
Universitetet i Oslo
Institutt for Informatikk

PMA

Olaf Owe, Martin Steffen

INF 4140: Models of Concurrency
Høst 2015 14. 9. 2015Series 3

Topic: Semaphores

Issued: 14. 9. 2015

Exercise 1 (CS with coordinator) In the critical section protocols in the book, every
process executes the same algorithm; these are symmetric solutions. It is also possible to
solve the problem using a coordinator process. In particular, when a regular process CS[i]
wants to enter its critical section, it tells the coordinator, then waits for the coordinator
to grant permission.

Assume there are n processes numbered 1 to n. Develop entry and exit protocols for
the regular processes and code for the coordinator process. Use flags and await-statements
for synchronization. The solution must work, if regular processes terminate outside the
critical section.

Exercise 2 (Semaphores to pass control) Given the following routine:

1 pr in t () {
2

3 process P1 {
4 wr i t e (‘ ‘ l i n e 1 ’ ’) ; wr i t e (‘ ‘ l i n e 2 ’ ’) ;
5 }
6

7 process P2 {
8 wr i t e (‘ ‘ l i n e 3 ’ ’) ; wr i t e (‘ ‘ l i n e 4 ’ ’) ;
9 }

10

11 process P3 {
12 wr i t e (‘ ‘ l i n e 5 ’ ’) ; wr i t e (‘ ‘ l i n e 6 ’ ’) ;
13 }
14

15 }

1. How many different outputs could this program produce? Explain your reasoning.

2. Add semaphores to the program so that the six lines of output are printed in the
order 1, 2, 3, 4, 5, 6. Declare and initialize any semaphores you need and add P and
V operations to the above processes.

www.uio.no
http://www.ifi.uio.no

Series 3 14. 9. 2015

Exercise 3 (Semaphores for synchronization) Several processes share a resource that
has U units. Processes request one unit at a time, but may release several. The routines
request and release are atomic operations as shown below.

1 int f r e e := U;
2

3 r eque s t () : # < await (f r e e > 0) f r e e := f r e e − 1 ; >
4

5 r e l e a s e (int number) : # < f r e e := f r e e + number ; >

Develop implementations of request and release. Use semaphores for synchroniza-
tion. Be sure to declare and initialize additional variables you may need.

Exercise 4 (Termination, deadlock, interleaving) Consider the following program:

1 int x = 0 , y = 0 , z = 0 ;
2 sem l o ck1 = 1 , lock2 = 1 ;
3

4 process f oo { process bar {
5 z := z + 2 ; P(lock2) ;
6 P(lock1) ; y := y + 1 ;
7 x := x + 2 ; P(lock1) ;
8 P(lock2) ; x := x + 1 ;
9 V(lock1) ; V(lock1) ;

10 y := y + 2 ; V(lock2) ;
11 V(lock2) ; z := z + 1 ;
12 } }

1. This program might deadlock. How?

2. What are the possible final values of x,y, and z in the deadlock state?

3. What are the possible final values of x,y, and z if the program terminates? (Re-
member that an assignment z := z + 1 consists of two atomic operations on z.)

Exercise 5 (Fetch-and-add ([1, Exercisise 4.3])) Implement P and V with fetch-and-add

(FA). The behavior of fetch-and-add is given as follows:

1

2 FA(var , i n c r) :
3 <int tmp := var ;
4 var := var+i n c r ;
5 return (tmp) ; >

Note: the inc may be a negative integer, which is being added.
Side remark: fetch-and-add is, in some HW architectures an atomic instruction (for

instance, variants in X86-architectures). Atomic instructions such as fetch-and-add, which
are more powerful than simple loads and stores (= reading and writing) are offered in the
instruction set with the purpose to allow efficient implementation of synchronization prim-
itives in operating systems running on that platform (for instance semaphore operations).
Fetch-and-add is only one example of HW-supported atomic synchronization operations.

Exercise 6 (Precedence graph ([1, Exercise 4.4a])) Use semaphores to “implement”
the shown precedence/dependence graph.

2

Series 3 14. 9. 2015

T1 -> T2 -> T4 -> T5

T1 ----> T3 ----> T5

Exercise 7 (Implementing await ([1, Exercise 4.13])) Consider the following piece
of code, which is intended as implementation of the await-statement.

1 sem e := 1 , d := 0 # entry and de lay sem .
2 int nd := 0 # de lay counter
3

4 P(e) ;
5

6 while (B = fa l se) {
7 nd := nd+1;
8 V(e) ;
9 P(d) ;

10 P(e) } ;
11

12 S ; # pro t e c t ed s ta tement
13

14 while (nd > 0)
15 { nd := nd−1; V(d) } ;
16 V(e) ;

1. Is the code execited atomically?

2. Is it deadlock free?

3. Does the code guarantee, that B is true before S is executed?

Exercise 8 (Exchange function ([1, Exercise 4.29])) Impement exchange function.
Exchanging 2 values requires a form of rendez-vouz.

Exercise 9 (Request and release ([1, Exercise 4.34a])) Request and release, shar-
ing two printers. The request should return the identity of a free printer, if available
(otherwise block). The identity of the free printer is given as argument to the release-
procedure.

Exercise 10 (Bear and honeybees 4.36) Program the synchronization problems of
one bear + n bees

References

[1] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley, 2000.

3

