INF4140 - Models of concurrency

Fall 2016
November 4, 2016

Abstract

This is the “handout” version of the slides for the lecture (i.e., it’s a rendering of the content of the slides in
a way that does not waste so much paper when printing out). The material is found in [Andrews, 2000]. Being
a handout-version of the slides, some figures and graph overlays may not be rendered in full detail, I remove
most of the overlays, especially the long ones, because they don’t make sense much on a handout/paper.
Scroll through the real slides instead, if one needs the overlays.

This handout version also contains more remarks and footnotes, which would clutter the slides, and
which typically contains remarks and elaborations, which may be given orally in the lecture.

1 Message passing and channels

17. Oct. 2016

1.1 Intro

Outline
Course overview:

e Part I: concurrent programming; programming with shared variables

e Part II: “distributed” programming

Outline: asynchronous and synchronous message passing

e Concurrent vs. distributed programminﬂ

Asynchronous message passing: channels, messages, primitives
e Example: filters and sorting networks
e From monitors to client—server applications

e Comparison of message passing and monitors

About synchronous message passing

Shared memory vs. distributed memory
more traditional system architectures have one shared memory:
e many processors access the same physical memory

e example: fileserver with many processors on one motherboard

Distributed memory architectures:
e Processor has private memory and communicates over a “network” (inter-connect)
e Examples:

— Multicomputer: asynchronous multi-processor with distributed memory (typically contained inside
one case)

IThe dividing line is not absolute. One can make perfectly good use of channels and message passing also in a non-distributed
setting.



Workstation clusters: PC’s in a local network

cloud computing: cloud storage service
NUMA-architectures
cluster computing ...

Shared memory concurrency in the real world

(threado) (threadl)

shared memory

e the memory architecture does not reflect reality

e out-of-order executions:

Grid system: machines on the Internet, resource sharing

— modern systems: complex memory hierarchies, caches, buffers. ..

— compiler optimizations,

SMP, multi-core architecture, and NUMA

CPU, CPU; CPU,y CPU3
|l T (T
1 1 1 1
2NN o S S )

shared memory

Concurrent vs. distributed programming

Concurrent programming:

e Processors share one memory

(S e T L T e
1 1 1 1

| Ly [| |1 Ly |

| shared memory I

e Processors communicate via reading and writing of shared variables

Distributed programming;:

e Memory is distributed = processes cannot share variables (directly)

e Processes communicate by sending and receiving messages via shared channels

or (in future lectures): communication via RPC and rendezvous



1.2 Asynch. message passing

Asynchronous message passing: channel abstraction
Channel: abstraction, e.g., of a physical communication networkE|

e One-way from sender(s) to receiver(s)

e unbounded FIFO (queue) of waiting messages
e preserves message order

e atomic access

e crror—free

e typed
Variants: errors possible, untyped, ...

Asynchronous message passing: primitives

Channel declaration
chan c(typeyidy, . .., type,id,);

Messages: n-tuples of values of the respective types

communication primitives:

e send c(expry,...,expr,); Non-blocking, i.e. asynchronous

e receive ¢(vary,...,vary,); Blocking: receiver waits until message is sent on the channel

e empty (c); True if channel is empty

C .
P1 send —_— receive P2

Simple channel example in Go

func main() {
messages := make(chan string, 0) // declare + initialize

go func() { messages <— "ping" }() // send
msg := <—messages // receive
fmt.Println (msg)

Short intro to the Go programming language
e programming language, executable, used by f.ex. Google
e supporting channels and asynchronous processes (function calls)
— go-routine: a lightweight thread

e syntax: mix of functional language (lambda calculus) and imperative style programming (built on C).

2but remember also: producer-consumer problem




Some syntax details of the Go programming language
Calls

e f(z) — ordinary (synchronous) function call, where f is a defined function or a functional definition

e go f(z) — called as an asynchronous process, i.e. go-routine Note: the go-routine will die when its parent
process dies!

e defer f(x) — the call is delayed until the end of the process
Channels

e chan := make(chanint, buf fersize) — declare channel

e chan < —z — send x

e < —chan — receive

e example: y :=< —chan — receive in y

Run command: go run program.go — compile and run program
Example: message passing

foo

send — — receive
A —_— —> —_—

(xy) = (1,2)

chan foo(int);

process A {
send foo (1);
send foo (2);

}

process B {
receive foo(x);
receive foo(y);

}

Example: shared channel

send
\AfOTO receive

(x,y) = (1,2) or (2,1)

process Al {
send foo (1

}

process A2 {
send foo (2

)

)3

process B {
receive foo(x);
receive foo(y);

}




func main() {

foo := make(chan int, 10)
go func() {
time . Sleep (1000)
foo <—1 // send
1O
go func() {
time. Sleep (1)
foo <— 2
+0)
fmt. Println ("first _=_", <—foo)

fmt. Println ("second_=_", <—foo)

Asynchronous message passing and semaphores
Comparison with general semaphores:

channel =~ semaphore
send ~ \%

receive ~ P

Number of messages in queue = value of semaphore

(Ignores content of messages)

Semaphores as channels in Go

type dummy interface {} // dummy type,
type Semaphore chan dummy // type definition

func (s Semaphore) Vn (n int) {
for 1:=0; i<n; i++ {
s <— true // send something
}

func (s Semaphore) Pn (n int) {
for i:=0; i<n; i++ {

<— s // receive
}
}
func (s Semaphore) V () {
s.Vn(1)
¥
func (s Semaphore) P () {
s.Pn(1)
}

Listing 1: 5 Phils

package main
import ("fmt"
"time"
"Syl’lC"
"math/rand"
"andrewsbook /semchans") // semaphores wusing channels

var wg sync.WaitGroup

const m = 5 // let’s make just 5
var forks = [m]semchans.Semaphore {
make (semchans.Semaphore,1

)
)

)
make (semchans.Semaphore,1)
make (semchans.Semaphore, 1),
make (semchans.Semaphore,1),
make (semchans.Semaphore,1)}




func main () {
for i:=0; i<m; it++ { // initialize the sem’s
forks [i].V()

}
wg. Add (m)
for i:=0; i<m; i++ {
go philosopher (i)
}

wg. Wait ()

}

func philosopher (i int) {
defer wg.Done()
r := rand.New(rand.NewSource(99)) // random generator
fmt. Printf("start .P(%d)\n",1)
for true {
fmt. Printf ("P(%d)_is_thinking\n",i)
forks [i].P()
// time. Sleep (time. Duration(r.Int81n (0))) // small delay for DL
forks [(i+1)%m].P()
fmt. Printf ("P(%d)_starts_eating\n",i)
time. Sleep (time. Duration (r.Int31n(5))) // small delay
fmt. Printf ("P(%d)_finishes_eating\n",i)
forks[i].V()
forks [(i+1)%m].V()

1.2.1 Filters
Filters: one—way interaction

Filter F
= process which:

e receives messages on input channels,
e sends messages on output channels, and

e output is a function of the input (and the initial state).

receive ny out, send

_— —> —> _—
F

receive My out, send

—_— —> —> _—

e A filter is specified as a predicate.
e Some computations: naturally seen as a composition of filters.

e cf. stream processing/programming (feedback loops) and dataflow programming
Example: A single filter process
Problem: Sort a list of n numbers into ascending order.

process Sort with input channels input and output channel output.

Define:
n : number of values sent to output. sent[i] : i’th value sent to output.

Sort predicate

Vi:1<i<n. (sent[i] < sentli+1]) A  values sent to output are a permutation of values from

input.



Filter for merging of streams
Problem: Merge two sorted input streams into one sorted stream.

Process Merge with input channels in; and in, and output channel out:

out: 1 2 45 8 9 ...

Special value EOS marks the end of a stream.
Define: n : number of values sent to out. sent[i] : i’th value sent to out.
The following shall hold when Merge terminates:
in; and iny are empty A sent[n + 1] = EOS A Vi: 1 <i < n(sent[i] < sentli+1]) A values sent

to out are a permutation of values from in; and iny

Example: Merge process

chan inl(int), in2(int), out(int);

process Merge {
int vl, v2;
receive inl(vl); # read the first two
receive in2(v2); # input values

while (vl # EOS and v2 # EOS) {
if (vl < v2)
{ send out(vl); receive inl(vl); }
else # (vl > v2)
{ send out(v2); receive in2(v2); }

# consume the rest
# of the mon—empty input channel
while (v2 # EOS)
{ send out(v2); receive in2(v2); }
while (vl # EOS)
{ send out(vl); receive inl(vl); }
send out (EOS); # add special wvalue to out

Sorting network
We now build a network that sorts n numbers.

We use a collection of Merge processes with tables of shared input and output channels.

Value

=
Value, — T
T Sorted
> ® stream

Value 4

Value > /

(Assume: number of input values n is a power of 2)

1.2.2 Client-servers

Client-server applications using messages
Server: process, repeatedly handling requests from client processes.

Goal: Programming client and server systems with asynchronous message passing.

chan request (int clientID, ...),
reply [n](...);

client nr. i server
int id; # client id.

while (true) { # server loop




H send request (i,args); — receive request (id,vars);

receive reply[i](vars); <++— send reply[id]|(results);

1.2.3 Monitors
Monitor implemented using message passing

Classical monitor:
e controlled access to shared resource
e Permanent variables (monitor variables): safeguard the resource state
e access to a resource via procedures

e procedures: executed under mutual exclusion

condition variables for synchronization

also implementable by server process + message passing
Called “active monitor” in the book: active process (loop), instead of passive proceduresﬁ

Allocator for multiple—unit resources
Multiple—unit resource: a resource consisting of multiple units

Examples: memory blocks, file blocks.
Users (clients) need resources, use them, and return them to the allocator (“free” the resources).

e here simplification: users get and free one resource at a time.
e two versions:

1. monitor

2. server and client processes, message passing

Allocator as monitor
Uses “passing the condition” pattern = simplifies later translation to a server process

Unallocated (free) units are represented as a set, type set, with operations insert and remove.

Recap: “semaphore monitor” with “passing the condition”

monitor Semaphore { # monitor invariant: s > 0
int s := 0; # value of the semaphore
cond pos; # wait condition

procedure Psem() {

if (s=0)
wait (pos);
else
s (= s — 1

procedure Vsem() {
if empty (pos)
s s + 1

else
signal (pos);

(Fig. 5.3 in Andrews [Andrews, 2000])

3In practice: server may spawn local threads, one per request.



Allocator as a monitor

monitor Resource Allocator {

int avail := MAXUNITS;
set units := ... # initial values;
cond free; # signalled when process wants a unit

procedure acquire(int &id) { # var.parameter
if (avail = 0)
wait (free);
else
avail := avail —1;
remove (units , id);

}

procedure release(int id) {
insert (units, id);
if (empty(free))

avail := avail+1;
else
signal(free); # passing the condition

(JAndrews, 2000, Fig. 7.6])

Allocator as a server process: code design

1. interface and “data structure”

(a) allocator with two types of operations: get unit, free unit

(b) 1 request Channeﬂ = must be encoded in the arguments to a request.
2. control structure: nested if-statement (2 levels):

(a) first checks type operation,

(b) proceeds correspondingly to monitor-if.
3. synchronization, scheduling, and mutex

(a) cannot wait (wait(free)) when no unit is free.
(b) must save the request and return to it later

= queue of pending requests (queue; insert, remove).
(c) request: “synchronous/blocking” call = “ack”™message back

(d) no internal parallelism = mutex

1>1In order to design a monitor, we may follow the following 3 “design steps” to make it more systematic:
1) Inteface, 2) “business logic” 3) sync./coordination

Channel declarations:

type op_kind = enum(ACQUIRE, RELEASE);
chan request (int clientID , op_ kind kind, int unitID);
chan reply[n](int unitID);

Allocator: client processes

process Client[i = 0 to n—1] {
int unitlD;
send request (i, ACQUIRE, 0) # make request
receive reply[i](unitID); # works as ‘‘if synchronous
# use resource unitlD
send request (i, RELEASE, unitID); # free resource

I

(Fig. 7.7(b) in Andrews)

4 Alternatives exist




Allocator: server process

process Resource_Allocator {
int avail := MAXUNITS;
set units := ...
queue pending;
int clientID |,
while (true) {

# initial value
# initially empty

unitID; op_kind kind;

receive request (clientID , kind, unitID);
if (kind = ACQUIRE) {
if (avail = 0) # save request
insert (pending, clientID);

else { # perform request now
avail:= avail —1;
remove (units , unitID);
send reply[clientID [(unitID);

}
else { # kind = RELEASE
if empty(pending) { # return wunits
avail := avail+1; insert (units, unitID);
} else { # allocates to waiting client

remove (pending, clientID );
send reply[clientID |(unitID);

# Fig. 7.7 in Andrews (rewritten)

Fr oy

Duality: monitors, message passing
monitor-based programs  message-based programs

monitor variables local server variables

process-IDs
procedure call

request channel, operation types
send request(), receive reply]i]()

go into a monitor
procedure return

receive request()
send reply]i]()

save pending requests in a queue
get and process pending request (reply)
branches in if statement wrt. op. type

wait statement
signal statement
procedure body

1.3 Synchronous message passing

Synchronous message passing
Primitives:

e New primitive for sending:

synch send c(expry,...,expr,);

Blocking send:

— sender waits until message is received by channel,

— i.e. sender and receiver “synchronize” sending and receiving of message

e Otherwise: like asynchronous message passing:

receive c(vary, ..., vary,);

empty (c);

Synchronous message passing: discussion
Advantages:

e Gives maximum size of channel.

Sender synchronises with receiver = receiver has at most 1 pending message per channel per sender =
sender has at most 1 unsent message

Disadvantages:
e reduced parallellism: when 2 processes communicate, 1 is always blocked.

e higher risk of deadlock.

10



Example: blocking with synchronous message passing

chan values (int);

process Producer {
int data[n]; Assume both producer and consumer vary
for [i = 0 to n—1] { in time complexity.
... # computation ...; K A X .
synch _send values (data[i]); Communication using synch_send/recelve

P} will block.

process Consumer {

int results[n]; : .
for [i - 0 to n—1] { With asynchronous message passing, the

receive values(results[i]); Waiting is reduced.
. # computation ...;

Pl

Example: deadlock using synchronous message passing

chan inl(int), in2(int);
process P1 {
int vl = 1, v2; P1 and P2 block on synch send — deadlock.
I d in2(vl); e .
i}g:;il;se?nl 1(?12 gv )i One process must be? modified to do receive first
} = asymmetric solution.
PT?C:’SSlP2 é ) With asynchronous message passing (send) all
int vl, v2 = 2;
synch send inl(v2); goes well.
receive in2(vl);
}
func main () {
var wg sync.WaitGroup // wait group
cl,c2 := make(chan int, 0),make(chan int, 0)
wg.Add(2) // prepare barrier
go func() {
defer wg.Done() // signal to barrier
cl <1 // send
X 1= <— c2 // receive

fmt. Printf ("Pl:_x_:=_%v\n", x)
3O

go func() {
defer wg.Done()
c2 < 2
x 1= <— cl

fmt. Printf ("P2: _x_:=_%v\n", x)

1O
wg. Wait () // barrier

References

[Andrews, 2000] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

11




	RPC and Rendezvous 
	Message passing (cont'd)
	RPC
	Rendez-vouz


