
Universitetet i Oslo
Institutt for Informatikk

PMA

Olaf Owe, Martin Steffen

INF 4140: Models of Concurrency
Høst 2015 7. 9. 2015Series 2

Topic: About Chap. 2& 3: synchronization, critical sections

Issued: 7. 9. 2015

Exercises: 2.17, 2.18, 2.33, 3.1, 3.7, 3.8 from the textbook

Exercise 1 (2.17)

1 co
2 <await (x ≥ 3) x := x−3>
3 | |
4 <await (x ≥ 2) x := x−2>
5 | |
6 <await (x = 1) x := x+5>
7 oc

For which initial values does the program terminate (under weak scheduling). What
are the corresponding final values. Explain the answer.

Exercise 2 (2.18)

1 co
2 <await (x > 0) x := x−1;>
3 | |
4 <await (x < 0) x := x+2;>
5 | |
6 <await (x = 0) x := x−1;>
7 oc

For which initial values does the program terminate (under weak scheduling). What
are the corresponding final values. Explain the answer.

www.uio.no
http://www.ifi.uio.no

Series 2 7. 9. 2015

Exercise 3 (2.33)

1 int x :=10; c := true ;
2

3

4 co
5 <await x = 0>; c := fa l se
6

7 | |
8 while (c) < x := x−1>
9

10 oc

1. Termination under weak fairness?

2. Termination under strong fairness?

3. Add the following statement as 3rd arm of the co-statement:

1 while (c) { i f (x < 0) <x := 10> ;}

Exercise 4 (Dekker’s algo (3.1)) The code shows the initialization and process P1, a
second P2 is symmetric.

1 bool enter1 = false , ente r2 = fa l se ;
2 int turn = 1 ;
3

4 process P1{
5 while (true){
6

7 enter1 := true ## entry p ro t o co l
8 while (ente r2){
9 i f (turn = 2){

10 enter1 := fa l se ;
11 while (turn = 2) sk ip ;
12 enter1 := true ;
13 }
14 }
15

16 CS;
17

18 enter1 := fa l se ; ## e x i t p r o t o co l
19 turn := 2 ;
20 non−CS;
21 }
22 }

1. mutex?

2. deadlock

3. unnecessary delay

4. eventual entry

2

Series 2 7. 9. 2015

Also: how many times can one process that wants to enter its critical section be bypassed
by the other before the first gets in?

Exercise 5 (3.7) Consider the following code snippet (due to Lamport [?])

1 int l o ck = 0 ;
2 process CS[i = 1 to n]{
3 while (true){
4 <await (l o ck = 0)>;
5 l o ck := i ;
6 Delay
7 while (l o ck != i){
8 <await (l o ck = 0)>; l o ck := i ; Delay ;
9 p }

10 }
11 CS;
12 l o ck := 0 ;
13 non−CS;
14 }

1. Suppose the delay code is deleted.

(a) mutex?

(b) deadlock?

(c) unnecessary delay?

(d) eventual entry

2. Suppose the Delay code is added and long enough. Reconsider your answers under
that circumstances.

3

Series 2 7. 9. 2015

Exercise 6 (3.8) Consider the following code. Not that the flip-operation is assumed to
be atomic (for instance, representing a HW operation). Then consider the sketched code
intended to solve the CS problem.

1 f l i p (l o ck)
2 <l o ck = (lock + 1) % 2 ; # f l i p the l o c k
3 return (l o ck);> # return the new va lue
4

5 int l o ck = 0 ; # shared v a r i a b l e
6

7 process CS[i = 1 to 2]{
8 while (true){
9 while (f l i p (l o ck) != 1)

10 {while (l o ck != 0) sk ip ;}
11 CS;
12 l o ck := 0 ;
13 non−CS;
14 }
15 }

1. Spot the defect in the code, violating the basic safety assumption, i.e., “mutual
exclusion”.

2. What happens if the calculation is done modulo 3, instead of modulo 2 as now?

4

