
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: INF4140 — Models of Concurrency

Day of examination: 17. December 2012

Examination hours: 14.30 – 18.30

This problem set consists of 0 pages.

Appendices: Inference Rules for program verification

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advice and remarks:

• This problem set consists of two independent problems and one optional
extra problem which gives you extra points.

• The points from problems one and two sum up to a total of 100 points.
The number of points stated on each part indicates the weight of that
part.

• Problem three is optional and can give you extra points on top of your
final score.

• Use your time wisely and take into consideration the weight of each
question.

• You should read the whole problem set before you start solving the
problems.

• You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in
the delivered answer.

• Make short and clear explanations!

Good Luck and Merry Christmas!

(Continued on page 2.)



Examination in INF4140, 17. December 2012 Page 2

Problem 1 Shared variables:

Santa’s Factory (weight 50)

The Snow-globe Production:

We here consider the following description of the snow-globe production as
a synchronization problem:

In Santa’s Factory the elves are going to start the
production of snow-globes. They divide the production
in different tasks:
Some elves are in charge of collecting the different
materials and organizing them in different groups (each
group contains glass, fake snow and ceramic).

Some other elves are in charge of assembling the snow-globes and for that
they take a group of materials and hand-make a snow-globe. Other elves are
in charge of hand-making boxes for the different snow-globes. Finally some
elves are in charge of wrapping the snow-globes in the boxes.

The assembling of a snow-globe has the following precedence graph:

T1

T2

T3

T4

Figure 1: Precedence graph

Where:
T1: collect a group of materials
T2: hand-make a snow-globe
T3: hand-make a box
T4: wrap a snow-globe

Note that many snow-globes may be assembled concurrently.

1a Semaphore Solution (weight 18)

Implement the synchronization part of the snow-globe production by
extending the sketch below. Fill in code for the dots where needed. Use
semaphores for synchronization. Remember to declare and initialize the
semaphores.

process MaterialCollector[i=1 to N]{
while (true){
...

‘‘collect a group of materials (glass, fake snow and ceramic)’’

...

}
}

(Continued on page 3.)



Examination in INF4140, 17. December 2012 Page 3

process GiftAssembler[i=1 to N]{
while (true){

...

‘‘hand-make a snow-globe’’

...

}
}

process BoxMaker[i=1 to N]{
while (true){

...

‘‘hand-make a box’’

...

}
}

process GiftWrapper[i=1 to N]{
while (true){

...

‘‘wrap a snow-globe’’

...

}
}

1b Safety (weight 3)

Explain briefly why your implementation (from exercise 1a) is safe, i.e., why
a snow-globe is only wrapped in a box after both the box and the snow-
globe have been made, and why a GiftAssembler will only start making a
snow-globe when there is a group of materials that he can use.

1c Binary semaphores (weight 3)

Does your solution (from exercise 1a) use binary semaphores? Explain briefly.

(Continued on page 4.)



Examination in INF4140, 17. December 2012 Page 4

Gift Storage:

In Santa’s factory there are some elves in charge of
organizing the gifts for transporting into the storage room.
There are N GiftOrganizer elves and one Transporter

elf. They share a common sledge. Each GiftOrganizer

elf repeatedly gathers one gift and puts it into the sledge,
the sledge can hold G gifts and it is initially empty.
When the sledge is full the Transporter elf moves the sledge with the gifts
into the storage room (which means that the GiftOrganizer elves have to
take a break until the sledge is back), downloads the gifts in one empty bag,
closes the bag, and returns with an empty sledge.

1d Monitor Solution (weight 20)

Given the following implementation of the GiftOrganizers and Transporter

elves as processes:

process GiftOrganizer[i=1 to N] {

while (true) call Gift_Storage.put();

}

process Transporter{

while (true) call Gift_Storage.transport();

}

Extend the sketch below of the monitor. Fill in code for the dots where
needed. Use the Signal and Continue discipline and assume there is an infinite
supply of gifts.

monitor Gift_Storage {

int g = G; # capacity of the sledge

int counter = 0; # number of gifts in the sledge

...

procedure put() {

...

‘‘Put gift into the sledge ’’

...

}

procedure transport () {

...

‘‘move sledge into the storage room , download gifts

and return ’’

...

}

}

(Continued on page 5.)



Examination in INF4140, 17. December 2012 Page 5

monitor Gift_Storage {

int g = G; # capacity of the sledge

int counter = 0; # number of gifts in the sledge

...

procedure put() {

...

‘‘Put gift into the sledge’’

...

}

procedure transport() {

...

‘‘move sledge into the storage room, download gifts and return’’

...

}

}

1e Java (weight 3)

Can your monitor solution from exercise 1d easily translate into a monitor
in Java using the built-in statements wait, notify and notifyAll? Explain
briefly. (The Java implementation code is not needed)

Hint: How many condition variables are you using in your solution from
exercise 1d?

1f Signaling Disciplines (weight 3)

What is the difference between the Signal and Continue discipline and the
Signal and Wait discipline? Does your monitor implementation from exercise
1d work correctly with the Signal and Wait discipline? Explain briefly.

(Continued on page 6.)



Examination in INF4140, 17. December 2012 Page 6

Problem 2 Asynchronous Communication:

Santa’s Factory (weight 50)

We here consider asynchronous message passing using the language with
send and await statements, and the following variation of the snow-globe
production from Problem 1.
In this case, we have a total of four agents in the system:

• One MaterialCollector agent,

• One GiftAssembler agent,

• One BoxMaker agent, and

• One GiftWrapper agent.

The agents follow the precedence graph from Figure 1 in page 2, which means:
The MaterialCollector notifies the GiftAssembler agent every time it
finishes to collect a group of materials, the GiftAssembler agent notifies the
GiftWrapper agent every time it finishes to hand-make a snow-globe, and
the BoxMaker agent also notifies the GiftWrapper agent every time it finishes
to hand-make a box.

Consider the following implementation of the GiftAssembler agents:

X : Agent; // assumed initialized to the MaterialCollector

Y : Agent; // assumed initialized to the GiftWrapper

while true do
await X:materialIsCollected;

// ‘‘hand-make a snow-globe’’

send Y:giftIsAssembled;

od

You may assume that no communication occurs during the snow-globe
production.

2a Loop invariant (weight 5)

Consider a GiftAssembler agent A implemented as above.
The function isBeingAssembled is defined over the local history of A to cal-
culate the number of snow-globes which are in production but not complete.

isBeingAssembled(ε) = 0
isBeingAssembled(h;X ↓ A : materialIsCollected) = isBeingAssembled(h) + 1
isBeingAssembled(h;A ↑ Y : giftIsAssembled) = isBeingAssembled(h)− 1

Formulate a loop invariant of A using the isBeingAssembled function.

(Continued on page 7.)



Examination in INF4140, 17. December 2012 Page 7

2b Program Analysis (weight 15)

Use Hoare Logic to verify your loop invariant from exercise 2a (In the
Appendix you can find a list of rules for program verification), and explain
briefly why this is a suitable loop invariant.

2c History Invariant (weight 10 )

Using the isBeingAssembled function formulate an invariant for A over its
local history h, which always holds, and show formally or informally that
this invariant holds after each interaction point in the implementation.

2d Implementation (weight 15)

Provide an implementation of the GiftWrapper. This agent should repeatedly
try to wrap the snow-globes, but it must wait for the arrival of one snow-
globe and one box before wrapping it. The implementation should allow
GiftWrapper to receive a snow-globe and a box in a random order. Extend
the program sketch below. Fill in code for the dots where needed.

while true do
...

// ‘‘wrap a snow-globe’’

...

od

2e Local Histories (weight 5)

Give two examples of possible local histories of the GiftWrapper agent.

(Continued on page 8.)



Examination in INF4140, 17. December 2012 Page 8

Problem 3 Extra points (optional question):

Program Verification (weight 10 )

IMPORTANT NOTE:
This question is optional, you can solve this question if you wish
to get extra points added on top of your final score.

The Factorial function:

In mathematics, the factorial of a non-negative integer n, denoted by n!, is
the product of all positive integers less than or equal to n. For example,

5! == 5 * 4 * 3 * 2 * 1 == 120.

Let n be a positive integer, fac(n) calculates the factorial of n and is
implemented as follows:

x = n; y = 1; z = 0;

while (z != x) {
z = z + 1; y = y * z;

}

Use program logic (In the Appendix you can find a list of rules for program
verification) to prove the following triple:

{True} fac(n) {y = x!}

Use y = z! as loop invariant.

Addtionally, you may assume the following properties for the factorial:

0! == 1

(n + 1)! == (n)! * (n+1)

(Continued on page 9.)



Examination in INF4140, 17. December 2012 Page 9

Appendix: Inference Rules

Assignment

{Px←e}x = e{P}

Composition

{P}S1{Q} {Q}S2{R}
{P}S1; S2{R}

While

{I ∧B}S{I}
{I}while (B) S;{I ∧ ¬B}

Consequence

(P ′ ⇒ P ) {P}S{Q} (Q⇒ Q′)

{P ′}S{Q′}

Non-deterministic choice ([])

{P1} S1 {Q} {P2} S2 {Q}
{P1 ∧ P2} (S1[]S2) {Q}

Send

{Qh←h;A↑B:m} send B : m {Q}

Receive

{Qh←h;B↓A:m} await B : m {Q}

(Continued on page 10.)


