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Abstract
This is the “handout” version of the slides for the lecture (i.e., it’s a rendering of the content of the slides in

a way that does not waste so much paper when printing out). The material is found in [Andrews, 2000]. Being
a handout-version of the slides, some figures and graph overlays may not be rendered in full detail, I remove
most of the overlays, especially the long ones, because they don’t make sense much on a handout/paper.
Scroll through the real slides instead, if one needs the overlays.

This handout version also contains more remarks and footnotes, which would clutter the slides, and
which typically contains remarks and elaborations, which may be given orally in the lecture. Not included
currently here is the material about weak memory models.

1 Monitors
19. September 2016

Overview

• Concurrent execution of different processes

• Communication by shared variables

• Processes may interfere x := 0; co x := x + 1 || x := x + 2 oc final value of x will be 1, 2, or 3

• await language – atomic regions x := 0; co <x := x + 1> || <x := x + 2> oc final value of x will be 3

• special tools for synchronization: Last week: semaphores Today: monitors

Outline

• Semaphores: review

• Monitors:

– Main ideas

– Syntax and semantics

∗ Condition variables
∗ Signaling disciplines for monitors

– Synchronization problems:

∗ Bounded buffer
∗ Readers/writers
∗ Interval timer
∗ Shortest-job next scheduling
∗ Sleeping barber
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Semaphores

• Used as “synchronization variables”

• Declaration: sem s = 1;

• Manipulation: Only two operations, P (s) and V (s)

• Advantage: Separation of “business” and synchronization code

• Disadvantage: Programming with semaphores can be tricky:1

– Forgotten P or V operations

– Too many P or V operations

– They are shared between processes

∗ Global knowledge
∗ Need to examine all processes to see how a semaphore is intended

Monitors

Monitor

“Abstract data type + synchronization”

• program modules with more structure than semaphores

• monitor encapsulates data, which can only be observed and modified by the monitor’s procedures.

– contains variables that describe the state

– variables can be changed only through the available procedures

• implicit mutex: only 1 procedure may be active at a time.

– A procedure: mutex access to the data in the monitor

– 2 procedures in the same monitor: never executed concurrently

• cooperative scheduling

• Condition synchronization:2 is given by condition variables

• At a lower level of abstraction: monitors can be implemented using locks or semaphores (for instance)

Usage

• process = active ⇔ Monitor: = passive/re-active

• a procedure is active, if a statement in the procedure is executed by some process

• all shared variables: inside the monitor

• processes communicate by calling monitor procedures

• processes do not need to know all the implementation details

– Only the visible effects public procedures important

• implementation can be changed, if visible effects remains

• Monitors and processes can be developed relatively independent ⇒ Easier to understand and develop
parallel programs

1Same may be said about simple locks.
2block a process until a particular condition holds.
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Syntax & semantics

monitor name {
mon . v a r i a b l e s # shared g l o b a l v a r i a b l e s
i n i t i a l i z a t i o n
procedures

}

monitor: a form of abstract data type:

• only the procedures’ names visible from outside the monitor:

call name.opname(arguments)

• statements inside a monitor: no access to variables outside the monitor

• monitor variables: initialized before the monitor is used

monitor invariant: describe the monitor’s inner states

Condition variables

• monitors contain special type of variables: cond (condition)

• used for synchronization/to delay processes

• each such variable is associated with a wait condition

• “value” of a condition variable: queue of delayed processes

• value: not directly accessible by programmer

• Instead, manipulated by special operations

cond cv; # declares a condition variable cv
empty(cv); # asks if the queue on cv is empty
wait(cv); # causes process to wait in the queue to cv
signal(cv); # wakes up a process in the queue to cv
signal_all(cv); # wakes up all processes in the queue to cv

entry queue inside monitor

cv queue

call

call

mon. free

sw

wait
sw

sc

Remark 1. The figure is schematic and combines the “transitions” of signal-and-wait and signal-and-continue
in a single diagram. The corresponding transition, here labelled SW and SC are the state changes caused by
being signalled in the corresponding discipline.

.
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1.1 Semaphores & signalling disciplines
Implementation of semaphores

A monitor with P and V operations:

monitor Semaphore { # monitor invar iant : s ≥ 0
int s := 0 # value of the semaphore
cond pos ; # wait condi t ion

procedure Psem( ) {
while ( s=0) { wait ( pos ) } ;
s := s − 1 }

procedure Vsem( ) {
s := s+1;
signal ( pos ) ; }

}

Signaling disciplines

• signal on a condition variable cv roughly has the following effect:

– empty queue: no effect

– the process at the head of the queue to cv is woken up

• wait and signal: FIFO signaling strategy

• When a process executes signal(cv), then it is inside the monitor. If a waiting process is woken up: two
active processes in the monitor?

2 disciplines to provide mutex:

• Signal and Wait (SW): the signaller waits, and the signalled process gets to execute immediately

• Signal and Continue (SC): the signaller continues, and the signalled process executes later

Signalling disciplines
Is this a FIFO semaphore assuming SW or SC?

monitor Semaphore { # monitor invar iant : s ≥ 0
int s := 0 # value of the semaphore
cond pos ; # wait condi t ion

procedure Psem( ) {
while ( s=0) { wait ( pos ) } ;
s := s − 1 }

procedure Vsem( ) {
s := s+1;
signal ( pos ) ; }

}

Signalling disciplines: FIFO semaphore for SW
monitor Semaphore { # monitor invar iant : s ≥ 0

int s := 0 # value of the semaphore
cond pos ; # wait condi t ion

procedure Psem( ) {
while ( s=0) { wait ( pos ) } ;
s := s − 1 }

procedure Vsem( ) {
s := s+1;
signal ( pos ) ; }

}
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monitor Semaphore { # monitor invar iant : s ≥ 0
int s := 0 # value of the semaphore
cond pos ; # wait condi t ion

procedure Psem( ) {
i f ( s=0) { wait ( pos ) } ;
s := s − 1 }

procedure Vsem( ) {
s := s+1;
signal ( pos ) ; }

}

FIFO semaphore
FIFO semaphore with SC: can be achieved by explicit transfer of control inside the monitor (forward the

condition).

monitor Semaphore { # monitor invar iant : s ≥ 0
int s := 0 ; # value of the semaphore
cond pos ; # wait condi t ion

procedure Psem( ) {
i f ( s=0)

wait ( pos ) ;
else

s := s − 1
}

procedure Vsem( ) {
i f empty( pos )

s := s + 1
else

signal ( pos ) ;
}

}

1.2 Bounded buffer
Bounded buffer synchronization (1)

• buffer of size n (“channel”, “pipe”)

• producer: performs put operations on the buffer.

• consumer: performs get operations on the buffer.

• count: number of items in the buffer

• two access operations (“methods”)

– put operations must wait if buffer full

– get operations must wait if buffer empty

• assume SC discipline3

Bounded buffer synchronization (2)

• When a process is woken up, it goes back to the monitor’s entry queue

– Competes with other processes for entry to the monitor

– Arbitrary delay between awakening and start of execution

=⇒ re-test the wait condition, when execution starts

– E.g.: put process wakes up when the buffer is not full

∗ Other processes can perform put operations before the awakened process starts up
∗ Must therefore re-check that the buffer is not full

3It’s the commonly used one in practical languages/OS.
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Bounded buffer synchronization monitors (3)
monitor Bounded_Buffer {

typeT buf[n]; int count := 0;
cond not_full, not_empty;

procedure put(typeT data){
while (count = n) wait(not_full);
# Put element into buf
count := count + 1; signal(not_empty);

}

procedure get(typeT &result) {
while (count = 0) wait(not_empty);
# Get element from buf
count := count - 1; signal(not_full);

}
}

Bounded buffer synchronization: client-sides
process Producer[i = 1 to M]{

while (true){
. . .

call Bounded_Buffer.put(data);
}

}
process Consumer[i = 1 to N]{

while (true){
. . .

call Bounded_Buffer.get(result);
}

}

1.3 Readers/writers problem
Readers/writers problem

• Reader and writer processes share a common resource (“database”)

• Reader’s transactions can read data from the DB

• Write transactions can read and update data in the DB

• Assume:

– DB is initially consistent and that

– Each transaction, seen in isolation, maintains consistency

• To avoid interference between transactions, we require that

– writers: exclusive access to the DB.

– No writer: an arbitrary number of readers can access simultaneously

Monitor solution to the reader/writer problem (2)

• database should not be encapsulated in a monitor, as the readers will not get shared access

• monitor instead regulates access of the processes

• processes don’t enter the critical section (DB) until they have passed the RW_Controller monitor

Monitor procedures:

• request_read: requests read access
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• release_read: reader leaves DB

• request_write: requests write access

• release_write: writer leaves DB

Invariants and signalling
Assume that we have two counters as local variables in the monitor:
nr — number of readers
nw — number of writers

Invariant

RW: (nr = 0 or nw = 0) and nw ≤ 1

We want RW to be a monitor invariant

• chose carefully condition variables for “communication” (waiting/signaling)

Let two condition variables oktoread og oktowrite regulate waiting readers and waiting writers, respectively.

monitor RW_Controller { # RW (nr = 0 or nw = 0) and nw ≤ 1
int nr :=0 , nw:=0
cond oktoread ; # s i gna l l e d when nw = 0
cond oktowrite ; # sig ’ ed when nr = 0 and nw = 0

procedure request_read ( ) {
while (nw > 0) wait (oktoread ) ;
nr := nr + 1 ;

}
procedure re l ease_read ( ) {

nr := nr − 1 ;
i f nr = 0 signal (oktowrite ) ;

}

procedure request_write ( ) {
while ( nr > 0 or nw > 0) wait (oktowrite ) ;
nw := nw + 1 ;

}

procedure r e l e a s e_wr i t e ( ) {
nw := nw −1;
signal (oktowrite ) ; # wake up 1 wri ter
signal_all (oktoread ) ; # wake up a l l readers

}
}

Invariant

• monitor invariant I: describe the monitor’s inner state

• expresses relationship between monitor variables

• maintained by execution of procedures:

– must hold: after initialization

– must hold: when a procedure terminates

– must hold: when we suspend execution due to a call to wait

⇒ can assume that the invariant holds after wait and when a procedure starts

• Should be as strong as possible
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Monitor solution to reader/writer problem (6)

RW: (nr = 0 or nw = 0) and nw ≤ 1

procedure request_read() {
# May assume that the invariant holds here
while (nw > 0) {

# the invariant holds here
wait(oktoread);
# May assume that the invariant holds here

}
# Here, we know that nw = 0...
nr := nr + 1;
# ...thus: invariant also holds after increasing nr

}

Do we need nr ≥ 0 and nw ≥ 0?

Do we need to protect release_read and release_write?

1.4 Time server
Time server

• Monitor that enables sleeping for a given amount of time

• Resource: a logical clock (tod)

• Provides two operations:

– delay(interval): caller wishes to sleep for interval time

– tick increments the logical clock with one tick Called by the hardware, preferably with high execution
priority

• Each process which calls delay computes its own time for wakeup: wake_time := tod + interval;

• Waits as long as tod < wake_time

– Wait condition is dependent on local variables

Covering condition:

• all processes are woken up when it is possible for some to continue

• Each process checks its condition and sleeps again if this does not hold

Time server: covering condition
Invariant: CLOCK : tod ≥ 0 ∧ tod increases monotonically by 1

monitor Timer { int tod = 0; # Time Of Day
cond check; # signalled when tod is increased

procedure delay(int interval) {
int wake_time;
wake_time = tod + interval;
while (wake_time > tod) wait(check);

}

procedure tick() {
tod = tod + 1;
signal_all(check);

}
}

• Not very efficient if many processes will wait for a long time

• Can give many false alarms
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Prioritized waiting

• Can also give additional argument to wait: wait(cv, rank)

– Process waits in the queue to cv in ordered by the argument rank.
– At signal: Process with lowest rank is awakened first

• Call to minrank(cv) returns the value of rank to the first process in the queue (with the lowest rank)

– The queue is not modified (no process is awakened)

• Allows more efficient implementation of Timer

Time server: Prioritized wait

• Uses prioritized waiting to order processes by check

• The process is awakened only when tod ≥ wake_time

• Thus we do not need a while loop for delay

monitor Timer {
int tod = 0; # Invariant: CLOCK
cond check; # signalled when minrank(check) ≤ tod

procedure delay(int interval) {
int wake_time;
wake_time := tod + interval;
if (wake_time > tod) wait(check, wake_time);

}

procedure tick() {
tod := tod + 1;
while (!empty(check) && minrank(check) ≤ tod)
signal(check);

}
}

1.5 Shortest-job-next scheduling
Shortest-Job-Next allocation

• Competition for a shared resource

• A monitor administrates access to the resource

• Call to request(time)

– Caller needs access for time interval time
– If the resource is free: caller gets access directly

• Call to release

– The resource is released
– If waiting processes: The resource is allocated to the waiting process with lowest value of time

• Implemented by prioritized wait

Shortest-Job-Next allocation (2)
monitor Shortest_Job_Next {
bool f r e e = true ;
cond turn ;

procedure r eques t ( int time ) {
i f ( f r e e )

f r e e := fa l se
else

wait ( turn , time )
}

procedure r e l e a s e ( ) {
i f (empty( turn ) )

f r e e := true ;
else

signal ( turn ) ;
}
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1.6 Sleeping barber

The story of the sleeping barber

• barbershop: with two doors and some chairs.

• customers: come in through one door and leave through the other. Only one customer sits in the barber
chair at a time.

• Without customers: barber sleeps in one of the chairs.

• When a customer arrives and the barber sleeps ⇒ barber is woken up and the customer takes a seat.

• barber busy ⇒ the customer takes a nap

• Once served, barber lets customer out the exit door.

• If there are waiting customers, one of these is woken up. Otherwise the barber sleeps again.

Interface
Assume the following monitor procedures

Client: get_haircut: called by the customer, returns when haircut is done

Server: barber calls:

– get_next_customer: called by the barber to serve a customer

– finish_haircut: called by the barber to let a customer out of the barbershop

Rendez-vous
Similar to a two-process barrier: Both parties must arrive before either can continue.4

• The barber must wait for a customer

• Customer must wait until the barber is available

The barber can have rendezvous with an arbitrary customer.

Organize the sync.: Identify the synchronization needs

1. barber must wait until

(a) customer sits in chair

(b) customer left barbershop

2. customer must wait until

(a) the barber is available

(b) the barber opens the exit door
4Later, in the context of message passing, will have a closer look at making rendez-vous synchronization (using channels), but

the pattern “2 partners must be present at a point at the same time” is analogous.
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client perspective:

• two phases (during get_haircut)

1. “entering”

– trying to get hold of barber,
– sleep otherwise

2. “leaving”:

• between the phases: suspended

Processes signal when one of the wait conditions is satisfied.

Organize the synchronization: state
3 var’s to synchronize the processes:
barber, chair and open (initially 0)

binary variables, alternating between 0 and 1:

• for entry-rendevouz

1. barber = 1 : the barber is ready for a new customer

2. chair = 1: the customer sits in a chair, the barber hasn’t begun to work

• for exit-sync

3. open = 1: exit door is open, the customer has not yet left

Sleeping barber

monitor Barber_Shop {
int barber := 0 , cha i r := 0 , open := 0 ;
cond barber_ava i lab le ; # s i gna l l e d when barber > 0
cond chair_occupied ; # s i gna l l e d when chair > 0
cond door_open ; # s i gna l l e d when open > 0
cond customer_le f t ; # s i gna l l e d when open = 0

procedure get_haircut ( ) {
while ( barber = 0) wait ( barber_ava i lab le ) ; # RV with barber
barber := barber − 1 ;
cha i r := cha i r + 1 ; signal ( chair_occupied ) ;

while ( open = 0) wait ( door_open ) ; # leave shop
open := open − 1 ; signal ( customer_le f t ) ;

}
procedure get_next_customer ( ) { # RV with c l i e n t

barber := barber + 1 ; signal ( barber_ava i lab le ) ;
while ( cha i r = 0) wait ( chair_occupied ) ;
cha i r := cha i r − 1 ;

}
procedure finished_cut ( ) {

open := open + 1 ; signal ( door_open ) ; # get r id of customer
while ( open > 0) wait ( customer_le f t ) ;

}
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