
INF4140 - Models of concurrency

Fall 2016

November 4, 2016

Abstract
This is the “handout” version of the slides for the lecture (i.e., it’s a rendering of the content of the slides in

a way that does not waste so much paper when printing out). The material is found in [Andrews, 2000]. Being
a handout-version of the slides, some figures and graph overlays may not be rendered in full detail, I remove
most of the overlays, especially the long ones, because they don’t make sense much on a handout/paper.
Scroll through the real slides instead, if one needs the overlays.

This handout version also contains more remarks and footnotes, which would clutter the slides, and
which typically contains remarks and elaborations, which may be given orally in the lecture.

INF4140 7 Nov. 2016

1 RPC and Rendezvous
Outline

• More on asynchronous message passing

– interacting processes with different patterns of communication
– summary

• remote procedure calls

– concept, syntax, and meaning
– examples: time server, merge filters, exchanging values

• rendez-vous

– concept, syntax, and meaning
– examples: buffer, time server, exchanging values

• combinations of RPC, rendezvous and message passing

– Examples: bounded buffer, readers/writers

Remark 1 (Join). RPC and rendezvous is good for client-server patterns, Andrews claims. What is new here
is that it’s two-way communication (but in the previous chapter, when we “simulated” a monitor via channel
communication, we already used basically to chanels, for the synchronous entering to the monitor) Both have a
“call-notation”. The difference between rendez-vous and rpc is on the server side:

1. for RPC, on the server, each call is served by a “new process” (at least conceptually).

2. For the rendezvous, there is already an existing process. Then caller and callee perform a rendez-vouz.

Therefore there will be an extra syntax for the receiving side of the rendez-vouz.

1.1 Message passing (cont’d)
Interacting peers (processes): exchanging values example

Look at processes as peers.

Example: Exchanging values

• Consider n processes P[0], . . . , P[n− 1], n > 1

• every process has a number, stored in local variable v

• Goal: all processes knows the largest and smallest number.

• simplistic problem, but “characteristic” of distributed computation and information distribution

1

Different communication patterns

P1

P2

P3

P4P5

P0 P0

P1 P2

P3

P4P5

P0

P1 P2

P3

P4P5

centralized symetrical ring shaped

Centralized solution

Process P[0] is the coordinator process:

• P[0] does the calculation

• The other processes sends their values to P[0] and
waits for a reply.

P1

P2

P3

P4P5

P0

Number of messages:1(number of sends:)
P[0]: n− 1

P[1], . . . , P[n− 1]: (n− 1)
Total: (n− 1) + (n− 1) = 2(n− 1) ∼ 2n messages

repeated “computation”

Number of channels: ∼ n

Remark 2 (Join). P[0] receives n− 1 messages and, sequentially afterwards, sends n− 1 messages.
Now: one single line means: 1 message, also for the following slides. That has actually changed from the

earlier picture.
1For now in the pics: 1 line = 1 message (not 1 channel), but the notation in the pics is not 100% consistent.

2

Centralized solution: code
chan va lues (int) ,

r e s u l t s [1 . . n−1](int sma l l e s t , int l a r g e s t) ;

process P [0] { # coordinator process
int v := . . . ;
int new , sma l l e s t := v , l a r g e s t := v ; # i n i t i a l i z a t i o n
get va lues and s tore the l a r g e s t and sma l l e s t
for [i = 1 to n−1] {

receive va lues (new) ;
i f (new < sma l l e s t) sma l l e s t := new ;
i f (new > l a r g e s t) l a r g e s t := new ;

}
send r e s u l t s
for [i = 1 to n−1]

send r e s u l t s [i] (sma l l e s t , l a r g e s t) ;
}
process P[i = 1 to n−1] {

int v := . . . ;
int sma l l e s t , l a r g e s t ;

send va lues (v) ;
receive r e s u l t s [i] (sma l l e s t , l a r g e s t) ; }

Fig . 7.11 in Andrews (corrected a bug)

for i :=0; i<m; i++ {
go P (i , va lues , r e s u l t s [i] , r)

}

for i :=0; i<m; i++ {
v = <− va lue s
i f v > l a r g e s t { l a r g e s t = v}

}
fmt . P r i n t f (" l a r g e s t ␣%v\n" , l a r g e s t)
for i := range r e s u l t s {

r e s u l t s [i] <− l a r g e s t
}

}

Symmetric solution

P0

P1 P2

P3

P4P5

“Single-programme, multiple data (SPMD)”-solution:

Each process executes the same code and shares the results with all other processes.

Number of messages: n processes sending n− 1 messages each, Total: n(n− 1) messages.

Number of (bi-directional) channels: n(n− 1)

Symmetric solution: code
chan va lues [n] (int) ;

process P[i = 0 to n−1] {
int v := . . . ;
int new , sma l l e s t := v , l a r g e s t := v ;

send v to a l l n−1 other processes
for [j = 0 to n−1 st j 6= i]

send va lues [j] (v) ;

get n−1 va lues
and s tore the sma l l e s t and l a r g e s t .
for [j = 1 to n−1] { # j not used in the loop

receive va lues [i] (new) ;
i f (new < sma l l e s t) sma l l e s t := new ;
i f (new > l a r g e s t) l a r g e s t := new ;

}
} # Fig . 7.12 from Andrews

3

Ring solution

P0

P1 P2

P3

P4P5

Almost symmetrical, except P[0], P[n− 2] and P[n− 1].

Each process executes the same code and sends the results to the next process (if necessary).

Number of messages:

P[0]: 2
P[1], . . . , P[n− 3]: (n− 3)× 2

P[n− 2]: 1
P[n− 1]: 1

2 + 2(n− 3) + 1 + 1 = 2(n− 1) messages sent.

Number of channels: n .

Remark 3 (Join). That every process does the same code, that’s of course not really true: P0 is different, and
then there’s a conditional in the others, which checks on the process id.

Ring solution: code (1)

chan va lues [n] (int sma l l e s t , int l a r g e s t) ;

process P [0] { # s t a r t s the exchange
int v := . . . ;
int sma l l e s t := v , l a r g e s t := v ;
send v to the next process , P[1]
send va lues [1] (sma l l e s t , l a r g e s t) ;
get the g l o ba l sma l l e s t and l a r g e s t from P[n−1]
and send them to P[1]
receive va lues [0] (sma l l e s t , l a r g e s t) ;
send va lues [1] (sma l l e s t , l a r g e s t) ;

}

Ring solution: code (2)

process P[i = 1 to n−1] {
int v := . . . ;
int sma l l e s t , l a r g e s t ;
get sma l l e s t and l a r g e s t so far ,
and update them by comparing them to v
receive va lues [i] (sma l l e s t , l a r g e s t)
i f (v < sma l l e s t) sma l l e s t := v ;
i f (v > l a r g e s t) l a r g e s t := v ;
forward the re su l t , and wait for the g l o ba l r e s u l t
send va lues [(i +1) mod n] (sma l l e s t , l a r g e s t) ;
i f (i < n−1)

receive va lues [i] (sma l l e s t , l a r g e s t) ;
forward the g l o ba l r e su l t , but not from P[n−1] to P[0]
i f (i < n−2)

send va lues [i +1](sma l l e s t , l a r g e s t) ;
} # Fig . 7.13 from Andrews (modified)

Message passing: Summary
Message passing: well suited to programming filters and interacting peers (where processes communicates

one way by one or more channels).
May be used for client/server applications, but:

• Each client must have its own reply channel

• In general: two way communication needs two channels

⇒ many channels

RPC and rendezvous are better suited for client/server applications.

4

1.2 RPC
Remote Procedure Call: main idea

CALLER CALLEE

at computer A at computer B

op foo(FORMALS); # declaration

...
call foo(ARGS); -----> proc foo(FORMALS) # new process

...
<----- end;

...

RPC (cont.)
RPC: combines elements from monitors and message passing

• As ordinary procedure call, but caller and callee may be on different machines.2

• Caller: blocked until called procedure is done, as with monitor calls and synchronous message passing.

• Asynchronous programming: not supported directly

• A new process handles each call.

• Potentially two way communication: caller sends arguments and receives return values.

RPC: module, procedure, process
Module: new program component – contains both

• procedures and processes.

module M
headers o f exported ope ra t i on s ;

body
va r i ab l e d e c l a r a t i o n s ;
i n i t i a l i z a t i o n code ;
procedures for exported ope ra t i on s ;
l o c a l procedures and processes ;

end M

Modules may be executed on different machines
M has: procedures and processes

• may share variables

• execute concurrently ⇒ must be synchronized to achieve mutex

• May only communicate with processes in M ′ by procedures exported by M ′

RPC: operations
Declaration of operation O:

op O(formal parameters.) [returns result] ;

Implementation of operation O:

proc O(formal identifiers.) [returns result identifier]{ declaration of local variables;
statements }

Call of operation O in module M:3

call M.O(arguments)

Processes: as before.
2cf. RMI
3Cf. static/class methods

5

Synchronization in modules

• RPC: primarily a communication mechanism

• within the module: in principle allowed:

– more than one process
– shared data

⇒ need for synchronization

• two approaches

1. “implicit”:
– as in monitors: mutex built-in
– additionally condition variables (or semaphores)

2. “explicit”:4

– user-programmed mutex and synchronization (like semaphorse, local monitors etc.)

Example: Time server (RPC)

• module providing timing services to processes in other modules.

• interface: two visible operations:

– get_time() returns int – returns time of day
– delay(int interval) – let the caller sleep a given number of time units

• multiple clients: may call get_time and delay at the same time

⇒ Need to protect the variables.

• internal process that gets interrupts from machine clock and updates tod

Time server code (rpc)
module TimeServer

op get_time () returns int ;
op delay (int i n t e r v a l) ;

body
int tod := 0 ; # time of day
sem m := 1 ; # for mutex
sem d [n] := ([n] 0) ; # for delayed processes
queue o f (int waketime , int process_id) napQ ;
when m = 1 , tod < waketime for delayed processes
proc get_time () returns time { time := tod ; }

proc delay (int i n t e r v a l) {
P(m) ; # assume unique myid and i [0 ,n−1]
int waketime := tod + i n t e r v a l ;

i n s e r t (waketime , myid) at appropr ia te p lace in napQ ;
V(m) ;
P(d [myid]) ; # Wait to be awoken

}
process Clock . . .

...
end TimeServer

Time server code: clock process
process Clock {

int id ; s t a r t hardware t imer ;
while (true) {

wait for i n t e r rupt , then r e s t a r t hardware t imer
tod := tod + 1 ;
P(m) ; # mutex
while (tod ≥ sma l l e s t waketime on napQ) {

remove (waketime , id) from napQ ; # book−keeping
V(d [id]) ; # awake process

}
V(m) ; # mutex

} }
end TimeServer # Fig . 8.1 of Andrews

4assumed in the following

6

1.3 Rendez-vouz
Rendezvous

RPC:

• offers inter-module communication

• synchronization (often): must be programmed explicitly

Rendezvous:

• known from the language Ada (US DoD)

• combines communication and synchronization between processes

• No new process created for each call

• instead: perform ‘rendezvous’ with existing process

• operations are executed one at the time

synch_send and receive may be considered as primitive rendezvous.
cf. also join-synchronization

Rendezvous: main idea

CALLER CALLEE

at computer A at computer B

op foo(FORMALS); # declaration

... ... # existing process
call foo(ARGS); -----> in foo(FORMALS) ->

BODY;
<----- ni

...

Rendezvous: module declaration

module M
op O1 (types) ;
. . .
op On (types) ;

body

process P1 {
va r i ab l e d e c l a r a t i o n s ;
while (true) # standard pattern

in O1 (fo rmal s) and B1 −> S1 ;
. . .
[] On (fo rmal s) and Bn −> Sn ;
ni

}
. . . other p r o c e s s e s

end M

Calls and input statements
Call:

ca l l Oi (expr1, . . . , exprm) ;

Input statement, multiple guarded expressions:

in O1(v1, . . . vm1
) and B1 −> S1 ;

. . .
[] On(v1, . . . vmn) and Bn −> Sn ;
n i

The guard consists of:

7

• and Bi – synchronization expression (optional)

• Si – statements (one or more)

The variables v1, . . . , vmi
may be referred by Bi and Si may read/write to them.5

Semantics of input statement
Consider the following:

in . . .
[] Oi(vi, . . . , vmi

) and Bi −> Si ;
. . .
ni

The guard succeeds when Oi is called and Bi is true (or omitted).

Execution of the in statement:

• Delays until a guard succeeds

• If more than one guard succeed, the oldest call is served6

• Values are returned to the caller

• The the call- and in-statements terminates

Different variants

• different versions of rendezvous, depending on the language

• origin: ADA (accept-statement) (see [Andrews, 2000, Section 8.6])

• design variation points

– synchronization expressions or not?

– scheduling expressions or not?

– can the guard inspect the values for input variables or not?

– non-determinism

– checking for absence of messages? priority

– checking in more than one operation?

Bounded buffer with rendezvous

module BoundedBuffer
op depos i t (TypeT) , f e t ch (result TypeT) ;

body
process Buf f e r {

elem buf [n] ;
int f r on t := 0 , r ea r := 0 , count := 0 ;
while (true)

in depos i t (item) and count < n −>
buf [r ea r] := item ; count++;

r ea r := (r ea r+1) mod n ;
[] f e t ch (item) and count > 0 −>

item := buf [f r on t] ; count−−;
f r on t := (f r on t +1) mod n ;

ni
}

end BoundedBuffer # Fig . 8.5 of Andrews

5once again: no side-effects in B!!!
6this may be changed using additional syntax (by), see [Andrews, 2000].

8

Example: time server (rendezvous)

module TimeServer
op get_time () r e tu rn s int ;
op delay (int) ; # abso lu te waketime as argument
op t i c k () ; # ca l l e d by the c lock in t e r rup t handler

body
process Timer {

int tod := 0 ;
s t a r t t imer ;
while (true)

in get_time () r e tu rn s time −> time := tod ;
[] de lay (waketime) and waketime <= tod −> sk ip ;
[] t i c k () −> { tod++; r e s t a r t t imer ; }
ni

}
end TimeServer # Fig . 8.7 of Andrews

RPC, rendezvous and message passing
We do now have several combinations:

invocation service effect
call proc procedure call (RPC)
call in rendezvous
send proc dynamic process creation, asynchronous proc. calling
send in asynchronous message passing

in addition (not in Andrews)

• asynchronous procedure call, wait-by-necessity, futures

Rendezvous, message passing and semaphores

Comparing input statements and receive:

in O(a1, . . . ,an) ->v1=a1,. . . ,vn=an ni ⇐⇒ receive O(v1, . . . , vn)

Comparing message passing and semaphores:

send O() and receive O() ⇐⇒ V(O) and P(O)

Bounded buffer: procedures and “semaphores” (simulated by channels)

module BoundedBuffer
op depos i t (typeT) , f e t ch (result typeT) ;

body
elem buf [n] ;
int f r on t = 0 , r ea r = 0 ;
loca l operation to simulate semaphores
op empty () , f u l l () , mutexD () , mutexF () ; # operat ions
send mutexD () ; send mutexF () ; # in i t . "semaphores" to 1
for [i = 1 to n] # in i t . empty−"semaphore" to n

send empty () ;

proc depos i t (item) {
receive empty () ; receive mutexD () ;
buf [r ea r] = item ; r ea r = (r ea r+1) mod n ;
send mutexD () ; send fu l l () ;

}
proc f e t ch (item) {

receive fu l l () ; receive mutexF () ;
item = buf [f r on t] ; f r on t = (f r on t +1) mod n ;
send mutexF () ; send empty () ;

}
end BoundedBuffer # Fig . 8.12 of Andrews

The primitive ?O in rendezvous
New primitive on operations, similar to empty(. . .) for condition variables and channels.

?O means number of pending invocations of operation O.

Useful in the input statement to give priority:

9

in
O1 . . . −> S1 ;

[]
O2 . . . and (?O1 = 0) −> S2 ;

n i

Here O1 has a higher priority than O2.

Readers and writers

module ReadersWriters
op read (result types) ; # uses RPC
op wr i t e (types) ; # uses rendezvous

body
op s t a r t r e ad () , endread () ; # loca l ops .
. . . database (DB) . . . ;

proc read (vars) {
ca l l s t a r t r e ad () ; # get read access
. . . read vars from DB . . . ;
send endread () ; # free DB

}
process Writer {

int nr := 0 ;
while (true)

in s t a r t r e ad () −> nr++;
[] endread () −> nr−−;
[] wr i t e (vars) and nr = 0 −>

. . . wr i t e vars to DB . . . ;
ni

}
end ReadersWriters

Readers and writers: prioritize writers

module ReadersWriters
op read (result typeT) ; # uses RPC
op wr i t e (typeT) ; # uses rendezvous

body
op s t a r t r e ad () , endread () ; # loca l ops .
. . . database (DB) . . . ;

proc read (vars) {
ca l l s t a r t r e ad () ; # get read access
. . . read vars from DB . . . ;
send endread () ; # free DB

}
process Writer {

int nr := 0 ;
while (true)
in s t a r t r e ad () and ? wr i t e = 0 −> nr++;

[] endread () −> nr−−;
[] wr i t e (vars) and nr = 0 −>

. . . wr i t e vars to DB . . . ;
n i

}
end ReadersWriters

References
[Andrews, 2000] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Programming.

Addison-Wesley.

10

	RPC and Rendezvous
	Message passing (cont'd)
	RPC
	Rendez-vouz

