
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: INF4140 — Models of Concurrency

Day of examination: 15. December 2011

Examination hours: 14:30 – 18:30

This problem set consists of 9 pages.

Appendices: None

Permitted aids: All written and printed

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advises and remarks:

• This problem set consists of three independent parts. It is wise to make
good use of your time.

• You can score a total of 100 points on this exam. The number of points
stated on each part indicates the weight of that part.

• You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in
the delivered answer.

• Make short and clear explanations!

Good luck!

(Continued on page 2.)



Examination in INF4140, 15. December 2011 Page 2

Problem 1 The Ice Cream Shop (weight 55)

We here consider the following description of a synchronisation problem:

An ice cream shop serves ice cream to customers. One ice cream
cone consists of two scoops. First one chocolate flavored scoop is
made, and then one with vanilla flavor. The ice cream shop has
two employees, one for each flavor. The two employees should be
able to work in parallel, but not serving the same customer.

1a Semaphore Solution (weight 20)

Provide an implementation of the synchronization part of the problem
by filling in code for the dots in the sketch below (where needed). Use
semaphores for synchronization. Remember to declare and initialize the
semaphores and other variables.

Remark that making ice cream for a particular customer is initiated by
that customer. Thus, a customer should not be given an ice cream unless
he or she has asked for it. Make sure that the ChocolateMaker and the
VanillaMaker knows which customer it should give the scoops to. Make sure
that your solution is free of unnecessary delay. For instance, the chockolate
maker should not delay if there are newly arrived customers.

Note: The ice cream cones are represented by an integer array. The values
of this array in position i is the number of scoops currently in the cone of
customer i.

code/icecreamshop-skeleton

... # global variables

int scoops[N] = ([N] 0);

process Customer[i = 0 to N - 1]{
while(true){

...

scoops[i] = 0; #eat

...

}
}

process ChocolateMaker{
while(true){

...

scoops[...] = scoops[...] + 1 #make scoop

...

}
}

(Continued on page 3.)



Examination in INF4140, 15. December 2011 Page 3

process VanillaMaker{
while(true){

...

scoops[...] = scoops[...] + 1 #make scoop

...

}
}

Solution:

sem chocAvail = 1;

sem vanillaAvail = 1;

sem makeVanilla = 0;

sem makeChoc = 0;

sem gotChoc = 0;

sem gotVanilla = 0;

int chockCustomer, vanillaCustomer;

int scoops[N] = ([N] 0);

process Customer[N]{
while(true){

P(chocAvail);

chocCustomer = i;

V(makeChock);

P(gotChoc);

V(chockAvail);

P(vanillaAvail);

vanillaCustomer = i;

V(makeVanilla);

P(gotVanilla);

V(vanillaAvail);

///eat

scoops[i] = 0;

}
}

process VanillaMaker{
while(true){

P(makeVanilla);

scoops[vanillaCustomer] = scoops[vanillaCustomer] + 1

V(gotVanilla);

}
}

process ChocolateMaker{

(Continued on page 4.)



Examination in INF4140, 15. December 2011 Page 4

//as above

}

1b Deadlock (weight 5)

Explain briefly, why your solution to Problem 1a is free of deadlocks.
Solution:

After taking one semaphore we always release another

semaphore which someone is waiting for. For instance

when we take chockAvail, we

release makeChock which the ChocolateMaker waits for.

1c RPC/Rendezvous Solution (weight 25)

Write a module IceCreamShop that exports a getIceCream-operation. Calls
to getIceCream() should return when the ice cream is ready. The module
should be able to make one chocolate scoop and one vanilla scoop in parallel,
but not for the same customer.

You may use remote procedure calls (RPC) or rendezvous or a
combination, but not semaphores, locks etc.

As we have no shared memory we can not use an array to count the
number of cones anymore. Use pseudo code as:

#make chocolate scoop

to show where the scoops are made.
Solution:

module IceCreamBar

op getIceCream()

body IcecreamBar

proc getIceCream()

call startChock();

#make the scoop

send doneChock();

call startVanilla();

#make the scoop

send doneVanilla();

process chocController

bool availChock = true;

(Continued on page 5.)



Examination in INF4140, 15. December 2011 Page 5

in startChoc() and availChock -> availChock = false ;

[] doneChock -> availChock = true;

ni

process vanillaController

bool availVanilla = true;

in startVanilla() and availVanilla -> availVanilla = false;

[] doneVanilla -> availVanilla = true;

ni

1d Fairness (weight 5)

Under what conditions is the following statement true for your solution to
Problem 1c?

A call to getIceCream will always terminate.

Solution:

If there is a finite number of calls to getIceCream or

if the calls are handled in a FIFO manner, they

will always terminate.

(Continued on page 6.)



Examination in INF4140, 15. December 2011 Page 6

Problem 2 Program Analysis (weight 30)

Given two integer variables x and y, we will in this problem consider the
example code S, defined by the following sequence of statement:

S: x = 0; y = 10;
while (x < y) {
x = x+1; y = y−1;
}

2a Interpretation (weight 5)

Give a short explanation of the (partial correctness) interpretation of the
following triple:

{true} S {x==y}

Solution:
The triple is true if for any state (since the precondition is true) that execution
of S starts in, then x==y holds in the resulting state assuming that S
terminates.

2b Verification (weight 20)

Use Programming Logic (PL) to verify the triple

{true} S {x==y}

Hint. You may use the following invariant I when reasoning about the loop:

I : x ≤ y ∧ even(y – x)

where even(n), for some number n, is true if and only if n is an even number.

Solution:

Loop entry. Need to verify that the invariant holds on entry to the loop:

true ⇒ (x ≤ y ∧ even(y − x))(x,y ← 0,10)

⇒ 0 ≤ 10 ∧ even(10)

which is true.

Loop Exit. The invariant and the negation of the loop test should imply
the postcondition:

x ≤ y ∧ even(y − x) ∧ x ≥ y ⇒ x == y

which is true.

(Continued on page 7.)



Examination in INF4140, 15. December 2011 Page 7

Loop iteration. Need to show that I is preseved by the loop, i.e., we have
to verify:

{I ∧ x < y} x=x+1;y=y-1 {I}

By the assignment axiom and consequence rule, we arrive at the following
implication:

x < y ∧ even(y − x) ⇒ (x ≤ y ∧ even(y − x))(x,y ← x+1,y−1)
⇒ x + 1 ≤ y − 1 ∧ even(y − 1− x− 1)

which is true since x < y ∧ even(y − x) implies y − x ≥ 2 which is the same
as x+ 1 ≤ y−1. In addition, since y−x is even, we also know that y−x−2
must be even.

2c Strengthening the postcondition (weight 5)

By looking at the program S, the programmer realizes that we can say
something more specific about the values of x and y when S terminates.
In addition to x==y, we also know that both variables have the value 5.
Therefore we consider the following triple:

{true} S {x==y ∧ x==5}

Is it possible to verify this triple given the loop invariant I in Problem 2b?
If not, suggest an alternative invariant such that the triple can be verified.
It is not necessary to give the verification details for the program with the
new invariant

Solution:
No, at loop exit the following implication does not hold:

I ∧ x ≥ y ⇒ x == 5

We can strengthen the invariant with the conjunction x + y == 10. This
equation holds after initialization and is maintaned by the body of the loop.
We can then prove the final implication.

(Continued on page 8.)



Examination in INF4140, 15. December 2011 Page 8

Problem 3 The Roller Coaster Problem (weight 15)

In this problem we consider a simple version of the Roller Coaster Problem
in the language with send and await statements. The system consists of
one Car agent and any number of Passenger agents (we assume that there
is at least 4 passengers).

For the implementation of Car, we assume a Stack datatype with the
usual operations push, top, and pop, and where size(s) returns the number
of elements on stack s. The agents are implemented as follows:

Implementation of the Passenger agents:

C : Car; // assumed initialized to the Car agent

while true do
...

send C:embark;

await C:finished;

od

Implementation of the Car Agent:

pass : Stack[Agent] // assumed initialized to empty stack

P : Agent

while true do
while (size(pass) < 4) do

await P?embark;

pass := push(pass,P)

od
// ride!

while (size(pass) > 0) do
P := top(pass); pass := pop(pass);

send P:finished

od
od

Thus operation push(s,e) pushes the element e on stack s and returns the
resulting stack. Operation top(s) returns the top element without modifying
s, and pop(s) returns s after removing the top element.

3a Events (weight 5)

Define the events of the system. You may define the events in terms of Car
agent C and an arbitrary Passenger agent P. Which of these events are local
to the Car agent C?
Solution:
For any passenger P :

P ↑C :embark, P ↓C :embark, C ↑P :finished, C ↓P :finished

(Continued on page 9.)



Examination in INF4140, 15. December 2011 Page 9

Local to C:
P ↓C :embark, C ↑P :finished

3b Local History of Car (weight 10)

Define an extended regular expression which describes the local history of
the Car agent C after each iteration of the outermost loop. Thus, define an
extended regular expression CycleC such that h is CycleC holds at the end of
each iteration of this loop, where h is the local history of C. It is not necessary
to do any verification.
Solution:

[P1↓C :embark, P2↓C :embark, P3↓C :embark, P4↓C :embark
C ↑P4:finished, C ↑P3:finished, C ↑P2:finished, C ↑P1:finished
some P1, P2, P3, P4]∗


