INF4140 - Models of concurrency

Fall 2016
September 23, 2016

Abstract

This is the “handout” version of the slides for the lecture (i.e., it’s a rendering of the content of the slides in
a way that does not waste so much paper when printing out). The material is found in [Andrews, 2000]. Being
a handout-version of the slides, some figures and graph overlays may not be rendered in full detail, I remove
most of the overlays, especially the long ones, because they don’t make sense much on a handout/paper.
Scroll through the real slides instead, if one needs the overlays.

This handout version also contains more remarks and footnotes, which would clutter the slides, and
which typically contains remarks and elaborations, which may be given orally in the lecture.

1 Program analysis

26. 9. 2016

Program correctness
Is my program correct? Central question for this and the next lecture.

e Does a given program behave as intended?

e Surprising behavior?

r=5{ex=0e=c4+1);{2x="}

e clear: x = 5 immediately after first assignment

Will this still hold when the second assignment is executed?
— Depends on other processes

e What will be the final value of z?

Today: Basic machinery for program reasoning Next week: Extending this machinery to the concurrent
setting

Concurrent executions

e Concurrent program: several threads operating on (here) shared variables

e Parallel updates to x and y:
co({x:=xx3;) || (y:=yx2;) oc

e Every (concurrent) execution can be written as a sequence of atomic operations (gives one history)

Two possible histories for the above program

Generally, if n processes executes m atomic operations each:

! v 4)!
M If n=—3 and m—4: (3x4)

o 5 = 34650

How to verify program properties?

o Testing or debugging increases confidence in the program correctness, but does not guarantee correctness

— Program testing can be an effective way to show the presence of bugs, but not their absence

e Operational reasoning (exhaustive case analysis) tries all possible executions of a program

e Formal analysis (assertional reasoning) allows to deduce the correctness of a program without executing
it

— Specification of program behavior

— Formal argument that the specification is correct

States

e state of a program consists of the values of the program variables at a point in time, example: { t =2 Ay =3}
e The state space of a program is given by the different values that the declared variables can take
e Sequential program: one execution thread operates on its own state space

e The state may be changed by assignments (“imperative”)

Ezxample 1.
{z=5Ay=5}tx=xx2{z=10Ay=5}y:=yx25{z=10Ay =10}
Executions
e Given program S as sequence S1;S9;...;Sy,;, starting in a state pg:

NN Ny S

where p1, pa, ... p, are the different states during execution

e Can be documented by: {po}Si{p1}S2{p2} ... {Pn-1}Sn{pn}
e Do, pn gives an external specification of the program: {po}S{p,}
e We often refer to py as the initial state and p,, as the final state

Ezample 2 (from previous slide).

{z=56ANy=5}x=x%x2; y:i=y*x2; {x=10Ay =10}

Assertions
Want to express more general properties of programs, like

{r=ylx=xx2y:=yx2{w=y}
e If the assertion x = y holds, when the program starts, x = y will also hold when/if the program terminates
e Does not talk about specific, concrete values of z and y, but about relations between their values
e Assertions characterise sets of states

Ezample 3. The assertion & = y describes all states where the values of x and y are equal, like {z = —1Ay = —1},
{z=1Ay=1},...

Assertions

e state assertion P: set of states where P is true:

r=y All states where x has the same value
as y
x <y All states where the value of z is less or

equal to the value of y
x=2Ay=3 Only one state (if and y are the only

variables)
true All states
false No state

Ezample 4.
{z=ylx=xx3{z=2xy}ly:=yx2{z =y}

Assertions may or may not say something correct for the behavior of a program (fragment). In this example,
the assertions say something correct.

Formal analysis of programs

e establish program properties/correctness, using a system for formal reasoning

Help in understanding how a program behaves

Useful for program construction

Look at logics for formal analysis

basis of analysis tools

Formal system
e Axioms: Defines the meaning of individual program statements

e Rules: Derive the meaning of a program from the individual statements in the program

Logics and formal systems
Our formal system consists of:

e syntactic building blocks:

— A set of symbols (constants, variables,...)

— A set of formulas (meaningful combination of symbols)
e derivation machinery

— A set of azioms (assumed to be true)

— A set of inference rules

Inference ruld]]
Hy ... H,

e H;: assumption/premise, and C : conclusion
e intention: conclusion is true if all the assumptions are true

e The inference rules specify how to derive additional formulas from axioms and other formulas.

laxiom = rule with no premises

Symbols

e variables: x,y, z, ... (which include program variables + “extra” ones)

e Relation symbols: <, >, ...

e Function symbols: +, —, ..., and constants 0, 1,2, ..., true, false

e Equality (also a relation symbol): =

Formulas of first-order logic
Meaningful combination of symbols

Assume that A and B are formulas, then the following are also formulas:

—-A means “not A”
AV B means “A or B”?
AANB means“A and B”
A= B means “A implies B”

If x is a variable and A, the following are formulasﬂ

Vo : A(x) means “A is true for all values of z”
Jz : A(x) means “there is (at least) one value of z such that A is true”

Examples of axioms and rules (no programs involved yet)
Typical axioms:

e AV —-A
o A=A

Typical rulesEI

A B A A= B
—— AnND-1 Or-1I —— IMPL-E/MODUS PONENS
ANB AV B B
Ezxample 5.
AND-I Or-1
r=5Ay=5 r=5Vy=>5

z>0=y>0 z >0

y=>0

Important terms

e Interpretation: describe each formula as either true or false
e Proof: derivation tree where all leaf nodes are axioms
e Theorems: a “formula” derivable in a given proof system

e Soundness (of the logic): If we can prove (“derive”) some formula P (in the logic) then P is actually
(semantically) true

e Completeness: If a formula P is true, it can be proven

2A(z) to indicate that, here, A (typically) contains w.
3The “names” of the rules are written on the right of the rule, they serve for “identification”. By some convention, “I” stands for
rules introducing some logical connector, “E” for eliminating one.

Program Logic (PL)
e PL lets us express and prove properties about programs

e Formulas are of the form

“Hoare triple”
{PhA}S{R}

— S: program statement(s)
— P, P, P, Q ...: assertions over program states (including —, A,V,3,V)

— In above triple P;: pre-condition, and P, post-condition of S

Ezample 6.
{e=ylx=xx2y:=yx2 {a=y}

The proof system PL (Hoare logic)

e Express and prove program properties

o {P}S{Q}
— P, (@ may be seen as a specification of the program S
— Code analysis by proving the specification (in PL)
— No need to execute the code in order to do the analysis
— An interpretation maps triples to true or false
x {z=0}axz:=x+1; { =1} should be true
x {x=0}x:=x4+1; { z =0} should be false

Reasoning about programs

e Basic idea: Specify what the program is supposed to do (pre- and post-conditions)

e Pre- and post-conditions are given as assertions over the program state

e use PL for a mathematical argument that the program satisfies its specification
Interpretation:

Interpretation (“semantics”) of triples is related to program execution

Partial correctness interpretation
{P}S{Q } is true/holds:

e If the initial state of S satisfies P (P holds for the initial state of S) and
) iﬁS terminates,

e then () is true in the final state of S

Expresses partial correctness (termination of S is assumed)

Ezample 7. {x = y} x:=x+2;y:=yx2; {& = y} is true if the initial state satisfies x = y and, in case the
execution terminates, then the final state satisfies © =y

4Thus: if S does not terminate, all bets are off. ..

Examples
Some true triples
{z=0}z:=x+1{2z=1}
{x=4}z:=5{xz=5}
{true }z:=5; {x=5}
{y=4}z:=5 {y=4}
{z=4}z=c+1;{z=5}
{z=any=blez=x+y; {z=a+bAy=0}
{e=4ny=T}z:=2+1 {z=5Ay="7}
{r=ytr=a+ly=y+L{z=y}
Some non-true triples
{z=0}z:=2+1, {z=0}
{z=4}z:=5{z=4}
{v=ylom=a+lymy—1L {z=y)
{z>yltz=c+lLy=y+1; {z<y}

Partial correctness

o The interpretation of { P } S { @ } assumes/ignores termination of S, termination is not proven.

e The pre/post specification (P, @) express safety properties

The state assertion true can be viewed as all states. The assertion false can be viewed as no state. What
does each of the following triple express?

{P}S{false } S does not terminate

{P}S{true} trivially true

{true } S{ @} @ holds after S in any case
(provided S terminates)

{ false } S{Q} trivially true

Proof system PL
A proof system consists of axioms and rules
here: structural analysis of programs

e Axioms for basic statements:
— r :=e, skip,...
e Rules for composed statements:

— 51;5,, if, while, await, co...oc, ...

Formulas in PL

e formulas = triples

e theorems — derivable formulad]

hopefully: all derivable formulas are also “really” (= semantically) true

derivation: starting from axioms, using derivation rules

H, H, ... H,
C

e axioms: can be seen as rules without premises

5The terminology is standard from general logic. A “theorem” in an derivation system is a derivable formula. In an ill-defined
(i-e., unsound) derivation or proof system, theorems may thus be not true.

Soundness
If atriple { P} S{ Q } is a theorem in PL (i.e., derivable), the triple holds

e Example: we want
{z=0}z=a0c4+1{zx=1}

to be a theorem (since it was interpreted as true),

e but
{z=0}z:=c+1{2=0}

should not be a theorem (since it was interpreted as false)

Soundness]
All theorems in PL hold

F{P}S{Q} implies E{P}S{Q} (1)

If we can use PL to prove some property of a program, then this property will hold for all executions of the
program.

Textual substitution

Substitution
Ple/x] means, all free occurrences of x in P are replaced by expression e.

Ezxample 8.
(x=1)[(z+1)/x] & r+1=1
(z+y=a)lly+2)/y] & z+(y+r)=a
(y=a)llz+y)/z] & y=a
Substitution propagates into formulas:
(—A)le/z] & —(Ale/x])
(AN B)le/x] < Ale/x] A Ble/x]
(AV B)le/x] & Ale/x]V Ble/x]

Free and ‘“non-free” variable occurrences

e Only free occurrences of x are substituted

e Variable occurrences may be bound by quantifiers, then that occurrence of the variable is not free (but
bound)

Ezample 9 (Substitution).
Fy:z4+y>0)[1/z] & Fy:14+y>0
Fz:z+y>0)[l/z] & Fr:z4+y>0
(Fz:xz+y>0)z/y] & Fz:24+2>0

Correspondingly for V

The assignment axiom — Motivation
Given by backward construction over the assignment:

e Given the postcondition to the assignment, we may derive the precondition!
What is the precondition?

{?7}z:=e{2x=5}

If the assignment x = e should terminate in a state where x has the value 5, the expression e must have the
value 5 before the assignment:

e=>5
]

{ }
{ (=95)[e/z }

Ut Ot

e {z=
e {z=

}ox:
box:

6technically, we’d need a semantics for reference, otherwise it’s difficult to say what a program “really” does.

Axiom of assignment
“Backwards reasoning:” Given a postcondition, we may construct the precondition:

Axiom for the assignment statement
{Ple/z]}x:=e{ P} AssiGN

If the assignment x := e should lead to a state that satisfies P, the state before the assignment must satisfy
P where z is replaced by e.

Proving an assignment
To prove the triple { P }z :=e{ @ } in PL, we must show that the precondition P implies Q[e/x]

P=Qle/r] {Qle/t)}a=e{Q}
(Pye=c{Q}

The blue implication is a logical proof obligation. In this course we only convince ourselves that these are
true (we do not prove them formally).

e Qle/x] is the largest set of states such that the assignment is guaranteed to terminate with @
e largest set corresponds to weakest condition = weakest-precondition reasoning

e We must show that the set of states P is within this set

Examples

true = 1=1
{true }x:=1{xz=1}

r=0=>z+1=1
{z=0}z:=2x+1{z=1}

(r=any=b=z+y=a+bAy=1>
{z=any=blaxz=z+y{x=a+bAy=0>b}

r=a=0xy+xr=a
{r=a}q=0{gry+ar=0a}

y>0=y2>0
{y>0}e:=y{z>0}

Axiom of skip
The skip statement does nothing

Axiom:
{P}skip{ P} SkIpP

PL inference rules

{PYSi{R} {R}S{Q}
{P}S;%{Q}
{(PAB}YS{Q} PA-B=Q
{P} if Bthen S{Q }

{INB}S{I}
{I} while Bdo S{IA-B}
(P}YS{Q} P =P Q=¢
(Pys{Q}

ConD’

WHILE

CONSEQUENCE

e Blue: logical proof obligations
e the rule for while needs a loop invariant!

e for-loop: exercise 2.22!

Sequential composition and consequence
Backward construction over assignments:
T=y=2r=2y
{e=yto=20{r=2y} {@=y)Ry/yl}y=2y{z=y}
{r=ylo=20y=2y{0v=y}

Sometimes we don’t bother to write down the assignment axiom:
(gxy)+tz=a=((g+)*y)+z-y=a
{laxy)+r=atz=z—y {(¢+1)*y)+rz=0a}
{(axy)+r=ataz=a—yq=q+1{(qgxy)+z=0a}

Logical variables

e Do not occur in program text
e Used only in assertions
e May be used to “freeze” initial values of variables

e May then talk about these values in the postcondition

Ezample 10.
{z=u20} if(x<0) thenz:=—z {z>0A(x=20V2=—x0)}

where (z = o Vo = —x() states that
e the final value of x equals the initial value, or

e the final value of z is the negation of the initial value

Example: if statement
Verification of:

{z=29} if (z<0)thenzx:=—z{x>0A(x=20Va=—x) }

{PAB} S{Q} (PA=B)=Q
{P} if Bthen S{Q}

Conp’

e {PAB} S{Q} {a=aohe<0}z:=—-2x{x>0A(x=29Ve=—x9) } Backward construction
(assignment axiom) gives the implication:

r=x0Nx<0=(—x>0AN(—x =20V —x=—10))

e PAN-B=Q:rz=x0N2>0= (x>0AN(x =20V 2r=—x0))

References

[Andrews, 2000] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

	Program Analysis

