
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: INF4140 –– Models of Concurrency

Day of examination: 17. December 2013

Examination hours: 14.30 – 18.30

This problem set consists of 8 pages.

Appendices: Inference rules for program verification

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advice and remarks:

• This problem set consists of 4 independent problems and one optional
extra problem which gives extra points.

• The points from problems 1 – 4 sum up to a total of 100 points. The
number of points stated on each part indicates the (estimated) difficulty
resp. time for solving that part.

• Use your time wisely and take into consideration the weight of each
question.

• You should read the whole problem set before you start solving the
problems.

• You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in
the delivered answer.

• Make short and clear explanations!

Good Luck and Merry Christmas!

(Continued on page 2.)

Exam in INF4140, 17. December 2013 Page 2

Problem 1 Miscellaneous (weight 10)

1a Synchronization primitives (weight 4)

Compare the P -operation on a counting semaphore with the wait-operation
on a condition variable for monitors. Shortly characterize relevant similarities
and differences. Don’t make your list of items longer than 3.

1b Concurrent execution and termination (weight 6)

As known from the lecture: a program terminates properly means, all
processes of a program reach their respective “end” at which point the
execution stops. Now consider the following 2 programs and discuss the given
questions for each of them. Start by stating your answer clearly (“yes”/“no”)
and add a short justification, why your answer is the case.

1. Is it possible that the program terminates?

2. Is it guaranteed that it terminates?

3. Does your answer to those 2 points depend on the assumption of
weak/strong fairness?

Listing 1: Program 1

1 x = 0; y = 0; b = true;

2 co

3 while (b) x = x + 1;

4 ||

5 while (b) y = x + x ;

6 ||

7 await (y==5) < b = false >;

8 oc

Listing 2: Program 2

1 x = 1; y = 1; b = true;

2 co

3 while (b) <h = x; x =y ; y = h>;

4 ||

5 while (b) x = x + y + 1;

6 ||

7 await (y > x) < b = false >;

8 oc

(Continued on page 3.)

Exam in INF4140, 17. December 2013 Page 3

Problem 2 Sushi bar (weight 30)

Assume a small sushi bar with 5 seats. Customers can enter and leave the
bar. The general behavior of one customer process looks as follows:

1 process customer

2 begin

3 while true do

4 enter ();

5 # eat sushi

6 leave ();

7 do

8 end

As social persons, the sushi customers behave as follows:

1. in principle, when a seat is free a customer can enter.

2. However, if the sushi-bar is full, the (then 5) customers form a group
who want to finish eating together without disturbance by newcomers.
So, no new customers are allowed to enter until the sushi-bar is empty
again.

2a Semaphore solution (weight 25)

Solve this synchronization problem by

• filling out the bodies of enter and leave and

• using semaphores for your solutions.

Don’t forget to introduce and initialize appropriately all variables you need
for our solution, including the semaphore(s).

Hint: you can use a semaphore V -operation with extended functionality of
the form V (sem, n): It’s an abbreviation for doing the V -operation n-times
on semaphore sem, where n is a number n ≥ 0.

2b Invariant (weight 5)

State a reasonable invariant for the sushi-bar program, capturing both
conditions for sushi-bar clients stated above.

(Continued on page 4.)

Exam in INF4140, 17. December 2013 Page 4

Problem 3 Crossing baboons (weight 25)

In South Africa’s Kruger National Park, there’s a canyon spanned by a
single rope. The local baboons (= kind of monkeys) can cross the canyon by
swinging hand-over-hand on the rope. However, if two baboons go in opposite
direction and meet in the middle, they get into a fight and fall to death, so
that needs to be avoided. Furthermore, the rope is not too strong and can
carry at most 5 baboons at the same time. Assuming that we can train
the baboons to use monitors, you are required to program a synchronization
scheme such that

• never more than 5 baboons are on the rope.

• once a baboon has started to cross, he can reach the other side without
encountering on the rope another baboon going the opposite direction

1 monitor Rope{

2 ...

3 procedure go-north () {...}

4
5 procedure end -north () {...}

6
7 ...

8 }

9
10 process baboon -tonorth[i=1 to N]{ # South going is anologous

11 while (true) {

12 ...

13 # cross the canyon

14 ...

15 }

16 }

3a Basic monitor solution (weight 15)

Solve the described problem using a monitor (assuming standard signaling
& continue scheduling).

3b Invariant (weight 5)

State a reasonable invariant for the program.

3c No-starvation (weight 5)

The problem formulation in the first sub-task does not require to solve the
problem that a constant stream of baboons in one direction may prevent
baboons in the opposite direction to cross the rope forever. Extend your
solution to repair that weakness.

(Continued on page 5.)

Exam in INF4140, 17. December 2013 Page 5

Problem 4 Asynchronous communication:

Crossing baboons (weight 35)

We here consider asynchronous message passing using the language with
send and await statements and with the non-deterministic choice statement
S1 [] S2 which chooses either S1 or S2 for execution. Consider the following
variation of the crossing baboons problem. The general problem is the same,
but in case a baboon wants to cross when currently impossible, he is not
blocked, he should try again. In more detail:

Assume a traffic controller to decide when a baboon can cross
the canyon based on the same criteria than before: no opposite
crossing is allowed and no more than five baboons are allowed
to cross. A baboon who wants to cross sends a message to the
controller, and depending on the answer, the baboon crosses, or
tries again.

So the cycle of a baboon agent B wishing to cross the canyon into the direction
of north could be sketched as follows:

1 var permission: Boolean;

2 while true do

3 send C:request(tonorth);

4 await C:cross(permission);

5 if (permission) then

6 # cross the canyon

7 send C:arrive;

8 fi

9 od

where C refers to the traffic controller agent and tonorth defines the direction
a baboon wants to go (true for going to the north side of the canyon, false
for the south).

4a Program Analysis (weight 10)

Let CycleB denote the regular expression:[
B ↑ C : request(tonorth), C ↓ B : cross(permission), [B ↑ C : arrive | ε] ,

some permission
]∗

Assume that h is the local history of B. Use Hoare Logic to verify that
h is CycleB is a loop invariant for the baboon agent implementation given
above. (Remember that h isR denote that h matches the structure described
by the regular expression R.)

(Continued on page 6.)

Exam in INF4140, 17. December 2013 Page 6

4b History invariant (weight 5)

Consider the following local history invariant for a baboon agent B:

h ≤ CycleB

Show, formally and informally, that this invariant holds after each interaction
point in the baboon agent implementation. (Remember that h ≤ R denote
that h is a prefix of the structure described by the regular expression R.)

4c Implementation (weight 15)

Provide an implememtation of the traffic controller agent C. The agent should
be always waiting for baboons to ask for permission to cross the canyon.

4d Events (weight 2)

What are the local events of the traffic controller C?

4e Properties (weight 3)

Is your solution fair to baboons from both directions? If yes, give your
justification; otherwise, indicate briefly how to make it fair.

(Continued on page 7.)

Exam in INF4140, 17. December 2013 Page 7

Problem 5 Bonus task: Compare-and-Swap

(weight 15)

One low-level synchronization primitive available on some HW architectures
is called compare-and-swap (one some x86-architectures also known as
compare-and-exchange CMPXCHG). Its meaning can be described as follows:

1 compare_and_swap(int* reg , int old , int new) {

2 < # atomic begin

3 int old_val = *reg; # dereference local var reg

4 # and fetch value into old_val

5 if old_val == old

6 then *reg = new # store at address pointed at by reg

7 >; # end of atomic

8 return old_val

9 }

In words: the first two arguments contain an address in main memory
and a value, which are being compared; more precisely, the content at the
address in reg is compared to the value old. If they are the same, the
memory cell at the mentioned address is over-written but the operations
3rd argument. Independent of the comparison: the value as read from the
address is returned.

Now: implement counting semaphores using compare-and-swap. Don’t use
any other synchronization statements except that one. It’s not required that
your semaphore offers a FIFO-property and you don’t need to take care of
any fairness considerations.

(Continued on page 8.)

Exam in INF4140, 17. December 2013 Page 8

Appendix: Inference Rules

Assignment

{Px←e}x = e{P}

Composition

{P}S1{Q} {Q}S2{R}
{P}S1; S2{R}

While

{I ∧B}S{I}
{I}while (B) S;{I ∧ ¬B}

Consequence

(P ′ ⇒ P) {P}S{Q} (Q⇒ Q′)

{P ′}S{Q′}

If

{P1}S1 {Q} {P2}S2 {Q}
{if b then P1 else P2} if b then S1 else S2 fi {Q}

where the precondition if b then P1 else P2 is an abbreviation for
(b⇒ P1) ∧ (¬b⇒ P2)

Send

{Qh←h;A↑B:m} send B : m {Q}

Receive

{∀w . Qh←h;B↓A:m(w)} await B : m(w) {Q}

