
INF4140 - Models of concurrency

Fall 2016

October 7, 2016

Abstract
This is the “handout” version of the slides for the lecture (i.e., it’s a rendering of the content of the slides in

a way that does not waste so much paper when printing out). The material is found in [Andrews, 2000]. Being
a handout-version of the slides, some figures and graph overlays may not be rendered in full detail, I remove
most of the overlays, especially the long ones, because they don’t make sense much on a handout/paper.
Scroll through the real slides instead, if one needs the overlays.

This handout version also contains more remarks and footnotes, which would clutter the slides, and
which typically contains remarks and elaborations, which may be given orally in the lecture.

1 Java concurrency
10. 10. 2016

1.1 Threads in Java
Outline

1. Monitors: review

2. Threads in Java:

• Thread classes and Runnable interfaces
• Interference and Java threads
• Synchronized blocks and methods: (atomic regions and monitors)

3. Example: The ornamental garden

4. Thread communication & condition synchronization (wait and signal/notify)

5. Example: Mutual exclusion

6. Example: Readers/writers

Short recap of monitors

• monitor encapsulates data, which can only be observed and modified by the monitor’s procedures

– Contains variables that describe the state
– variables can be accessed/changed only through the available procedures

• Implicit mutex: Only one procedure may be active at a time.

– 2 procedures in the same monitor: never executed concurrently

• Condition synchronization: block a process until a particular condition holds, achieved through condition
variables.

Signaling disciplines

– Signal and wait (SW): the signaller waits, and the signalled process gets to execute immediately
– Signal and continue (SC): the signaller continues, and the signalled process executes later

1

Java
From Wikipedia:1

" ... Java is a general-purpose, concurrent, class-based, object-oriented language ..."

Threads in Java
A thread in Java

• unit of concurrency2

• originally “green threads”

• identity, accessible via static method Thread.CurrentThread()3

• has its own stack / execution context

• access to shared state

• shared mutable state: heap structured into objects

– privacy restrictions possible

– what are private fields?

• may be created (and “deleted”) dynamically

Thread class

Thread

run()

MyThread

run()

The Thread class executes instructions from its method run(). The actual code executed depends on the
implementation provided for run() in a derived class.

class MyThread extends Thread {
public void run () {

//
}

}
// Creating a thread ob j ec t :
Thread a = new MyThread () ;
a . start () ;

1But it’s correct nonetheless . . .
2as such, roughly corresponding to the concept of “processes” from previous lecctures.
3What’s the difference to this?

2

Runnable interface
no multiple inheritance ⇒, often implement the run() method in a class not derived from Thread but from

the interface Runnable.

Runnable

run()

MyRun

run()

public interface Runnable {
public abstract void run();

}

class MyRun implements Runnable {
public void run() {

 //
 }
}

Thread
target

// Creating a thread ob j ec t :
Runnable b = new MyRun() ;
new Thread(b) . start () ;

Threads in Java
steps to create a thread and get it running:

1. Define class that

• extends the Java Thread class or

• implements the Runnable interface

2. define run method inside the new class4

3. create an instance of the new class.

4. start the thread.

Interference and Java threads

. . .
class Store {

private int data = 0 ;
public void update () { data++; }

}
. . .

// in a method :
Store s = new Store () ; // the threads below have access to s
t1 = new FooThread (s) ; t1 . start () ;
t2 = new FooThread (s) ; t2 . start () ;

t1 and t2 execute s.update() concurrently!
Interference between t1 and t2 ⇒ may lose updates to data.

Synchronization
avoid interference ⇒ threads “synchronize” access to shared data

1. One unique lock for each object o.

2. mutex: at most one thread t can lock o at any time.5

3. two “flavors” of synchronization:

“synchronized block”

synchronized (o) { B }

4overriding, late-binding.
5but: in a re-entrant manner!

3

synchronized method

whole method body of m “protected”6:

synchronized Type m(. . .) { . . . }

Protecting the initialization
Solution to earlier problem: lock the Store objects before executing problematic method:

c l a s s Store {
p r i va t e int data = 0 ;

pub l i c void update () {
synchronized (t h i s) { data++; }

}
}

or

c l a s s Store {
p r i va t e int data = 0 ;

pub l i c synchronized void update () {data++; }
}
. . .

// i n s i d e a method :
Store s = new Store () ;

Java Examples

Book:
Concurrency: State Models & Java Programs, 2nd Edition
Jeff Magee & Jeff Kramer
Wiley

http://www.doc.ic.ac.uk/~jnm/book/

Examples in Java:
http://www.doc.ic.ac.uk/~jnm/book/book_applets

6assuming that other methods play according to the rules as well etc.

4

http://www.doc.ic.ac.uk/~jnm/book/
 http://www.doc.ic.ac.uk/~jnm/book/book_applets

1.2 Ornamental garden
Ornamental garden problem

• people enter an ornamental garden through either of 2 turnstiles.

• problem: the number of people present at any time.

The concurrent program consists of:

• 2 threads

• shared counter object

Ornamental garden problem: Class diagram

The Turnstile thread simulates the periodic arrival of a visitor to the garden every second by sleeping for
a second and then invoking the increment() method of the counter object.

Counter

class Counter {

int value = 0 ;
NumberCanvas d i sp l ay ;

Counter (NumberCanvas n) {
d i sp l ay = n ;
d i sp l ay . s e tva lu e (value) ;

}

void increment () {
int temp = value ; // read [v]
Simulate . HWinterrupt () ;
value = temp + 1 ; // wri te [v+1]

d i sp l ay . s e tva lu e (value) ;
}

}

Turnstile

class Turnstile extends Thread {
NumberCanvas d i sp l ay ; // in t e r f a ce
Counter people ; // shared data

Turnstile (NumberCanvas n , Counter c) { // constructor
d i sp l ay = n ;
people = c ;

}

public void run () {

5

try {
d i sp l ay . s e tva lu e (0) ;
for (int i = 1 ; i <= Garden .MAX; i++) {

Thread . s l e e p (5 00) ; // 0.5 second
d i sp l ay . s e tva lu e (i) ;
people . increment () ; // increment the counter

}
} catch (Inter ruptedExcept ion e) { }

}
}

Ornamental Garden Program
The Counter object and Turnstile threads are created by the go() method of the Garden applet:

private void go () {
counter = new Counter (counterD) ;
west = new Turnstile (westD , counter) ;
ea s t = new Turnstile (eastD , counter) ;
west . s t a r t () ;
ea s t . s t a r t () ;

}

Ornamental Garden Program: DEMO

DEMO

After the East and West turnstile threads have each incremented its counter 20 times, the garden people
counter is not the sum of the counts displayed. Counter increments have been lost. Why?

http://www.doc.ic.ac.uk/~jnm/book/book_applets/Garden.html

Avoid interference by synchronization

class SynchronizedCounter extends Counter {

SynchronizedCounter (NumberCanvas n) {
super (n) ;

}

synchronized void increment () {
super . increment () ;

}
}

6

http://www.doc.ic.ac.uk/~jnm/book/book_applets/Garden.html

Mutual Exclusion: The Ornamental Garden - DEMO

DEMO

1.3 Thread communication, monitors, and signaling
Monitors

• each object

– has attached to it a unique lock
– and thus: can act as monitor

• 3 important monitor operations7

– o.wait(): release lock on o, enter o’s wait queue and wait
– o.notify(): wake up one thread in o’s wait queue
– o.notifyAll(): wake up all threads in o’s wait queue

• executable by a thread “inside” the monitor represented by o

• executing thread must hold the lock of o/ executed within synchronized portions of code

• typical use: this.wait() etc.

• note: notify does not operate on a thread-identity8

⇒
Thread t = new MyThread () ;
. . .
t . n o t i f y () ; ; // mostly to be nonsense

Condition synchronization, scheduling, and signaling

• quite simple/weak form of monitors in Java

• only one (implicit) condition variable per object: availability of the lock. threads that wait on o (o.wait())
are in this queue

• no built-in support for general-purpose condition variables.

• ordering of wait “queue”: implementation-dependent (usually FIFO)

• signaling discipline: S & C

• awakened thread: no advantage in competing for the lock to o.

• note: monitor-protection not enforced (!)

– private field modifier 6= instance private
– not all methods need to be synchronized9

– besides that: there’s re-entrance!
7there are more
8technically, a thread identity is represented by a “thread object” though. Note also : Thread.suspend() and Thread.resume()

are deprecated.
9remember: find of oblig-1.

7

A semaphore implementation in Java

// down() = P operation
// up () = V operation

public c lass Semaphore {
private int value ;

public Semaphore (int i n i t i a l) {
value = i n i t i a l ;

}

synchronized public void up () {
++value ;
notifyAll () ; }

synchronized public void down() throws InterruptedException{
while (va lue==0)wait () ; // the wel l−known while−cond−wait pat tern
− −value ; }

}

• cf. also java.util.concurrency.Semaphore (acquire/release + more methods)

1.4 Semaphores
Mutual exclusion with sempahores

The graphics shows waiting and active phases, plus value of mutex. Note: Light blue for active phase, other
colours for waiting.

Mutual exclusion with sempahores

class MutexLoop implements Runnable {

Semaphore mutex ;

MutexLoop (Semaphore sema) {mutex=sema ;}

public void run () {
try {

while (true) {
while (! ThreadPanel . r o t a t e ()) ;
// get mutual exc lus ion
mutex .down () ;
while (ThreadPanel . r o t a t e ()) ; // c r i t i c a l sec t ion
// re l ea se mutual exc lus ion
mutex .up () ;

}
} catch (Inter ruptedExcept ion e){}

}
}

DEMO

Panel is an (old) AWT class (applet is a subclass). It’s the simplest container class. The function rotate
returns a boolean. It’s a static method of the thread subclass DisplayThhread.

http://www.doc.ic.ac.uk/~jnm/book/book_applets/Garden.html

8

http://www.doc.ic.ac.uk/~jnm/book/book_applets/Garden.html

1.5 Readers and writers
Readers and writers problem (again. . .)

A shared database is accessed by two kinds of processes. Readers execute transactions that examine the
database while Writers both examine and update the database. A Writer must have exclusive access to the
database; any number of Readers may concurrently access it.

Interface R/W

interface ReadWrite {

public void acquireRead () throws Inter ruptedExcept ion ;

public void releaseRead () ;

public void acquireWrite () throws Inter ruptedExcept ion ;

public void releaseWrite () ;
}

Reader client code

c l a s s Reader implements Runnable {

ReadWrite monitor_ ;

Reader(ReadWrite monitor) {
monitor_ = monitor ;

}

pub l i c void run () {
t ry {

while (true) {
while (! ThreadPanel . r o t a t e ()) ;
// begin c r i t i c a l s e c t i o n
monitor_ . acquireRead () ;
while (ThreadPanel . r o t a t e ()) ;
monitor_ . r e l easeRead () ;

}
} catch (Inter ruptedExcept ion e){}

}
}

Writer client code

c l a s s Writer implements Runnable {

ReadWrite monitor_ ;

Writer (ReadWrite monitor) {
monitor_ = monitor ;

}

pub l i c void run () {
t ry {

while (true) {
while (! ThreadPanel . r o t a t e ()) ;
// begin c r i t i c a l s e c t i o n
monitor_ . acquireWrite () ;

9

while (ThreadPanel . r o t a t e ()) ;
monitor_ . r e l e a s eWr i t e () ;

}
} catch (Inter ruptedExcept ion e){}

}
}

R/W monitor (regulate readers)

c l a s s ReadWriteSafe implements ReadWrite {
p r i va t e int r eade r s =0;
p r i va t e boolean wr i t i ng = fa l se ;

pub l i c synchronized void acquireRead ()
throws Inter ruptedExcept ion {

while (wr i t i ng) wait () ;
++reade r s ;

}

pub l i c synchronized void releaseRead () {
− −r eade r s ;
i f (r eade r s==0) notifyAll () ;

}

pub l i c synchronized void acquireWrite () { . . . }

pub l i c synchronized void r e l e a s eWr i t e () { . . . }
}

R/W monitor (regulate writers)

class ReadWriteSafe implements ReadWrite {
private int r eade r s =0;
private boolean wr i t ing = fa l se ;

public synchronized void acquireRead () { . . . }

public synchronized void re l easeRead () { . . . }

public synchronized void acquireWrite ()
throws Inter ruptedExcept ion {

while (readers >0 | | wr i t i ng) wait () ;
wr i t i ng = true ;

}

public synchronized void releaseWrite () {
wr i t i ng = fa l se ;
notifyAll () ;

}
}

DEMO

Fairness

http://www.doc.ic.ac.uk/~jnm/book/book_applets/ReadWriteFair.html

10

http://www.doc.ic.ac.uk/~jnm/book/book_applets/ReadWriteFair.html

“Fairness”: regulating readers

class ReadWriteFair implements ReadWrite {

private int r eade r s =0;
private boolean wr i t ing = fa l se ;
private int waitingW = 0 ; // no of wait ing Writers .
private boolean readersturn = fa l se ;

synchronized public void acquireRead ()
throws Inter ruptedExcept ion {

while (wr i t i ng | | (waitingW>0 && ! readersturn)) wait () ;
++reade r s ;
}

synchronized public void releaseRead () {
− −r eade r s ;
readersturn=fa l se ;
i f (r eade r s==0) notifyAll () ;

}

synchronized public void acquireWrite () { . . . }
synchronized public void r e l e a s eWr i t e () { . . . }

}

“Fairness”: regulating writers

class ReadWriteFair implements ReadWrite {

private int r eade r s =0;
private boolean wr i t ing = fa l se ;
private int waitingW = 0 ; // no of wait ing Writers .
private boolean readersturn = fa l se ;

synchronized public void acquireRead () { . . . }
synchronized public void re l easeRead () { . . . }

synchronized public void acquireWrite ()
throws Inter ruptedExcept ion {

++waitingW ;
while (readers >0 | | wr i t i ng) wait () ;
−−waitingW ; wr i t i ng = true ;

}

synchronized public void releaseWrite () {
wr i t i ng = fa l se ; readersturn=true ;
notifyAll () ;

}
}

Readers and Writers problem

DEMO

http://www.doc.ic.ac.uk/~jnm/book/book_applets/ReadersWriters.html

Java concurrency

• there’s (much) more to it than what we discussed (synchronization, monitors) (see java.util.concurrency)

• Java’s memory model: since Java 1: loooong, hot debate

• connections to

– GUI-programming (swing/awt/events) and to
– RMI etc.

• major clean-up/repair since Java 5

• better “thread management”

• Lock class (allowing new Lock() and non block-structured locking)

• one simplification here: Java has a (complex!) weak memory model (out-of-order execution, compiler
optimization)

• not discussed here volatile

11

http://www.doc.ic.ac.uk/~jnm/book/book_applets/ReadersWriters.html

General advice

shared, mutable state is more than a bit tricky,10 watch out!

– work thread-local if possible

– make variables immutable if possible

– keep things local: encapsulate state

– learn from tried-and-tested concurrent design patterns

golden rule
never, ever allow (real, unprotected) races

• unfortunately: no silver bullet

• for instance: “synchronize everything as much as possible”: not just inefficient, but mostly nonsense

⇒ concurrent programmig remains a bit of an art

see for instance [Goetz et al., 2006] or [Lea, 1999]

References
[Andrews, 2000] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Programming.

Addison-Wesley.

[Goetz et al., 2006] Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., and Lea, D. (2006). Java
Concurrency in Practice. Addison-Wesley.

[Lea, 1999] Lea, D. (1999). Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley,
2d edition.

[Magee and Kramer, 1999] Magee, J. and Kramer, J. (1999). Concurrency: State Models and Java Programs.
John Wiley & Sons Inc.

10and pointer aliasing and a weak memory model makes it worse.

12

	Java concurrency
	Threads in Java
	Ornamental garden
	Thread communication, monitors, and signaling
	Semaphores
	Readers and writers

