UNIVERSITETET I OSLO Institutt for Informatikk PMA Olaf Owe, Martin Steffen

INF 4140: Models of Concurrency

Høst2015

Series 7

 $28.\ 10.\ 2015$

Topic: Message passing

Issued: 28. 10. 2015

Exercise 1 (Partition filter) Do [1, Exercise 7.2a]: Implement a "partition filter", which *splits* an unsorted stream of natural numbers into two. The first received value is considered as "pivot" (cf. quicksort). Start by providing a predicate specifying the behavior of the filter.

Exercise 2 (Readers/writers & server with asynchronous message passing) Do [1, Exercise 7.6]: Do a server implementation for the R-W problem. Don't forget to be specific about the interface. The solution should be based on *asynchronous* message passing

Exercise 3 (Savings account) Do [1, Exercise 7.8]. Implement a savings account. The account should be used by a number of people. They can *deposit* or *withdraw* money. It's a invariant, that the saving account never goes "into the red", i.e., the sum must always be ≥ 0 . Start by considering the "interface" of the server.

Remember also exercise "Series 4" from our lecture, which had the same problem but with monitors.

Exercise 4 (Printers) Do [1, Exercise 7.10]. Assume there are two kind for printers, A and B. Furthermore, three kinds of clients access the printers, those having access to A, those for B, and then those who can use both.

References

 G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley, 2000.