+hiA hiB∗ + hiB+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will
end with “hiA” after finitely
many “hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).
Trace set: {[hiB]∞}, {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hiA” after finitely many
“hiB ” ’s.
Trace set: {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
an “eager” B will reply within a fixed number of “hiB ” ’s, for instance
before A says “hiB ” three times.
Trace set: {[hiB] [hiA]}, {[hiB] [hiB] [hiA]}

Histories: ∅, {[hiB]}, {[hiB] [hiA]}, {[hiB] [hiB]}, {[hiB] [hiB] [hiA]}

517 / 578

Simple example: histories and trace set
Consider a system of two agents, A and B , where agent A says
“hi-B” repeatedly until B replies “hi-A”.

traces histories
a “sloppy” B may or may not
give a reply, in which case
there will be an infinite trace
with only “hi-B”

hiB∞ + hiB+hiA hiB∗ + hiB+hiA

a “lazy” B will reply even-
tually, but there is no limit
on how long A may need to
wait. Thus, each trace will
end with “hiA” after finitely
many “hiB ” ’s.
an “eager” B will reply within
a fixed number of “hiB ” ’s, for
instance before A says “hiB ”
three times.

a “sloppy” B may or may not give a reply, in which case there will be an
infinite trace with only “hi-B” (here comma denotes union).
Trace set: {[hiB]∞}, {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
a “lazy” B will reply eventually, but there is no limit on how long A may
need to wait. Thus, each trace will end with “hiA” after finitely many
“hiB ” ’s.
Trace set: {[hiB]+ [hiA]}
Histories: {[hiB]∗}, {[hiB]+ [hiA]}
an “eager” B will reply within a fixed number of “hiB ” ’s, for instance
before A says “hiB ” three times.
Trace set: {[hiB] [hiA]}, {[hiB] [hiB] [hiA]}
Histories: ∅, {[hiB]}, {[hiB] [hiA]}, {[hiB] [hiB]}, {[hiB] [hiB] [hiA]}

518 / 578

Histories

Let use the following conventions
events x : Event is an event,
set of events: A : 2Event

history h : Hist
A set of events is assumed to be fixed.

Definition (Histories)
Histories (over the given set of events) is given inductively over the
constructors ε (empty history) and _;_ (appending of an event to
the right of the history)

519 / 578

Functions over histories

function type
ε : → Hist the empty history (constructor)

; : Hist ∗ Event → Hist append right (constructor)
#_ : Hist → Nat length
/ : Hist ∗ Set → Hist projection by set of events
_ ≤ _ : Hist ∗ Hist → Bool prefix relation
_ < _ : Hist ∗ Hist → Bool strict prefix relation

Inductive definitions (inductive wrt. ε and _;_):

#ε = 0
#(h; x) = #h + 1
ε/A = ε
(h; x)/s =if x ∈ A then (h/s); x else (h/s) fi
h ≤ h′ = (h = h′) ∨ h < h′

h < ε = false
h < (h′; x) = h ≤ h′

520 / 578

Invariants and Prefix Closed Trace Sets

May use invariants to define trace sets:
A (history) invariant I is a predicate over a histories, supposed to hold at
all times:

“At any point in an execution h the property I (h) is satisfied”

It defines the following set:

{h | I (h)} (5)

mostly interested in prefix-closed invariants!

a history invariant is historically monotonic:

h ≤ h′ ⇒ (I (h′)⇒ I (h)) (6)

I history-monotonic ⇒ set from equation (5) prefix closed

Remark:
A non-monotonic predicate I may be transformed to a monotonic one I ′:

I ′(ε) = I (ε)
I ′(h′; x) = I (h′) ∧ I (h′; x)

521 / 578

Semantics: Outside view: global histories over events

Consider asynchronous communication by messages from one agent
to another: Since message passing may take some time, the
sending and receiving of a message m are semantically seen as two
distinct atomic interaction events of type Event:

A↑B : m denotes that A sends message m to B

A↓B : m denotes that B receives (consumes) message m from
A

A global history, H, is a finite sequence of such events, requiring
that it is legal, i.e. each reception is preceded by a corresponding
send-event.
For instance, the history

[(A↑B : hi), (A↑B : hi), (A↓B : hi), (A↑B : hi), (B ↑A : hi)]

is legal and expresses that A has sent “hi” three times and that B
has received one of these and has replied “hi”.
Note: a concrete message may also have parameters, say

messagename(parameterlist)
where the number and types of the parameters are statically checked.

522 / 578

Coin Machine Example: Events

U ↑C : five −− U sends the message “five” to C
U ↓C : five −− C consumes the message “five”

U ↑C : one −− U sends the message “one to C
U ↓C : one −− C consumes the message “one”

C ↑U : ten −− C sends the message “ten”
C ↓U : ten −− U consumes the message “ten”

523 / 578

Legal histories

note all global sequences/histories “make sense”
depens on the programming language/communciation model
sometimes called well-definedness, well-formedness or similar
legal : Hist → Bool

Definition (Legal history)

legal(ε) = true
legal(h; (A↑B : m)) = legal(h)
legal(h; (A↓B : m)) = legal(h)∧

#(h/{A↓B : m}) < #(h/{A↑B : m})

where m is message and h a history.

should m include parameters, legality ensures that the values
received are the same as those sent.

Example (coin machine C user U):

[(U ↑C : five), (U ↑C : five), (U ↓C : five), (U ↓C : five), (C ↑U : ten)]524 / 578

Outside view: logging the global history

How to “calculate” the global history at run-time:
introduce a global variable H,
initialize: to empty sequence
for each execution of a send statement in A, update H by

H := H; (A↑B : m)

where B is the destination and m is the l message
for each execution of a receive statement in B , update H by

H := H; (A↓B : m)

where m is the message and A the sender. The message must
be of the kind requested by B .

525 / 578

Outside View: Global Properties

Global invariant: By a predicate I on the global history, we may
specify desired system behavior:

“at any point in an execution H the property I (H) is
satisfied”

By logging the history at run-time, as above, we may monitor
an executing system. When I (H) is violated we may

report it
stop the system, or
interact with the system (for inst. through fault handling)

How to prove such properties by analysing the program?
How can we monitor, or prove correctness properties,
component-wise ?

526 / 578

Semantics: Inside view: Local histories

Definition (Local events)
The events visible to an agent A, denoted αA, are the events local
to A, i.e.:

A↑B : m: any send-events from A. (output by A)
B ↓A : m: any reception by A. (input by A)

Definition (Local history)
Given a global history: The local history of A, written hA, is the
subsequence of all events visible to A

Conjecture: Correspondence between global and local view:

hA = H/αA

i.e. at any point in an execution the history observed locally in
A is the projection to A -events of the history observed
globally.
Each event is visible to one, and only one, agent! 527 / 578

Coin Machine Example: Local Events

The events visible to C are:

U ↓C : five C consumes the message “five”
U ↓C : one C consumes the message “one”
C ↑U : ten C sends the message “ten”

The events visible to U are:

U ↑C : five U sends the message “five” to C
U ↑C : one U sends the message “one to C
C ↓U : ten U consumes the message “ten”

528 / 578

How to relate local and global views

From global specification to implementation:
First, set up the goal of a system: by one or more global histories.
Then implement it. For each component: use the global histories to
obtain a local specification, guiding the implementation work.
“construction from specifications”

From implementation to global specification:
First, make or reuse components.
Use the local knowledge for the desired components to obtain
global knowledge.

Working with invariants:
The specifications may be given as invariants over the history.

Global invariant: in terms of all events in the system
Local invariant (for each agent): in terms of events visible to
the agent

Need composition rules connecting local and global invariants.

529 / 578

Example revisited: Sloppy coin machine

1 loop
2 while b < 10
3 do
4 (await U: f i v e ; b:=b+5)
5 []
6 (await U: one ; b:=b+1)
7 od ;
8 send U: ten ;
9 b:=b−10

10 end

interactions visible to C (i.e. those that may show up in the local
history):

U ↓C : five −− C consumes the message “five”
U ↓C : one −− C consumes the message “one”
C ↑U : ten −− C sends the message “ten”

530 / 578

Coin machine example: Loop invariants

Loop invariant for the outer loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 5 (7)

where sum (the sum of values in the messages) is defined as
follows:

sum(ε) = 0
sum(h; (... : five)) = sum(h) + 5
sum(h; (... : one)) = sum(h) + 1
sum(h; (... : ten)) = sum(h) + 10

Loop invariant for the inner loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 15 (8)

531 / 578

Histories: from inside to outside view

From local histories to global history: if we know all the local
histories hAi in a system (i = 1...n), we have

legal(H) ∧i hAi
= H/αAi

i.e. the global history H must be legal and correspond to all the
local histories. This may be used to reason about the global history.
Local invariant: a local specification of Ai is given by a predicate
on the local history IAi

(hAi
) describing a property which holds

before all local interaction points.

I may have the form of an implication, expressing the output events
from Ai depends on a condition on its input events.
From local invariants to a global invariant:
if each agent satisfies IAi

(hAi
), the total system will satisfy:

legal(H) ∧i IAi
(H/αAi

)

532 / 578

Coin machine example: from local to global invariant

before each send/receive: (see eq. (8))

sum(h/↓) = sum(h/↑) + b ∧ 0 ≤ b < 15

Local Invariant of C in terms of h alone:

IC (h) = ∃b. (sum(h/↓) = sum(h/↑) + b ∧ 0 ≤ b < 15) (9)

IC (h) = 0 ≤ sum(h/↓)− sum(h/↑) < 15 (10)

For a global history H (h = H/αC):

IC (H/αC) = 0 ≤ sum(H/αC/ ↓)− sum(H/αC/↑) < 15 (11)

Shorthand notation:
IC (H/αC) = 0 ≤ sum(H/↓C)− sum(H/C ↑) < 15

533 / 578

Coin machine example: from local to global invariant

Local Invariant of a careful user U (with exact change):

IU(h) = 0 ≤ sum(h/ ↑)− sum(h/↓) ≤ 10
IU(H/αU) = 0 ≤ sum(H/U ↑)− sum(H/↓U) ≤ 10

Global Invariant of the system U and C :

I (H) = legal(H) ∧ IC (H/αC) ∧ IU(H/αU) (12)

implying:

Overall

0 ≤sum(H/U ↓C)− sum(H/C ↑U)≤sum(H/U ↑C)− sum(H/C ↓U)≤10

since legal(H) gives:
sum(H/U ↓C) ≤ sum(H/U ↑C) and
sum(H/C ↓U) ≤ sum(H/C ↑U).

So, globally, this system will have balance ≤ 10.
534 / 578

Coin machine example: Loop invariants (Alternative)

Loop invariant for the outer loop:

rec(h) = sent(h) + b ∧ 0 ≤ b < 5

where rec (the total amount received) and sent (the total amount
sent) are defined as follows:

rec(ε) = 0
rec(h; (U ↓C : five)) = rec(h) + 5
rec(h; (U ↓C : one)) = rec(h) + 1
rec(h; (C ↑U : ten)) = rec(h)
sent(ε) = 0
sent(h; (U ↓C : five)) = sent(h)
sent(h; (U ↓C : one)) = sent(h)
sent(h; (C ↑U : ten)) = sent(h) + 10

Loop invariant for the inner loop:

rec(h) = sent(h) + b ∧ 0 ≤ b < 15

535 / 578

Legality

The above definition of legality reflects networks where you may
not assume that messages sent will be delivered, and where the
order of messages sent need not be the same as the order received.
Perfect networks may be reflected by a stronger concept of legality
(see next slide).

Remark: In “black-box” specifications, we consider observable
events only, abstracting away from internal events. Then, legality of
sending may be strengthened:

legal(h; (A↑B : m)) = legal(h) ∧ A 6= B

536 / 578

Using Legality to Model Network Properties

If the network delivers messages in a FIFO fashion, one could
capture this by strengthening the legality-concept suitably, requiring

sendevents(h/ ↓) ≤ h/↑
where the projections h/↑ and h/ ↓ denote the subsequence of
messages sent and received, respectively, and sendevents converts
receive events to the corresponding send events.

sendevents(ε) = ε
sendevents(h; (A↑B : m)) = sendevents(h)
sendevents(h; (A↓B : m)) = sendevents(h); (A↑B : m)

Channel-oriented systems can be mimicked by requiring FIFO
ordering of communication for each pair of agents:

sendevents(h/A ↓ B) ≤ h/A↑B

where A ↓ B denotes the set of receive-events with A as source and
B as destination, and similarly for A↑B .

537 / 578

Asynchronous Communication II

INF4140 - Models of concurrency
Asynchronous Communication, lecture 11

INF4140

14.11.2014

539 / 578

Overview: Last time

semantics: histories and trace sets
specification: invariants over histories

global invariants
local invariants
the connection between local and global histories

example: Coin machine
the main program
formulating local invariants

540 / 578

Overview: Today

Analysis of send/await statements
Verifying local history invariants
example: Coin Machine

proving loop invariants
the local invariant and a global invariant

example: Mini bank

541 / 578

Agent/network systems (Repetition)

We consider general agent/network systems:

Concurrent agents:
with self identity
no variables shared between agents
communication by message passing

Network:
no channels
no FIFO guarantee
no guarantee of successful transmission

542 / 578

Programming asynchronous agent systems

New syntax statements for sending and receiving:
send statement: send B : m(e)
means that the current agent sends message m to agent B
where e is an (optional) list of actual parameters.
fixed receive statement: await B : m(w)
wait for a message m from a specific agent B , and receive
parameters in the variable list w . We say that the message is
then consumed.
open receive statement: await X ?m(w)
wait for a message m from any agent X and receive
parameters in w (consuming the message).
The variable X will be set to the agent that sent the message.
choice operator [] to select between alternative statement
lists, starting with receive statements.

Here m is a message name, B the name of an agent, e expressions,
X and w variables.

543 / 578

Local reasoning by Hoare logic (a.k.a program logic)

We adapt Hoare logic to reason about local histories in an agent A:
Introducing a local (logical) variable h, initialized to empty ε

h represents the local history of A

For send/await-statement: define the effect on h.
extending the h with the corresponding event

Local reasoning: we do not know the global invariant
For await: unknown parameter values
For open receive: unknown sender

⇒ use non-deterministic assignment

x := some (13)

where variable x may be given any (type correct) value

544 / 578

Local invariant reasoning by Hoare Logic

each send statement send B : m in A is treated as:

h := (h;A↑B : m) (14)

each fixed receive statement await B : m(~x) in A51 is treated
as

w := some ; h := (h;B ↓A : m(~x)) (15)

the usage of ~x := some expresses that A may receive any
values for the receive parameters
each open receive statement await X ?m(~x) in A is treated as

X := some ; await X : m(~x) (16)

where the usage of X := some expresses that A may receive
the message from any agent

51where ~x is a sequence of variables
545 / 578

Rule for non-deterministic assignments

Non-det assignment

ND-Assign
{ ∀x . Q } x := some { Q }

as said: await/send have been expressed by manipulating h,
using non-det assignments

⇒ rules for await/send statements

546 / 578

Derived Hoare rules for send and receive

Send
{ Qh←h;A↑B:m } send B : m { Q }

Receive1
{ ∀~x . Qh←h;B↓A:m(~x) } await B : m(~x) { Q }

Receive2
{ ∀~x ,X . Qh←h;X↓A:m(~x) } await X ?m(~x) { Q }

As before: A is current agent/object, h the local history
We assume that neither B nor X occur in ~x , and that ~x is a
list of distinct variables.
No shared variables. ⇒ no interference, and Hoare reasoning
can be done as usual in the sequential setting!
Simplified version, if no parameters in await:

Receive
{ Qh←h;(B↓A:m) } await B : m { Q }

547 / 578

Hoare rules for local reasoning

The Hoare rule for non-deterministic choice ([]) is

Rule for []

{ P1 } S1 { Q } { P2 } S2 { Q }
Nondet

{ P1 ∧ P2 } (S1[]S2) { Q }

Remark: We may reason similarly backwards over conditionals:52

{ P1 } S1 { Q } { P2 } S2 { Q }
If′

{ (b ⇒ P1) ∧ (¬b ⇒ P2) } if b then S1 else S2 fi { Q }

52We used actually a different formulation for the rule for conditionals. Both
formulations are equivalent in the sense that (together with the other rules, in
particular Consequence, one can prove the same properties.

548 / 578

Example: Coin machine

Consider an agent C which changes “5 krone” coins and “1 krone”
coins into “10 krone” coins. It receives five and one messages and
sends out ten messages as soon as possible, in the sense that the
number of messages sent out should equal the total amount of
kroner received divided by 10.

We imagine here a fixed user agent U, both producing the five and
one messages and consuming the ten messages. The code of the
agent C is given below, using b (balance) as a local variable
initialized to 0.

549 / 578

Example: Coin machine (Cont)

1 loop
2 while b < 10
3 do
4 (await U: f i v e ; b:=b+5)
5 []
6 (await U: one ; b:=b+1)
7 od ;
8 send U: ten ;
9 b:=b−10

10 end

choice operator []47

selects 1 enabled branch
non-deterministic choice if both branches are enabled

47In the literature, also + as notation can often be found.
550 / 578

Coin Machine Example: Events

U ↑C : five −− U sends the message “five” to C
U ↓C : five −− C consumes the message “five”

U ↑C : one −− U sends the message “one to C
U ↓C : one −− C consumes the message “one”

C ↑U : ten −− C sends the message “ten”
C ↓U : ten −− U consumes the message “ten”

551 / 578

Coin machine: local events

Invariants may refer to the local history h, which is the sequence of
events visible to C that have occurred so far. The events visible to
C are:

U ↓C : five −− C consumes the message “five”
U ↓C : one −− C consumes the message “one”
C ↑U : ten −− C sends the message “ten”

552 / 578

Coin machine example: Loop invariants

Loop invariant for the outer loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 5 (7)

where sum (the sum of values in the messages) is defined as
follows:

sum(ε) = 0
sum(h; (... : five)) = sum(h) + 5
sum(h; (... : one)) = sum(h) + 1
sum(h; (... : ten)) = sum(h) + 10

Loop invariant for the inner loop:

sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 15 (8)

553 / 578

Inner loop

let Ii (“inner invariant”) abbreviate equation (8)

1 { Ii }
2 whi le b < 10 { b ≤ 10 ∧ Ii }
3 { (Ii b←(b+5)) h←h;U↓C :five

∧ (Ii b←(b+1)) h←h;U↓C :one
}

4 do
5 (await U: f i v e ; { Ii 5←b+1 }
6 b:=b+5)
7 []
8 (await U: one ; b:=b+1)
9 { Ii }

10 od ;
11 { Ii ∧ b ≥ 10 }
12 { (Io b←b−10)h←h;C↑U:ten }
13 send U: ten ;

Must prove the implication:

b < 10 ∧ Ii ⇒ (Ii b←(b+5)) h←h;U↓C :five
∧ (Ii b←(b+1)) h←h;U↓C :one

note: From precondition Ii for the loop, we have Ii ∧ b ≥ 10 as the
postcondition to the inner loop.

554 / 578

Outer loop

1 { Io }
2 loop
3 { Io }
4 { Ii }
5 whi le b < 10 { b ≤ 10 ∧ Ii }
6 { (Ii b←(b+5)) h←h;U↓C :five

∧ (Ii b←(b+1)) h←h;U↓C :one
}

7 do
8 (await U: f i v e ; { Ii 5←b+1 }
9 b:=b+5)

10 []
11 (await U: one ; b:=b+1)
12 { Ii }
13 od ;
14 { Ii ∧ b ≥ 10 }
15 { (Io b←b−10)h←h;C↑U:ten }
16 send U: ten ;
17 { Io b←b−10 }
18 b:=b−10
19 { Io }
20 end

Verification conditions (as usual):
Io ⇒ Ii , and
Ii ∧ b ≥ 10⇒ (Io b←(b−10)) h←h;C↑U:ten

Io holds initially since h = ε ∧ b = 0⇒ Io

555 / 578

Local history invariant

For each agent (A):
Predicate IA(h) over the local communication history (h)
Describes interactions between A and the surrounding agents
Must be maintained by all history extensions in A

Last week: Local history invariants for the different agents
may be composed, giving a global invariant

Verification idea: “induction”:
Init: Ensure that IA(h) holds initially (i.e., with h = ε)

Preservation: Ensure that IA(h) holds after each
send/await-statement, assuming that IA(h) holds
before each such statement

556 / 578

Local history invariant reasoning

to prove properties of the code in agent A

for instance: loop invariants etc
the conditions may refer to the local state ~x (a list of
variables) and the local history h, e.g., Q(~x , h).

The local history invariant IA(h):
must hold immediately after each send/receive

⇒ if reasoning gives the condition Q(v , h) immediately after a
send or receive statement, we basically need to ensure:

Q(~x , h)⇒ IA(h) (17)

we may assume that the invariant is satisfied immediately
before each send/receive point.
we may also assume that the last event of h is the
send/receive event.

557 / 578

Proving the local history invariant

IA(_): local history invariant of A

first conjunct h = ...: specifies last communication step
IA(h

′): assumption that invariant holds before the
comm.-statement
3 communcation/sync. statements: send B : m(e),
await B m(~x), and await X ?m(~x) ⇒

3 kinds of verification conditions

(h = (h′;A↑B : m(e)) ∧ IA(h
′) ∧ Q(~x , h))⇒ IA(h) (18)

(h = (h′;B ↓A : m(~y)) ∧ IA(h
′) ∧ Q(~x , h))⇒ IA(h) (19)

(h = (h′;X ↓A : m(~y)) ∧ IA(h
′) ∧ Q(~x , h))⇒ IA(h) (20)

in all three cases: Q is the condition right after the send-, resp. the
await-statement

558 / 578

Coin machine example: local history invariant

For the coin machine C , consider the local history invariant IC (h)
from last week (see equation (10)):

IC (h) = 0 ≤ sum(h/↓)− sum(h/↑) < 15

Consider the statement send U : ten in C

Hoare analysis of the outer loop gave the condition Io b←(b−10)
immediately after the statement
history ends with the event C ↑U : ten

⇒ Verification condition, corresponding to equation (18):

h = h′; (C ↑U : ten) ∧ IC (h
′) ∧ Io b←(b−10) ⇒ IC (h) (21)

559 / 578

Coin machine example: local history invariant

Expanding Ic and Io in the VC from equation (21), and using
definition of sum and using (sum(h′/↓)− sum(h′/↑) = b in the
last step

h = h′; (C ↑U : ten) ∧
IC (h

′) ∧
Io b←(b−10)
⇒ IC (h)

h = h′; (C ↑U : ten) ∧
(0 ≤ sum(h′/↓)− sum(h′/↑) < 15) ∧
(sum(h/↓) = sum(h/↑) + b − 10 ∧ 0 ≤ b − 10 < 5)
⇒ 0 ≤ sum(h/↓)− sum(h/↑) < 15

h = h′; (C ↑U : ten) ∧
(0 ≤ sum(h′/↓)− sum(h′/↑) < 15) ∧
(sum(h′/↓) = sum(h′/↑) + 10+ b − 10 ∧ 0 ≤ b − 10 < 5)
⇒ 0 ≤ sum(h′/↓)− sum(h′/↑)− 10 < 15

(0 ≤ b < 15) ∧ 0 ≤ b − 10 < 5)
⇒ 0 ≤ b − 10 < 15

560 / 578

Coin Machine Example: Summary

Correctness proofs (bottom-up):
code
loop invariants (Hoare analysis)
local history invariant
verification of local history invariant based on the Hoare
analysis

Note: The []-construct was useful (basically necessary) for
programming service-oriented systems, and had a simple proof rule.

561 / 578

Example: “Mini bank” (ATM): Informal specification

Client cycle: The client C is making these messages
put in card, give pin, give amount to withdraw, take cash, take
card

Mini Bank cycle: The mini bank M is making these messages
to client: ask for pin, ask for withdrawal, give cash, return card

to central bank: request of withdrawal
Central Bank cycle: The central bank B is making these messages
to mini bank: grant a request for payment, or deny it
There may be many mini banks talking to the same central bank,
and there may be many clients using each mini bank (but the mini
bank must handle one client at a time).

562 / 578

Mini bank example: Global histories

Consider a client C , mini bank M and central bank B :
Example of successful cycle:
[C lM : card_in(n),M lC : pin,C lM : pin(x),

M lC : amount,C lM : amount(y),M lB : request(n, x , y),B lM : grant,
M lC : cash(y),M lC : card_out]

where n is name, x pin code, and y cash amount, provided by clients.
Example of unsuccessful cycle:
[C lM : card_in(n),M lC : pin,C lM : pin(x),

M lC : amount,C lM : amount(y),M lB : request(n, x , y),B lM : deny ,
M lC : card_out]

Notation: AlB : m denotes the sequence A↑B : m,A↓B : m

563 / 578

Mini bank example: Local histories (1)

From the global histories above, we may extract the corresponding
local histories:
The successful cycle:

Client: [C ↑M : card_in(n),M ↓C : pin,C ↑M : pin(x),
M ↓C : amount,C ↑M : amount(y),M ↓C : cash(y),M ↓C : card_out]

Mini Bank: [C ↓M : card_in(n),M ↑C : pin,C ↓M : pin(x),
M ↑C : amount,C ↓M : amount(y),M ↑B : request(n, x , y),
B ↓M : grant,M ↑C : cash(y),M ↑C : card_out]

Central Bank: [M ↓B : request(n, x , y),B ↑M : grant]

The local histories may be used as guidelines when implementing the
different agents.

564 / 578

Mini bank example: Local histories (2)

The unsuccessful cycle:

Client: [C ↑M : card_in(n),M ↓C : pin,C ↑M : pin(x),
M ↓C : amount,C ↑M : amount(y),M ↓C : card_out]

Mini Bank: [C ↓M : card_in(n),M ↑C : pin,C ↓M : pin(x),
M ↑C : amount,C ↓M : amount(y),M ↑B : request(n, x , y),
B ↓M : deny ,M ↑C : card_out]

Central Bank: [M ↓B : request(n, x , y),B ↑M : deny]

Note: many other executions possible, say when clients behaves
differently, difficult to describe all at a global level (remember the
formula of week 1).

565 / 578

Mini bank example: implementation of Central Bank

Sketch of simple central bank.
Program variables:
pin –- array of pin codes, indexed by client names
bal –- array of account balances, indexed by client names

X : Agent, n: Client_Name, x: Pin_Code, y: Natural

1 Loop
2 await X? r e qu e s t (n , x , y) ;
3 i f p in [n]=x and ba l [n]>y
4 then ba l [n] := ba l [n]−y ;
5 send X: g ran t ;
6 e l s e send X: deny
7 f i
8 end

Note: the mini bank X may vary with each iteration.

566 / 578

Mini bank example: Central Bank (B)

Consider the (extended) regular expression CycleB defined by:

[X ↓B : request(n, x , y), [B ↑X : grant + B ↑X : deny] some X , n, x , y]∗

with + for choice, [...]∗ for repetition
Defines cycles: request answered with either grant or deny

notation [regExp some X , n, x , y]∗ means that the values of
X , n, x , and y are fixed in each cycle, but may vary from cycle
to cycle.

Notation: Given an extended regular expression R .
Let h is R denote that h matches the structure described by R .
Example (for events a, b, and c):

we have (a; b; a; b) is [a, b]∗

we have (a; c ; a; b) is [a, [b|c]]∗

we do not have (a; b; a) is [a, b]∗

567 / 578

Loop invariant of Central Bank (B):
Let CycleB denote the regular expression:

[X ↓B : request(n, x , y), [B ↑X : grant + B ↑X : deny] some X , n, x , y]∗

Loop invariant: h is CycleB

Proof of loop invariant (entry condition): Must prove that it is
satisfied initially: ε isCycleB , which is trivial.
Proof of loop invariant (invariance):
loop {h isCycleB}

await X?request(n,x,y);
if pin[n]=x and bal[n]>y

then bal[n]:=bal[n]-y; send X:grant;
else send X:deny

fi
{h isCycleB}
end

568 / 578

Loop invariant of the central bank (B):

1 loop
2 { h is CycleB }
3 { ∀X , n, x , y . if pin[n] = x ∧ bal [n] > y then h′′1 is CycleB else h′′2 is CycleB }
4 await X? r e qu e s t (n , x , y) ;
5 { if pin[n] = x ∧ bal [n] > y then h′1 is CycleB else h′2 is CycleB }
6 i f p in [n]=x and ba l [n]>y
7
8 then ba l [n] := ba l [n]−y ;
9 { (h;B ↑X : grant) is CycleB }

10 send X: g ran t ;
11 { (h;B ↑X : grant) is CycleB }
12 e l s e
13 { (h;B ↑X : deny) is CycleB }
14 f i
15 { h is CycleB }
16 end

h′′1 = h;X ↓B : request(n, x , y);B ↑X : grant
h′1 = h;B ↑X : grant

Analogously (with deny) for h′2 and h′′2
569 / 578

Hoare analysis of central bank loop (cont.)

Verification condition:
h isCycleB⇒∀X , n, x , y . if pin[n] = x ∧ bal [n] > y

then (h;X ↓B : request(n, x , y);B ↑X : grant) isCycleB

else (h;X ↓B : request(n, x , y);B ↑X : deny) isCycleB

where CycleB is

[X ↓B : request(n, x , y), [B ↑X : grant + B ↑X : deny] some X , n, x , y]∗

The condition follows by the general rule (regExp R and events
a and b):

h is R∗ ∧ (a; b) is R ⇒ (h; a; b) is R∗

since (X ↓B : request(n, x , y);B ↑X : grant) isCycleB

and (X ↓B : request(n, x , y);B ↑X : deny) isCycleB

570 / 578

Local history invariant for the central bank (B)

CycleB is

[X ↓B : request(n, x , y), [B ↑X : grant + B ↑X : deny] some X , n, x , y]∗

Define the history invariant for B by:

h ≤ CycleB

Let h ≤ R denote that h is a prefix of the structure described by R .

intuition: if h ≤ R we may find some extension h′ such that
(h; h′) is R

h is R ⇒ h ≤ R (but not vice versa)
(h; a) is R ⇒ h ≤ R

Example: (a; b; a) ≤ [a, b]∗

571 / 578

Central Bank: Verification of the local history invariant

h ≤ CycleB

As before, we need to ensure that the history invariant is implied
after each send/receive statement.

Here it is enough to assume the conditions after each send/receive
statement in the verification of the loop invariant

This gives 2 proof conditions:
1. after send grant/deny (i.e. after fi)

h isCycleB⇒ h ≤ CycleB which is trivial.
2. after await request

if . . . then (h;B ↑X : grant) isCycleB else (h;B ↑X : deny) isCycleB

⇒ h ≤ CycleB which follows from (h; a) isR⇒ h ≤ R.

Note: We have now proved that the implementation of B satisfies the
local history invariant, h ≤ CycleB .

572 / 578

Mini bank example: Local invariant of Client (C)

CycleC :
[C ↑X : card_in(n)
+ X ↓C : pin,C ↑X : pin(x)
+ X ↓C : amount,C ↑X : amount(y ′)
+ X ↓C : cash(y)
+ X ↓C : card_out some X , y , y ′]∗

History invariant:
hC ≤ CycleC

Note: The values of C , n and x are fixed from cycle to cycle.
Note: The client is willing to receive cash and cards, and give card, at
any time, and will respond to pin, and amount messages from a mini
bank X in a sensible way, without knowing the protocol of the particular
mini bank. This is captured by + for different choices.

573 / 578

Mini bank example: Local invariant for Mini bank (M)

CycleM :
[C ↓M : card_in(n),M ↑C : pin,C ↓M : pin(x),

M ↑C : amount,C ↓M : amount(y),
if y ≤ 0 then ε else
M ↑B : request(n, x , y), [B ↓M : deny + B ↓M : grant,M ↑C : cash(y)] fi ,
M ↑C : card_out some C , n, x , y]∗

History invariant:
hM ≤ CycleM

Note: communication with a fixed central bank. The client may vary
with each cycle.

574 / 578

Mini bank example: obtaining a global invariant

Consider the parallel composition of C ,B,M. Global invariant:
legal(H) ∧ H/αC ≤ CycleC ∧ H/αM ≤ CycleM ∧ H/αB ≤ CycleB

Assuming no other agents, this invariant may almost be formulated by:
H≤ [C lM : card_in(n),M lC : pin,C lM : pin(x),

M lC : amount,C lM : amount(y),
if y ≤ 0 then M lC : card_out
else M lB : request(n, x , y), [B lM : deny ,M lC : card_out
+ B lM : grant,M ↑C : cash(y), [M ↓C : cash(y) ||| M lC : card_out]] fi

some n, x , y]∗

where ||| gives all possible interleavings. However, we have no guarantee
that the cash and the card events are received by C before another cycle
starts. Any next client may actually take the cash of C .
For proper clients it works OK, but improper clients may cause the Mini
Bank to misbehave. Need to incorporate assumptions on the clients, or
make an improved mini bank.

575 / 578

Improved mini bank based on a discussion of the global
invariant

The analysis so far has discovered some weaknesses:

The mini bank does not know when the client has taken his cash, and it
may even start a new cycle with another client before the cash of the
previous cycle is removed. This may be undesired, and we may introduce
a new event, say cash_taken from C to M, representing the removal of
cash by the client. (This will enable the mini bank to decide to take the
cash back within a given amount of time.)

A similar discussion applies to the removal of the card, and one may
introduce a new event, say card_taken from C to M, so that the mini
bank knows when a card has been removed. (This will enable the mini
bank to decide to take the card back within a given amount of time.)

A client may send improper or unexpected events. These may be lying in
the network unless the mini bank receives them, and say, ignores them.
For instance an old misplaced amount message may be received in (and
interfere with) a later cycle. An improved mini bank could react to such
message by terminating the cycle, and in between cycles it could ignore
all messages (except card_in).

576 / 578

Summary

Concurrent agent systems, without network restrictions (need not
be FIFO, message loss possible).

Histories used for semantics, specification and reasoning
correspondence between global and local histories, both ways
parallel composition from local history invariants
extension of Hoare logic with send/receive statements
avoid interference, may reason as in the sequential setting
Bank example, showing

global histories may be used to exemplify the system, from
which we obtain local histories, from which we get useful
coding help
specification of local history invariants
verification of local history invariants from Hoare logic +
verification conditions (one for each send/receive statement)
composition of local history invariants to a global invariant

577 / 578

References I

[Andrews, 2000] Andrews, G. R. (2000).
Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

[Goetz et al., 2006] Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., and Lea, D. (2006).
Java Concurrency in Practice.
Addison-Wesley.

[Lea, 1999] Lea, D. (1999).
Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, 2d edition.

[Magee and Kramer, 1999] Magee, J. and Kramer, J. (1999).
Concurrency: State Models and Java Programs.
Wiley & Sons.

578 / 578

	Intro
	Warming up
	The await language
	Semantics and properties

	Locks & barriers
	Critical sections
	Liveness and fairness
	Barriers

	Semaphores
	Semaphore as sync. construct
	Producer/consumer
	Dining philosophers
	Readers/writers

	Monitors
	Semaphores & signalling disciplines
	Bounded buffer
	Readers/writers problem
	Time server
	Shortest-job-next scheduling
	Sleeping barber

	Program analysis
	Program Analysis
	Java concurrency
	Threads in Java
	Ornamental garden
	Thread communication, monitors, and signaling
	Semaphores
	Readers and writers

	Message passing and channels
	Intro
	Asynch. message passing
	Filters
	Client-servers
	Monitors

	Synchronous message passing

	RPC and Rendezvous
	Message passing (cont'd)
	RPC
	Rendez-vouz

	Asynchronous Communication I
	Asynchronous Communication II

