
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: INF4140 — Models of Concurrency

Day of examination: 16. December 2010

Examination hours: 14.30 – 18.30

This problem set consists of 9 pages.

Appendices: None

Permitted aids: All written and printed

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advises and remarks:

• This problem set consists of two independent parts. It is wise to make
good use of your time.

• You should read the whole problem set before you start solving the
problems.

• You can score a total of 100 points on this exam. The number of points
stated on each part indicates the weight of that part.

• You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in
the delivered answer.

• Make short and clear explanations!

Good luck!

(Continued on page 2.)



Examination in INF4140, 16. December 2010 Page 2

Problem 1 Shared variables:

House building (weight 50)

We here consider the following description of a synchronisation problem:

In this exercise we will solve the house building problem. A house
consists of three elements: floor, walls and roof. First one floor
builder will build the floor. When the floor is finished one wall
builder may set up the walls. One roof builder will be able to
build the roof when the walls are up. Note that building one
house does not involve concurrency, but many houses may be
built concurrently.

1a Semaphore Solution (weight 20)

Provide an implementation of the synchronization part of the builder
processes by extending the sketch below. Fill in code for the dots where
needed. Use semaphores for synchronization. Remember to declare and
initialize the semaphores.

process FloorBuilder[i=1 to N]{
while (true){

...

‘‘build floor’’

...

}
}

process WallBuilder[i=1 to N]{
while (true){

...

‘‘build walls’’

...

}
}

process RoofBuilder[i=1 to N]{
while (true){

...

‘‘build roof’’

...

}
}

Solution:

(Continued on page 3.)



Examination in INF4140, 16. December 2010 Page 3

sem floor = 0, walls = 0;

process FloorBuilder[i=1 to N]{
while (true){
‘‘build floor’’

V(floor);

}
}

process WallBuilder[i=1 to N]{
while (true){

P(floor);

‘‘build walls’’

V(walls);

}
}

process RoofBuilder[i=1 to N]{
while (true){

P(walls);

‘‘build roof’’

}
}

1b Deadlocks (weight 2)

Does your program (from exercise 1a) contain deadlocks? Explain.

Solution: The solutions should be deadlock free. The floor builder is not
depending on any other process an may increase the value of floor. The
wall builder is only dependent on the floor semaphore, which may always
be increased.

A similar argument may be made for the roof builder.

1c Monitor Solution (weight 25)

Implement a solution to the house building problem again, but now you
should use a monitor to synchronize the builders. Implement both the
processes and the monitor to synchronize them. Remember that several
houses may be built concurrently.

Solution:

process FloorBuilder[i=1 to N]{
‘‘build floor’’

(Continued on page 4.)



Examination in INF4140, 16. December 2010 Page 4

Clerc.doneFloor();

}

process WallBuilder[i=1 to N]{
Clerc.startWalls();

‘‘build walls’’

Clerc.doneWalls();

}

process RoofBuilder[i=1 to N]{
Clerc.startRoof();

‘‘build roof’’

}

monitor Clerk{ %not fair

int floor = 0, walls = 0;

cond buildWalls, buildRoof;

procedure doneFloor(){
floor = floor + 1;

signal(buildWalls);

}

procedure doneWalls(){
walls = walls + 1;

signal(buildRoof);

}

procedure startWalls(){
while(floor < 1){

wait(buildWalls);

}
floor = floor - 1;

}

procedure startRoof(){
while(walls < 1){

wait(buildroof);

}
walls = walls - 1;

}
}

(Continued on page 5.)



Examination in INF4140, 16. December 2010 Page 5

1d Fairness (weight 3)

Does your solution from exercise 1c allow sneaking? Can newly arrived
processes get access before processes that are waiting on the queues of the
monitor. Explain. If your solution allows sneaking then explain how you can
prevent it.

Solution: The code is not needed, but an argument about not increasing
the counters unless the queues are empty should be presented. The students
should also change from a while loop to an if test when checking if a process
should wait or not.

monitor Clerk{ %fair

int floor = 0, walls = 0;

cond buildWalls, buildRoof;

procedure doneFloor(){
if(empty(buildWalls)){

floor = floor + 1; }
else {

signal(buildWalls);}
}

procedure doneWalls(){
if(empty(buildRoof)){

walls = walls + 1; }
else {

signal(buildRoof);}
}

procedure startWalls(){
if(floor < 1){

wait(buildWalls); }
else {

floor = floor - 1; }
}

procedure startRoof(){
if(walls < 1){

wait(buildroof); }
else {

walls = walls - 1; }
}

}

(Continued on page 6.)



Examination in INF4140, 16. December 2010 Page 6

Problem 2 Asynchronous Communication:

House building (weight 50)

We here consider asynchronous message passing using the language with
send and await statements, and the following variation of the house building
problem:

Here, a house consists of one floor, four walls, and one roof. A
FloorBuilder agent build floors. After building a floor, it notifies
four different WallBuilder agents, each building a wall. After
four walls have been build, the RoofBuilder may start building
a roof.

We have a total of six agents in the system, one FloorBuilder agent, four
WallBuilder agents, and one RoofBuilder agent. After building a floor, the
FloorBuilder agent immediately starts to build the floor of the next house.

Consider the following implementation of the WallBuilder agents:

F : Agent; // assumed initialized to the FloorBuilder

R : Agent; // assumed initialized to the RoofBuilder

while true do
await F:startWall;

// build wall

send R:startRoof

od

You may assume that no communication occurs during wall construction.

2a Events (weight 5)

Consider a WallBuilder agent W implemented as above. What are the local
events of W?

Solution:

F ↓W : startWall and W ↑ R : startRoof

2b Program Analysis (weight 20)

Consider the following loop invariant for the wall builder W:

#(h/(↓startWall)) = #(h/(↑startRoof))

(Continued on page 7.)



Examination in INF4140, 16. December 2010 Page 7

where h is the local history of W, the projection h/(↓startWall) restricts h
to receive startWall events, the projection h/(↑ startRoof) restricts h to
send startRoof events, and #(a) returns the length of the sequence a.

Explain why this is a suitable loop invariant, and use Hoare Logic to verify
this loop invariant for the WallBuilder implementation given above.

Solution:

Taking the invariant as the postcondition for the loop body, a precondition
for the loop body may be derived by backward construction:

{#(h/(↓startWall)) + 1 = #(h/(↑startRoof)) + 1}
await R:startWall

{#(h/(↓startWall)) = #(h/(↑startRoof)) + 1}
// build wall

{#((h;W ↑ R : startRoof)/(↓startWall))
= #((h;W ↑ R : startRoof)/(↑startRoof))}

sent R:startRoof

{#(h/(↓startWall)) = #(h/(↑startRoof))}

We are then left with the trivial verification condition:

#(h/(↓startWall)) = #(h/(↑startRoof))⇒
#(h/(↓startWall)) + 1 = #(h/(↑startRoof)) + 1

2c History Invariant (weight 5 )

Consider the following local history invariant for the WallBuilder agent W:

#(h/ ↑startRoof) ≤ #(h/ ↓startWall) ≤ #(h/ ↑startRoof) + 1

Show, formally or informally, that this invariant holds after each interaction
point in the WallBuilder implementation.

Solution:

For each interaction statement, we can do by proving Q ⇒ Ih, where Ih is
the history invariant and Q is postcondition for the interaction statement in
the proof outline above.

For await R:startWall, we have:

#(h/(↓startWall)) = #(h/(↑startRoof)) + 1⇒
#(h/ ↑startRoof) ≤ #(h/ ↓startWall) ≤ #(h/ ↑startRoof) + 1

For sent R:startRoof, we have:

#(h/(↓startWall)) = #(h/(↑startRoof))⇒
#(h/ ↑startRoof) ≤ #(h/ ↓startWall) ≤ #(h/ ↑startRoof) + 1

(Continued on page 8.)



Examination in INF4140, 16. December 2010 Page 8

2d Implementation (weight 15)

Provide an implementation of the RoofBuilder. This agent should repeatedly
try to build roofs, but it must wait for four walls before building. Write the
code under the assumption that the agent does not know the names of the
different WallBuilder agents, and extend the program sketch below. Fill in
code for the dots where needed. You may assume that it takes approximately
the same amount of time to build each wall, and that message passing is fast.
Thus, the RoofBuilder may start building roofs as soon as four walls are
completed.

while true do
...

// build roof

...

od

Solution:

while true do
n : Int = 0;

while n < 4 do
await X?:startRoof;

n:= n + 1;

od
// build roof

od

2e Modified Implementation (weight 5)

Explain, without programming, the main changes needed in order to solve
the problem in 2d if some WallBuilder agents are slower than others.

Hint: The RoofBuilder can no longer simply wait for the completion of four
walls. For instance, three walls may be completed at the first house and one
at the second.

Hint: It may also be necessary to modify the WallBuilder agents.

Solution:

Building house 1, three walls may be finished, but the 4th is delayed. Three
WallBuilder agents may then continue to house 2, and some of these walls
may be completed before the last wall of house 1. Thus, RoofBuilder gets 4
startRoof messages, but from different houses.

One way to deal with this is to introduce house identities. FloorBuilder
may generate a unique identity for each house. This is passed as an argument

(Continued on page 9.)



Examination in INF4140, 16. December 2010 Page 9

of startWall to the wall builders, and from them to RoofBuilder. Thus,
before building roof on house i, RoofBuilder must wait for 4 startRoof(i)
messages. We then need some kind of data structure (e.g., a multiset ms) in
order to remember the completed walls.

Sketch (not required):

while true do
await X? startRoof(x);

ms.insert(x);

if ms.get(x) = 4 then // build roof x fi
od


