
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: INF4140 — Models of Concurrency

Day of examination: 17. December 2013

Examination hours: 14.30 – 18.30

This problem set consists of 19 pages.

Appendices: Inference rules for program verification

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advice and remarks:

• This problem set consists of 4 independent problems and one optional
extra problem which gives extra points.

• The points from problems 1 – 4 sum up to a total of 100 points. The
number of points stated on each part indicates the (estimated) difficulty
resp. time for solving that part.

• Use your time wisely and take into consideration the weight of each
question.

• You should read the whole problem set before you start solving the
problems.

• You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in
the delivered answer.

• Make short and clear explanations!

Good Luck and Merry Christmas!

(Continued on page 2.)

Examination in INF4140, 17. December 2013 Page 2

Problem 1 Miscellaneous (weight 10)

1a Synchronization primitives (weight 4)

Compare the P -operation on a counting semaphore with the wait-operation
on a condition variable for monitors. Shortly characterize relevant similarities
and differences. Don’t make your list of items longer than 3.

1b Concurrent execution and termination (weight 6)

As known from the lecture: a program terminates properly means, all
processes of a program reach their respective “end” at which point the
execution stops. Now consider the following 2 programs and discuss the given
questions for each of them. Start by stating your answer clearly (“yes”/“no”)
and add a short justification, why your answer is the case.

1. Is it possible that the program terminates?

2. Is it guaranteed that it terminates?

3. Does your answer to those 2 points depend on the assumption of
weak/strong fairness?

Listing 1: Program 1

1 x = 0; y = 0; b = true;

2 co

3 while (b) x = x + 1;

4 ||

5 while (b) y = x + x ;

6 ||

7 await (y==5) < b = false >;

8 oc

Listing 2: Program 2

1 x = 1; y = 1; b = true;

2 co

3 while (b) <h = x; x =y ; y = h>;

4 ||

5 while (b) x = x + y + 1;

6 ||

7 await (y > x) < b = false >;

8 oc

Solution 1 In all cases and questions: they key to termination is the third
branch, so: is it possible that the third branch is executed, is it guaranteed,
and what about fairness.

(Continued on page 3.)

Examination in INF4140, 17. December 2013 Page 3

1. possible termination: it’s possible for both. For program 1: the trick is
to realize that x+x is not atomic. If it where, y might be even “always”,
and under this min-conception, the answer “program cannot terminate”
seems plausible. That the second one may terminate is obvious.

2. Termination guarantee: it’s clear that the answer is no for both.

3. influence of fairness: The key to fairness is to think about programs
running “forever” (it’s a condition for infinite execution): For program
1: fairness (whichever) obviously has no influence, if the y = 5 is
missed, it’s not executed and won’t be ever enabled again. For the second
program: That’s more tricky.

Problem 2 Sushi bar (weight 30)

Assume a small sushi bar with 5 seats. Customers can enter and leave the
bar. The general behavior of one customer process looks as follows:

1 process customer

2 begin

3 while true do

4 enter ();

5 # eat sushi

6 leave ();

7 do

8 end

As social persons, the sushi customers behave as follows:

1. in principle, when a seat is free a customer can enter.

2. However, if the sushi-bar is full, the (then 5) customers form a group
who want to finish eating together without disturbance by newcomers.
So, no new customers are allowed to enter until the sushi-bar is empty
again.

2a Semaphore solution (weight 25)

Solve this synchronization problem by

• filling out the bodies of enter and leave and

• using semaphores for your solutions.

Don’t forget to introduce and initialize appropriately all variables you need
for our solution, including the semaphore(s).

(Continued on page 4.)

Examination in INF4140, 17. December 2013 Page 4

Hint: you can use a semaphore V -operation with extended functionality of
the form V (sem, n): It’s an abbreviation for doing the V -operation n-times
on semaphore sem, where n is a number n ≥ 0.

2b Invariant (weight 5)

State a reasonable invariant for the sushi-bar program, capturing both
conditions for sushi-bar clients stated above.

Remark 1 (Sushi bar) The problem is decribed in [?, 7.1.2]. The book
provides first a “wrong” solution. We decided not to show the wrong solution
and to have it analyzed, because it’s not clear whether such a task is confusing
(and then puts the student on a wrong track etc).

There is a certain similarity with the Roller-coaster problem. In the lecture
the RC problem was given as part of oblig-3, which they should therefore
be familiar with. A difference is that the RC was intended to be solved by
monitors, here we ask first for a semaphore solution. The roller-coaster is
also (as semaphores) described in [?, Section 5.7]. The “interface” (i.e., the
way the clients are supposed to interact) of the monitor solution and the one
for the semaphores are not the same. One difference (at least in [?]) between
the RC and the sushi is that the RC care is “ active” in the sense that it
triggers “unloading” of the passengers. In the sushi-bar the customers are
allowed to leave themselves.

Let’s identify the synchronization needs (first the logical ones, and then
afterwards, when introducing some shared variables, some mutexes for the
specific synchronization to protect them). The logical synchronizations are
described in the task. The way the skeleton is given indicates: the sushi-
bar is not really an “entity” of itself (for instance a monitor-module).
All the functionality is in the procedures (and appropriate shared vars
plus semaphores). From the task description, it should be obvious that the
implementation needs to keep track (probably explicitly, i.e., via dedicated
shared variables) of two entities

• customers eating, and

• customers waiting.

The obvious invariant is that

eating ≤ 5

It also should be a goal (liveness) that if eating = 0, then the number
of waiting clients is reduced. For leaving: no client must be refused from

(Continued on page 5.)

Examination in INF4140, 17. December 2013 Page 5

leaving, i.e., the exit-procedure must be non-blocking.1 The specific additional
complication/synchronization condition is: it’s not that a client can enter the
bar as soon as there’s a free chair: once the sushi-bar is full, it needs to go
empty again until the first new one can enter (if there are people waiting,
preferably from the waiting queue, if fairness is an issue.) That means, we
cannot use the number of eating person in the corresponding synchronization
condition. Basically, we need at least one more bit to indicate how to interpret
if the bar is not empty nor full, i.e., if 0 < eating < 5. The border-cases are
clear. And it’s at the border cases, where that condition toggles. In the code
below, the boolean must wait is plays that role: it’s initially false, it’s set to
true when (if ever) hitting 5, and reset to false when (if ever) the number of
eaters hit 0 egain.

Those considerations about the logical synch. conditions (and adding some
mutex protection when doing some manipulations) may lead to the code of
Listing 3.

Listing 3: Erroneous solution
1 enter() {

2 P(mutex);

3 if must_wait

4 then waiting = waiting + 1;

5 V(mutex);

6 P(block);

7 P(mutex); # !!

8 waiting -= 1

9 else skip;

10 eating += 1

11 must_wait = (eating == 5)

12 V(mutex);

13 }

14
15
16 leave() {

17 P(mutex);

18 eating -= 1

19 if eating == 0:

20 then n = min(5, waiting)

21 Vn(block);

22 must_wait = false;

23 else skip;

24 V(mutex);

25 }

Unfortunately, it’s wrong. The error illustrates one “challenge” of the task.
The general core of the problem should be known from various places from
the lecture (where? also with the sem’s?): if an enters the “critical part” of
such problems (here the sushi bar), that involves 2 things:

1Probably there will be some mutex-handing when exiting, so technically a blocking
operation is being done. Nonetheless, assuming that no one stays in its mutex-section
forever and that the mutex-protections are used appropriately, it’s not a problem, the
delay is negligible.

(Continued on page 6.)

Examination in INF4140, 17. December 2013 Page 6

1. “testing”: checking that the condition to wait for is satisfied

2. “setting”: once the thread wishing to enter has been granted access, the
condition changes again, for instance by setting appropriate variables
governing the condition.

The general challenge is to get the testing and setting either atomic, resp.
make sure that if it’s not atomic, it works nontheless.

That’s the problem also here: ignoring the boolean variable discussed above,
the two shared vars needed for getting the logic to work is to keep track of the
ones eating and the ones waiting.

In is instructive to compare it with the readers-writers problem (especially
when done with semaphores), which will highlight the particular challenge
here. At the surface, the problem seems comparable: in both cases, one needs
to keept track of a pair of variables, both counting numbers of processes:
here eating and waiting and in the readers/writers case: reading and writing
processes. The more problematic variable is the readers in the latter case
and the ones waiting the case here.2 The crucial difference between the
two problems is: the readers refer to processes inside the critical section, the
waiting refers to processes not inside the critical section. As a consequence:
for the R/W problem

the reader trying to access the critical section could adapt the
number of readers with nr++ before getting potentially suspended
at the guarding semaphore.

Here, the same is done for the waiting counter. However, and that’s
the point: once the suspended process is woken up and allowed to proceed
to the critical section, this variable conceptually is to be decreased. In
the readers-writers problem, the reader3 can proceed to the critical section
without touching this (or any other) shared var again! Here, in entry
protocol of the customer increases waiting before getting suspended (which is
unproblematic), but one may be tempted to also decreases it afterwards. That
will lead to the erroneous code shown, violating the basic safety invariant.

The correct solution resembles (for instance) the way from the lecture/book
how to implement P and V operations for FIFO semaphores using S&C
monitors (passing the condition, see [?, Figure 5.3]), except that here we
have no monitors. ut

Solution 2 (of Sushi) A solution that avoids the mentioned problem is
given in Listing 4. [?] also presents a second possible solution.

2why?
3The writer is less problematic.

(Continued on page 7.)

Examination in INF4140, 17. December 2013 Page 7

Listing 4: Sushi

1 enter() {

2 P(mutex);

3 if must_wait

4 then waiting = waiting + 1;

5 V(mutex);

6 P(block);

7 else eating = eating +1;

8 must_wait = (eating == 5)

9 V(mutex);

10 }

11
12
13 leave() {

14 P(mutex);

15 eating -= 1

16 if eating == 0:

17 then n = min(5, waiting)

18 waiting = waiting - n; // !

19 eating = eating + n; // !

20 must_wait = (eating == 5); // !

21 Vn(block);

22 else skip;

23 V(mutex);

24 }

(Continued on page 8.)

Examination in INF4140, 17. December 2013 Page 8

Problem 3 Crossing baboons (weight 25)

In South Africa’s Kruger National Park, there’s a canyon spanned by a
single rope. The local baboons (= kind of monkeys) can cross the canyon by
swinging hand-over-hand on the rope. However, if two baboons go in opposite
direction and meet in the middle, they get into a fight and fall to death, so
that needs to be avoided. Furthermore, the rope is not too strong and can
carry at most 5 baboons at the same time. Assuming that we can train
the baboons to use monitors, you are required to program a synchronization
scheme such that

• never more than 5 baboons are on the rope.

• once a baboon has started to cross, he can reach the other side without
encountering on the rope another baboon going the opposite direction

1 monitor Rope{

2 ...

3 procedure go-north () {...}

4
5 procedure end -north () {...}

6
7 ...

8 }

9
10 process baboon -tonorth[i=1 to N]{ # South going is anologous

11 while (true) {

12 ...

13 # cross the canyon

14 ...

15 }

16 }

3a Basic monitor solution (weight 15)

Solve the described problem using a monitor (assuming standard signaling
& continue scheduling).

3b Invariant (weight 5)

State a reasonable invariant for the program.

3c No-starvation (weight 5)

The problem formulation in the first sub-task does not require to solve the
problem that a constant stream of baboons in one direction may prevent

(Continued on page 9.)

Examination in INF4140, 17. December 2013 Page 9

baboons in the opposite direction to cross the rope forever. Extend your
solution to repair that weakness.

Remark 2 The problem can be found in [?]. In the book [?, page 256] and in
exercise 4, we had a pretty related problem (“one lane bridge”). The difference
is that the monkey problem here is “bounded” whereas the one-lane-bridge was
not. ut

Solution 3 (Baboons & monitors)

Code and invariant: Here’s a possible solution. It’s a direct adaptation of
the bridge problem discussed in the exercises (see [?, Exercise 5.7]).
The sync-needs are pretty clear. In terms of monitor invariants, the
one from the bridge in the book was formulated not only on the shared
variables but also on the condition variables using the empty condition-
variable inspection function. We cannot directly do that here, since we
have not officially introduced that there is a function that can find out
the number of queued processes on a condition variable.4 The invariant
for the bridge is

(ns = 0 ∨ nn = 0) ∧ (ns > 0→ empty(gosouth))∧
(nn > 0→ empty(gonorth))

(1)

One obvious generalization of the invariant is the following: That does
not work like that any more for two reasons. One obvously is that
there cannot be more than 5 baboons, so the first one needs to be
refined and also the other to factors containing the condition on the
condition variables cannot be like that. However, the straightforward
generalization

(5 ≥ ns = 0 ∨ 5 ≥ nn = 0)∧
(5 > ns > 0→ empty(gosouth)) ∧ (5 > nn > 0→ empty(gonorth))

However, we have to be slightly careful (and be aware what a monitor
invariant actually is). At first sight, equation (1) from the old problem
holds because the implementation in the solution to the exercise
used signal all for signalling: signal all unblocks all waiting cars
atomically and that seems (at first sight) be captured in the implications.

In the monkey-problem we cannot just free 5 threads in the same way
because we do not have a operation that can free a specified number of
processes atomically.5 One has to remember however what a monitor

4Of course here we are talking about formulating an invariant (which is logic) in
principle we can talk about everything we want, but perhaps it’s not obvious for the
students.

5Also in the previous task for the semaphores, the more expressive V -operation there
was not claimed to be atomic, but intended as abbreviation for a sequence of V ’s.

(Continued on page 10.)

Examination in INF4140, 17. December 2013 Page 10

invariant is. It must hold at all times if not process is actually inside the
monitor. Therefore, whether the signalling is atomic or not is irrelevant.

The general pattern for the monitor should be familiar from the lecture
(if not even from the bridge-exercise in particular): The monitor has as
big advantage built-in mutex protection. On the down-side, the familiar
“complication” for the monitors (e.g. compared to await-statements)
is that one has to be inside the monitor to check whether or not the
conditions (= monitor invariant) hold to allow to proceed (and of course
one has to be aware of the signalling discipline). Compared to the
previous task (with semaphores): the monitor variables have a queue,
and somehow work like “semaphores” in that one can wait on it, but
the condition variables are of course not “counting”, in particular the
waiting-operation waits unconditionally.

Listing 5: Baboons (too simplistic)

1 monitor Rope {

2 int ns = 0; # number of apes going south

3 int nn = 0; # number of apes going north

4 cond gosouth gonorth;

5 ## Invariant:

6 ## (ns == 0 or nn == 0) and

7 ## (ns <= 5) and (nn < 5) and

8 ## (ns > 0 => empty(gosouth)) and

9 ## (nn > 0 => empty(gonorth))

10
11 # called by apes wanting to go north

12 procedure go -north() {

13 while (ns > 0 ∧ nn ≥ 5) wait(gonorth)

14 nn = nn + 1

15 }

16 # called by apes finished going north

17 procedure end -north() {

18 nn = nn - 1;

19 signal(go-north) ## added

20 if (nn == 0) signal_all(gosouth);

21 }

22
23 # called by apes wanting to go south

24 procedure go -south() {

25 while (nn > 0) wait(gosouth)

26 ns = ns + 1

27 }

28 # called by apes finished going south

29 procedure end -south() {

30 ns = ns - 1;

31 signal(go-south); ## added

32 if (ns == 0) signal_all(gonorth);

33 }

34 }

No-starvation: The code show has indeed the problem as stated in the task:
a constant stream of north-going monkeys precludes any south-going

(Continued on page 11.)

Examination in INF4140, 17. December 2013 Page 11

monkey ever to cross. In exercise 4, we dealt with the problem in the
context of the one-lane-bridge. The core of the solution there was to
count also the delayed cars/monkeys.

The “non-fair” solution for the one-lane bridge in exercise 4(a) used
the standard while-wait pattern. Actually that could have been simplified
in that the while-loop is replaced by a simple conditional. That was
possible, because the invariant was simpler (the condition that the
number in the requested direction is ≤ 5 was missing). Now, the rest
of the body of the enter-procedure (e.g., go-noth) may invalidate the
invariant again. Therefore, we must have the while-loop here. Further
in that one-lane-bridge exercise, the solution for the FairBridge

argued that one should avoid the while-loop since while loops “don’t
prevent sneaking”. In that simpler setting, the control could be directly
transferred from the “last north car” to potentially “south-waiting”
cars, and one was guaranteed to enter. Therefore, the conditional-
code without while loop was able to prevent that form of sneaking. As
mentioned, we cannot use this simple approach, we need a while-loop
to recheck the condition.

However, the task is formulated to avoid the weakness that a constant
stream of baboons may prevent the opposite baboons from crossing.
Depending on how one interprets that (and depending on fairness) also
a while-solution (with sneaking) is acceptable.

In that exercise we also had an alternative solution without signal-
all, but a while-loop over signal. We cannot directly use that, but
we could do a solution that wakes up all the waiting but not more
than 5. In order to port the idea of the solution, we need the
following key insight: To avoid re-checking the invariant at the entry
procedure makes it necessary that the signaler makes sure that the entry
condition is satisfied upon signalling. Therefore, the signaller cannot
use signal all. Since now, in contrast to the bridge, the invariant
requires that there are no more than 5 baboons on one direction, the
signalling must cap the number of “wake-up” by 5.

(Continued on page 12.)

Examination in INF4140, 17. December 2013 Page 12

Listing 6: Fair-baboons: no-while-loop & individual signals

1 monitor Rope {

2 int ns = 0; # number of apes going south

3 int nn = 0; # number of apes going north

4 cond gosouth gonorth;

5 ## Invariant:

6 ## (ns == 0 or nn == 0) and

7 ## (ns <= 5) and (nn < 5) and

8 ## (ns > 0 => empty(gosouth)) and

9 ## (nn > 0 => empty(gonorth))

10
11 # called by apes wanting to go north

12 procedure go -north() {

13 if ((ns > 0 ∧ nn ≥ 5) ∨ ¬empty(gosouth))
14 then wait(gonorth)

15 else nn = nn + 1

16 }

17 # called by apes finished going north

18 procedure end -north() {

19 nn = nn - 1;

20 if (nn == 0)

21 then { m = max(5,size(gosouth));

22 ns = ns + m # adapt number already here

23 signalm(gosouth);

24 }

25 }

26
27 ...

28 }

ut

(Continued on page 13.)

Examination in INF4140, 17. December 2013 Page 13

Problem 4 Asynchronous communication:

Crossing baboons (weight 35)

We here consider asynchronous message passing using the language with
send and await statements and with the non-deterministic choice statement
S1 [] S2 which chooses either S1 or S2 for execution. Consider the following
variation of the crossing baboons problem. The general problem is the same,
but in case a baboon wants to cross when currently impossible, he is not
blocked, he should try again. In more detail:

Assume a traffic controller to decide when a baboon can cross
the canyon based on the same criteria than before: no opposite
crossing is allowed and no more than five baboons are allowed
to cross. A baboon who wants to cross sends a message to the
controller, and depending on the answer, the baboon crosses, or
tries again.

So the cycle of a baboon agent B wishing to cross the canyon into the direction
of north could be sketched as follows:

1 var permission: Boolean;

2 while true do

3 send C:request(tonorth);

4 await C:cross(permission);

5 if (permission) then

6 # cross the canyon

7 send C:arrive;

8 fi

9 od

where C refers to the traffic controller agent and tonorth defines the direction
a baboon wants to go (true for going to the north side of the canyon, false
for the south).

4a Program Analysis (weight 10)

Let CycleB denote the regular expression:[
B ↑ C : request(tonorth), C ↓ B : cross(permission), [B ↑ C : arrive | ε] ,

some permission
]∗

Assume that h is the local history of B. Use Hoare Logic to verify that
h is CycleB is a loop invariant for the baboon agent implementation given
above. (Remember that h isR denote that h matches the structure described
by the regular expression R.)

(Continued on page 14.)

Examination in INF4140, 17. December 2013 Page 14

Solution 4 Local event of B:
B ↑ C : request(tonorth);C ↓ B : cross(permission) and B ↑ C : arrive

{h is Cycle B}
while true do {h is Cycle B}
{∀ permission. if (permission) then h;B ↑C : request(tonorth);

C ↓B : cross(permission);B ↑C : arrive is Cycle B}
else h;B ↑C : request(tonorth); C ↓B : cross(permission); ε is Cycle B}

send C:request(tonorth);

{∀ permission. if (permission)

thenh;C ↓B : cross(permission);B ↑C : arrive is Cycle B

else h;C ↓B : cross(permission); ε is Cycle B}
await C:cross(permission);

{if (permission) then h;B ↑C : arrive is Cycle B else h; ε is Cycle B}
if (permission) then

// ‘‘cross the canyon’’

{h;B ↑C : arrive is Cycle B}
send C:arrive;

fi
{h is Cycle B}

od

Entry: Initially, h is emtpy, it is trivial that ε is CycleB ⇒ h is CycleB

Loop:

h is CycleB⇒∀ permission. if (permission)
then h;B ↑ C : request(tonorth); C ↓ B : cross(permission); B ↑ C : arrive is CycleB
else h;B ↑ C : request(tonorth); C ↓ B : cross(permission); ε is CycleB

It holds because h is CycleBand we know that

B ↑ C : request(tonorth), C ↓ B : cross(permission), B ↑ C : arrive

is CycleB. Therefore,

h;B ↑ C : request(tonorth), C ↓ B : cross(permission), B ↑ C : arrive

is CycleB.

Analogous for the else-branch.

4b History invariant (weight 5)

Consider the following local history invariant for a baboon agent B:

h ≤ CycleB

Show, formally and informally, that this invariant holds after each interaction
point in the baboon agent implementation. (Remember that h ≤ R denote
that h is a prefix of the structure described by the regular expression R.)

(Continued on page 15.)

Examination in INF4140, 17. December 2013 Page 15

Solution 5

• After send C:request(tonorth)
∀ permission. if (permission) then h; C ↓ B : cross(permission); B ↑
C : arrive is CycleB ⇒ h ≤ CycleB.
Since h; a; b isR for some regular expression R, then h ≤ R.

• After await C:cross(permission)
if (permission) then h; B ↑ C : arrive is CycleB ⇒ h ≤ CycleB.
Similar to the previous case.

• After send C:arrive
h is CycleB ⇒ h ≤ CycleB. Obvious.

4c Implementation (weight 15)

Provide an implememtation of the traffic controller agent C. The agent should
be always waiting for baboons to ask for permission to cross the canyon.

Solution 6

Listing 7:

1 var direction , tonorth: Boolean;

2 var X: Agent;

3 var n: Int;

4
5 loop

6 await X?request(direction);

7 send X:cross(true);

8 n := n + 1;

9
10 while n > 0 do

11 (await X?request(tonorth);

12 if (tonorth = direction AND n < 5)

13 then

14 send X:cross(true);

15 n := n + 1;

16 else

17 send X:cross(false);)

18 []

19 (await X?arrive;

20 n := n - 1;)

21 od

22 endloop

(Continued on page 16.)

Examination in INF4140, 17. December 2013 Page 16

4d Events (weight 2)

What are the local events of the traffic controller C?

Solution 7
X ↓ C : request(direction), C ↑ X : cross(true), C ↑ X : cross(false) and
X ↓ C : arrive

4e Properties (weight 3)

Is your solution fair to baboons from both directions? If yes, give your
justification; otherwise, indicate briefly how to make it fair.

Solution 8 Need to add waiting queues for both south-going and north-going
baboons, and a boolean variable to indicate whose turn should be next. As soon
as there is a baboon requesting to go to the opposite direction while there are
some baboons are crossing the canyon, we can put the request for going to the
opposite direction into the queue and indicate with the boolean variable that
the opposite direction will be in the next turn. At the same time, any other
requests to go to the current direction will be rejected. When the last baboon
finishes crossing, we can send permission messages to the first 5 baboons (or
all if there are less than 5 are waiting) waiting at the queue for the opposite
direction.

(One can also let at most 5 baboons waiting in the queue, and any further
requests will be rejected instead of putting them into the queue.) ut

(Continued on page 17.)

Examination in INF4140, 17. December 2013 Page 17

Problem 5 Bonus task: Compare-and-Swap

(weight 15)

One low-level synchronization primitive available on some HW architectures
is called compare-and-swap (one some x86-architectures also known as
compare-and-exchange CMPXCHG). Its meaning can be described as follows:

1 compare_and_swap(int* reg , int old , int new) {

2 < # atomic begin

3 int old_val = *reg; # dereference local var reg

4 # and fetch value into old_val

5 if old_val == old

6 then *reg = new # store at address pointed at by reg

7 >; # end of atomic

8 return old_val

9 }

In words: the first two arguments contain an address in main memory
and a value, which are being compared; more precisely, the content at the
address in reg is compared to the value old. If they are the same, the
memory cell at the mentioned address is over-written but the operations
3rd argument. Independent of the comparison: the value as read from the
address is returned.

Now: implement counting semaphores using compare-and-swap. Don’t use
any other synchronization statements except that one. It’s not required that
your semaphore offers a FIFO-property and you don’t need to take care of
any fairness considerations.

Solution 9 One can probably best do binary semaphores first. Let’s do it like
that.

The first observation is: like that operation FA (and TAS) we had in
the lecture/exam, the CAS has no “synchronizing power”, in the sense of
“delaying” a process. Since we are required to use only CAS and not higher-
level stuff, we need to program that “delaying” ourselves on the level of the
programming language. The only way to do that is a loop, i.e., spinning/busy
waiting. Let’s assume a cell in main memory pointed at by mutex. We assume
that the only possible (integer) values are 0 and 1. We interpret 1 as “free”
and “0” as taken.

1 P(mutex) {

2 while (CAS(mutex ,1 ,0)) {skip}

3 }

4
5 V(mutex) {

6 mutex* = 1

7 }

With the standard mutex available, we now need to get the facility of counting.

(Continued on page 18.)

Examination in INF4140, 17. December 2013 Page 18

1 P_count(sem) {

2 bool safe = false;

3 while (not safe)

4 do P(mutex);

5 if sem > 0

6 then safe := true

7 sem := sem -1

8 V(mutex)

9 od

10 }

(Continued on page 19.)

Examination in INF4140, 17. December 2013 Page 19

Appendix: Inference Rules

Assignment

{Px←e}x = e{P}

Composition

{P}S1{Q} {Q}S2{R}
{P}S1; S2{R}

While

{I ∧B}S{I}
{I}while (B) S;{I ∧ ¬B}

Consequence

(P ′ ⇒ P) {P}S{Q} (Q⇒ Q′)

{P ′}S{Q′}

If

{P1}S1 {Q} {P2}S2 {Q}
{if b then P1 else P2} if b then S1 else S2 fi {Q}

where the precondition if b then P1 else P2 is an abbreviation for
(b⇒ P1) ∧ (¬b⇒ P2)

Send

{Qh←h;A↑B:m} send B : m {Q}

Receive

{∀w . Qh←h;B↓A:m(w)} await B : m(w) {Q}

