
Universitetet i Oslo
Institutt for Informatikk

PMA

Olaf Owe, Martin Steffen

INF 4140: Models of Concurrency
Høst 2015 14. 10. 2015Series 6

Topic: Program Analysis II

Issued: 14. 10. 2015

Exercise 1 (While program) Consider the following program S:

1 x := 0 ;
2 y := b ;
3 while (x < y) {
4 x := x + 2 ;
5 y := y + 1
6 }

1 x := 0 ;
2 y := b ;
3 while (x < y) {
4 x := x + 2 ;
5 y := y + 1
6 }

Prove that the following triple is a theorem in PL, i.e., that it is derivable:

{ b ≥ 0 } S { x = 2 ∗ b } . (1)

You may use the following predicate I as loop invariant:

I : x ≤ y ∧ x = 2(y − b) . (2)

Exercise 2 (Factorial function) Consider the following program S:

1 i := 0 ;
2 x := 1 ;
3 while (i < n) {
4 i = i + 1 ;
5 x = x ∗ i ;
6 }

Prove the following triple using PL:

{n ≥ 0} S {x = n!} (3)

www.uio.no
http://www.ifi.uio.no

Series 6 14. 10. 2015

As a loop invariant I, you may use:

I : x = i! ∧ i ≤ n (4)

You may assume the following when reasoning about the factorial function:
1) 0! = 1
2) (j + 1)! = j! ∗ (j + 1) for any integer j ≥ 0

Exercise 3 (Monitor verification) Consider the monitor for Shortest-Job-Next alloca-
tion in the book (section 5.2.3). Use Programming Logic, extended with rules for signal
and wait (lecture slides, week 6), to prove that this monitor satisfies the second part of
the SJN invariant:

free⇒ (#turn = 0) (5)

(You may use the rule for wait(cv) to reason about wait(cv,rank)).

Hint. When arriving at an implication, it is enough to argue for the truth of it. However,
we may use the following rules when reasoning about implications.

false⇒ A

(A ∧B)⇒ C

A⇒ (B ⇒ C)

(A ∧B)⇒ C

((A⇒ B) ∧A)⇒ C

(¬A) ∨B

A⇒ B

Exercise 4 Further exercises from the textbook:

2.22, 2.16, 2.24, 2.31, (2.28a, 2.29a)

Exercise 5 (For-loop) Design a rule for for-loops. ([?, Exercise 2.22])

Exercise 6 (Verification of a parallel program ([?, Exercise 2.16])) Consider the
following parallel program.

1 int x := 0 ; { x = 0 }
2 co
3 Process1 : < await (x 6= 0) x := x − 2>
4 | |
5 Process2 : < await (x 6= 0) x := x − 3>
6 | |
7 Process3 : < await (x=0) x := x + 5>
8 oc

Prove that the final value is 0.

Exercise 7 (Interference freedom ([?, Exercise 2.24])) Consider the following state-
ment together with a pre-condition:

{ x ≥ 4 } < x := x - 4> (6)

Then consider, whether the given statements interfere with it.

1) { x ≥ 0 } 〈x := x + 5〉 { x ≥ 5 }
2) { x ≥ 0 } 〈x := x + 5〉 { x ≥ 0 }
3) { x ≥ 10 } 〈x := x + 5〉 { x ≥ 11 }
4) { x ≥ 10 } 〈x := x + 5〉 { x ≥ 12 }
5) { x is odd } 〈x := x + 5〉 { x is even }
6) { x is odd } 〈y := x + 1〉 { x is even }
7) { x is odd } 〈y := y + 1〉 { x is even }
8) { x is a multiple of 3 } 〈y := x〉 { y is a multiple of 3 } .

2

Series 6 14. 10. 2015

Exercise 8 (Interference freedom (Exercise [?, 2.31])) Assume two triples

{ P1 } S1 { Q1 } and { P2 } S2 { Q2 } .

Assume they are interference free (according to the definition). Assume that S1 contains
an await-statement 〈await(B) T 〉. Let then S′

1 be the same as S1, except that the await-
statement is replaced by “corresponding” while-loop

1. Assume the triple { P1 } S1 { Q1 } holds. Then: Is { P1 } S′
1 { Q1 } still true.

2. Are { P1 } S1 { Q1 } and { P2 } S2 { Q2 } still interference-free?

Exercise 9 (Parallel boolean check (2.28a)) Check whether all elements in an array
are set 0. See [?, Exercise 2.28(a), page 89].

Exercise 10 (Maximum (2.29a)) Determine the max from an integer array, searching
for the even and odd numbers in parallel. See [?, Exercise 2.29, page 89].

3

