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Exercise 1 (Substitutions) Do the following substitutions:

1. (x = 2)[y/x]

2. (x = 2)[x + 2/x]

3. (x > y ∧ y ≤ 2)[z + 2/y]

4. (x = 2)[2/x]

5. (x = y)[y + 1/x]

Exercise 2 (The assignment axiom)

1. The following triples are instances of the assignment axiom:

{ 0 = 0 ∧ y < z } x := 0 { x = 0 ∧ y < z } (1)

{ y − (x + 1) < z } x := x + 1 { (y − x) < z } (2)

Use [1, Definition 2.4 (p. 59)] to convince yourself about the “true-ness” of these
triples in our computational model.

2. Given the following triples:

{ y < z } x := 0 { x = 0 ∧ y < z } (3)

{(y − x) = z}x := x + 1{y − x < z} (4)

Convince yourself about the “true-ness” of these triples and use the axiom of assign-
ment to prove them.

3. Consider the following two triples:

{ a = 2k ∗ y } k := k − 1 { a = 2k+1 ∗ y } (5)

{ a = 2k+1 ∗ y } y := y ∗ 2 { a = 2k ∗ y } . (6)

Again, use Definition 2.4 from the book to convince yourself about the trueness of
these triples. Use the assignment axiom to prove their correctness. Can we use these
two triples to say something about the program k := k − 1; y := y ∗ 2?
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4. The partial correctness interpretation of triples from Definition 2.4 from [1] expresses
that { P } S { Q } is true if, for each possible execution of S, starting in a state
satisfying P , if the execution terminates at the end of S, then the program is in a
state satisfying Q.1 Thus, in order to prove that { P } S { Q } is not true, it is
enough to find one execution of S starting in a state satisfying P , but terminating in
a state not satisfying Q. This execution then serves as a counterexample or witness
for the true-ness of the triple. So: find counterexamples to show that the following
two triples are not true:

{ x < 5 } x := x + 1 { x < 5 } (7)

{ x 6= y } x := 2 ∗ x { x 6= y } (8)

Try to apply the axiom of assignment on the two triples. Are we able to prove these
triples using the assignment axiom?

Exercise 3 (Free variables) The book [1, page 60] defines2 P [e/x] as P with all free
occurrences of x replaced by e. An variable occurs in an expression/formula etc, if it
“shows up” inside somewhere. A free occurence of a variable is an occurence of that
variable which is not in the scope of a quantifier (∀,∃). For instance, y occurs free in the
predicate ∀x : x ≤ y, but x does not occur free. Note that a variable may occur more than
once in a formula, and hence may occur both free and non-free (one says also “bound”)
in one formula.

1. What is the result of the two substitutions

(a) (∀x : x ≤ y)[e/x] and

(b) (∃x : x ≤ y)[e/y]?

2. Given the predicates:

P : y > z ∧ (∀i : 1 ≤ i ≤ n : a[i] <= max)
Q : i > z ∧ (∃i : 1 ≤ i ≤ n : a[i] <= max)

Give the result of the substitutions P [z+1/z], P [max∗2/max], and P [j/i]. Evaluate
further Qi←j .

Exercise 4 (Swapping integers)

1. Imagine that we are trying to write a program that swaps the values of x and y
without using any additional variables. We are not sure what the program should
look like, and try three different suggestions:

x := x− y; y := x + y; x := y− x (9)

x := y− x; y := y− x; x := x− y (10)

x := x + y; y := x− y; x := x− y (11)

1Compared to Definition 2.4 of the book, I added terminates at the end of S. This is added for
clarification. If S runs for example into a deadlock or gets blocked otherwise, then S may never reach the
end of its execution. In that situation, the post-condition is not required to hold afterwards, since S has
not reached the post-state; it’s stuck somewhere in the middle. Nonetheless, one may may, informally,
think that “S terminates” (in that it deadlocks), but that’s not what is meant by the definition.

2Actually, everyone else defines substitution this way as well, it’s the universally accepted definition.
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Use programming logic (PL) to find out which suggestion(s) actually swap(s) the
values of x and y. Given the precondition P as { x = x0 ∧ y = y0 }}, where x0 and
y0 are logical variables. Find out if Q as { y = x0 ∧x = y0 } holds upon termination
in each of the three cases.

2. Given the followng program S:

if(x > y){x := x + y; y := x− y; x := x− y} (12)

Prove that
{ true } S { x ≤ y } (13)

is a theorem (i.e., is derivable) in PL.

Exercise 5 (If-else rule) The book had given a derivation rule for a specific form of a
conditional statement, namely one with only one branch. A reasoning rule for another
conventional form of conditional statement, those with 2 branches, can be given as follows:

{ P ∧B } S1 { Q } { P ∧ ¬B } S2 { Q }
Cond

{ P } if (B) S1 else S2 { Q }
(14)

Compare this rule to the reasoning rule for if statements given in the lecture:

{ P ∧B } S1 { Q } P ∧ ¬B ⇒ Q
Cond′

{ P } if (B) S1 else S2 { Q }
(15)

Use the two-armed rule in (14) above to prove the following triple:

{ x > 0 ∧ y > 0 ∧ x 6= y ∧ x + y = a }
if (x < y) y := y− x else x := x− y

{ x > 0 ∧ y > 0 ∧ x + y < a }
(16)

Exercise 6 (Exercise 2.20 from the book)
Let a[1 : m] and b[1 : n] be integer arrays, m > 0 and n > 0. Write predicates to express
the following properties.

1. All elements of a are less than all elements of b

2. Either a or b contains a single zero, but not both.

3. It is not the case that both a and b contain zeros.

4. The values in b are the same as the values in a, except that they are in reverse order.
(Assume for this part that m = n.)

5. Every element of a is an element of b.

6. Some element of a is larger than some element of b and vice versa.
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