
INF4140 - Models of concurrency

Fall 2016

November 28, 2016

Abstract
This is the “handout” version of the slides for the lecture (i.e., it’s a rendering of the content of the slides in

a way that does not waste so much paper when printing out). The material is found in [Andrews, 2000]. Being
a handout-version of the slides, some figures and graph overlays may not be rendered in full detail, I remove
most of the overlays, especially the long ones, because they don’t make sense much on a handout/paper.
Scroll through the real slides instead, if one needs the overlays.

This handout version also contains more remarks and footnotes, which would clutter the slides, and
which typically contains remarks and elaborations, which may be given orally in the lecture.

1 Active Objects
28.11.2016

Aims for this lecture

Distributed object-oriented systems and introduction to Creol/ABS

• Consider the combination of OO, concurrency, and distribution

• Understanding active objects

– interacting by asynchronous method calls

• A short introduction of (a variant of) Creol1 using small example programs

Note: Inheritance and dynamic object creation not considered here.
1References:

– http://heim.ifi.uio.no/~creol/

– http://tools.hats-project.eu/

– Johnsen & Owe: An Asynchronous Communication Model for Distributed Concurrent Objects Software and Systems Mod-
eling, 6(1): 39-58, 2007. Springer

– Johnsen, Blanchette, Kyas & Owe: Intra-Object versus Inter-Object Concurrency and Reasoning in Creol. Electron. Notes
Theor. Comput. Sci. 243 (2009), 89-103.

1

http://heim.ifi.uio.no/~creol/
http://tools.hats-project.eu/

Open Distributed Systems

• Consider systems of communicating software units

• Distribution: geographically spread components

– Networks may be asynchronous and unstable

– Component availability may vary over time

• Openness : encapsulation

– Implementation of other objects is not necessary known.

– Interaction with other objects is through interfaces.

• ODS dominate critical infrastructure in society: bank systems, air traffic control, etc.

• ODS: complex, error prone, and robustness is poorly understood

Network

Challenges with OO languages for modern systems
Modern systems are often large and complex, with distributed, autonomous units connected through different

kinds of networks.

• OO + concurrency

synchronization, blocking, deadlock

• OO + asynchronous communication

messages on top of OO or method-based communication? better than RPC/RMI?

• OO + distribution

efficient interaction (passive/active waiting),

• OO + openness

restricted knowledge of other objects

• OO + scalability

management of large systems

Active and Passive Objects
Passive objects

• Execute their methods in the caller’s thread of control (e.g., Java)

• In multithreaded applications, must take care of synchronization

– Shared variable interference for non-synchronized methods

• If two objects call the same object, race condition may occur

Active (or concurrent) objects

• Execute their methods in their own thread of control (e.g., Actors)

• Communication is asynchronous

• Call and return are decoupled (future variables)

• Cooperative multitasking, specified using schedulers

2

Creol: A Concurrent Object Model

• OO modeling language that targets open distributed systems

• All objects are active (or concurrent), but may receive requests

– Need easy way to combine active and passive/reactive behavior

• We don’t always know how objects are implemented

– Separate specification (interface) from implementation (class)
– Object variables are typed by interface, not by class

• No assumptions about the (network) environment

– Communication may be unordered
– Communication may be delayed
– Execution should adapt to possible delays in the environment

• Synchronization decided by the caller

– Method invocations may be synchronous or asynchronous

Interfaces as types

• Object variables (pointers) are typed by interfaces (other variables are typed by data types)

• Mutual dependency: An interface may require a cointerface

– Only objects of cointerface type may call declared methods
– Explicit keyword caller (identity of calling object)
– Supports callbacks to the caller through the cointerface
– The cointerface is the minimal type of caller

• All object interaction is controlled by interfaces

– No explicit hiding needed at the class level
– Interfaces provide behavioral specifications
– A class may implement a number of interfaces

• Type safety: no “method not understood” errors, and all parameters are type correct

Interface syntax

• Declares a set of method signatures

• With cointerface requirement

interface I inherits I begin
with J // cointerface J

MtdSig
end

• Method signatures (MtdSig) of the form:

op m (in x : I out y : I)

– method name m with in-parameters x and out-parameters y

• Local data structures inside an object is defined by data types,

– including lists, sets and user-defined data types and
– predefined types such as Bool, Int, String. . .

3

Interfaces: Example

• Consider the mini bank example from last week

• We have Client, MiniBank, and CentralBank objects

• Clients may support the following interface:

interface Client begin
with MiniBank -- the cointerface

op pin(out p : Int)
op amount(out a : Int)

end

• only MiniBank objects may call the pin and amount methods

Interfaces: Example (cont.)
MiniBank and CentralBank interfaces:

interface MiniBank begin
with Client

op withdraw(in name : String out result : Bool)
end

interface CentralBank begin
with MiniBank

op request(in name : String, pin : Int, amount : Int
out result : Bool)

end

Asynchronous Communication Model

o1 o2

• Object o1 calls some method on object o2

• In o2: Arbitrary delay after invocation arrival and method startup

• In o1: Arbitrary delay after completion arrival and reading the return

o1 may do something else while waiting for o2 to respond

4

Main ideas of Creol: Programming perspective
Main ideas: Overall

• interaction by method calls

• method executions (processes) may be suspended

• queue of suspended method executions (the process queue)

Main ideas: Method interaction

• Asynchronous communication

• Avoid undesired inactivity

– Other processes may execute while a process waits for a reply

• Combine active and reactive behavior

In the language, this is achieved by statements for

• asynchronous method calls and

• processor release points

Release points enable interleaving of active and reactive code Note: No need for signaling / notification

Execution inside a Creol Object

• Concurrent objects encapsulate a processor

• Execution in objects should adapt to environment delays

• At most one active process at a time

• Implicit scheduling between internal processes inside an object

Incoming

call

Object

STATE

Object

STATE

Object

STATE

Object

STATE

Object

STATE

Outgoing

reply

Object

STATE

Internal Processes in Concurrent Objects

• Object: state + active process + suspended processes

• Process (method activation):

– code + local variable bindings (local state)

• Asynchronous invocation: t!o.m(In), In a list of expressions

– The label t identifies the call

Reading the result: t?(Out), Out a list of variables

• Processor release points

– Declared by await statements: await guard
– Guards can be

∗ t?

∗ Boolean condition
∗ and also method call

– If a guard evaluates to false, the active process is suspended
– If no process is active, any suspended process may be activated if its guard evaluates to true.

5

Statements for object communication

• Objects communicate through method invocations only

• Different ways to invoke a method m

• Decided by caller — not at method declaration site

• Guarded invocation:
t!o.m(In); . . . ;await t?; t?(Out)

• Label-free abbreviations for standard patterns:

– await o.m(In;Out) ≡ t!o.m(In); t?(Out) — synchronous call
– await o.m(In;Out) ≡ t!o.m(In);await t?; t?(Out)
– !o.m(In) — no reply needed (one-way message passing)

• Internal calls: m(In;Out), t!m(In), !m(In) Internal calls may also be asynchronous/guarded

From now on: only label-free calls

Creol syntax

Syntactic categories. Definitions.

t in Label
g in Guard
p in MtdCall
S in ComList
s in Com
x in VarList
e in ExprList
m in Mtd
o in ObjExpr
b in BoolExpr

g ::= φ | t? | g1 ∧ g2
p ::= o.m |m
S ::= s | s;S
s ::= skip | begin S end | S1�S2S1�S2

| x := e | x := new classname(e)
| if b then S1 else S2 end
|while b do S end
| !p(e) | t!p(e) | t?(x) | p(e;x)
| await g | await p(e;x)!p(e) | t!p(e) | t?(x) | p(e;x)
| await g | await p(e;x)
| releaserelease

e ::= x | this | caller | null | e = e | f(e) | . . .

• Omit the functional language for expressions e here: booleans, integers, strings, lists, sets, maps, etc

Example: CentralBank implementation

class Bank implements CentralBank begin
var pin -- pin codes, indexed by name
var bal -- balances, indexed by name

with MiniBank
op request(in name : String, pin : Int, amount : Int

out result : Bool) ==
result:= (pin[name] = pin && bal[name] >= amount)

end

Note: The last statement may be rewritten as if (pin[name] = pin && bal[name] >= amount)
then result := true else result := false end

Example: MiniBank implementation

class MiniBank(bank : CentralBank) implements MiniBank begin
with Client

op withdraw(in name : String out result : Bool) ==
var amount : Int, pin : Int;
caller.pin(;pin); caller.amount(;amount)
await bank.request(name, pin, amount; result)

end

6

• method calls caller.pin(...) and caller.amount(...) are type safe by cointerface requirements

• await statement: passive waiting for reply from CentralBank

Example: Client implementation
Optimistic client:

class Person(m : MiniBank) implements Client begin
var name : String, pin : Int;

op init == !run()

op run() == success : Bool;
await m.withdraw(name;success); -- active behavior
if (success = false) then !run() end

with MiniBank
op pin(out p : Int) == p := pin
op amount(out a : Int) == a := 1000

end

• Assuming communication with a fixed minibank m

Main ideas of Creol: Programming perspective

• concurrent objects (each with its own virtual processor)

• a notion of asynchronous methods calls, avoids blocking, using processor release points

• high level process control

– no explicit signaling/notification

– busy waiting avoided!

• openness by a notion of multiple interfacing

• type-safe call-backs due to cointerfaces

Remark: abstraction by behavioral interfaces

Example: Buffer

interface Buffer begin
with Producer op put(in x : Int)
with Consumer op get(out x : Int)

end

class OneSlotBuffer implements Buffer begin
var value : Int, full : Bool;
op init == full := false
with Producer

op put(in x:Int) == await ¬full; value:= x; full:= true
with Consumer

op get(out x:Int) == await full; x:= value; full:= false
end

• init: initialization code executed at object creation

• synchronization by boolean await

7

Example: Buffer (cont.)
Illustrating alternation between active and reactive behavior

class Consumer(buf: Buffer) implements Consumer begin
var sum : Int := 0;

op init == !run()

op run() == var j : Int;
while true do await buf.get(;j); sum := sum + j end

with Any op getSum(out s : Int) == s := sum
end

• Call to buf.get:

– Asynchronous

– await: processor release

– Incoming calls to getSum can be served while waiting for reply from buf

• Interface Any: supertype of all interfaces

– Any object can call getSum

Readers/Writers example (Simple implementation)
interface RW begin with RWClient op OR() — open read op OW() — open write op CR() — close

read op CW() — close write end

class RW implements RW begin var r: Int:=0; var w: Int:=0; with RWClient op OR() == await w=0;
r:= r+1 op OW() == await w=0 and r=0; w:= w+1 op CR() == r:= r-1 op CW() == w:= w-1

end
Note: A client may do asynchronous calls to OR/OW and synchronous calls to CR/CW.

Readers/Writers example (version 2)

class RW(db : DataBase) implements RW begin
var readers : Set[Reader] := ∅, writer : Writer := null,
pr : Int := 0; // number of pending calls to db.read

with Reader
op OR() == await writer = null; readers := readers ∪ caller
op CR() == readers := readers \ caller
op read(in key : Int out result : Int) ==

await caller ∈ readers;
pr := pr + 1; await db.read(key;result); pr := pr - 1;

with Writer
op OW() == await (writer = null && readers = ∅ && pr = 0);
writer := caller

op CW() == await caller = writer; writer := null
op write(in key : Int, value : Int) ==

await caller = writer; db.write(key,value);
end

RW example, remarks (version 2)

• read and write operations on database may be declared with cointerface RW

• Weaker assumptions about Reader and Writer behavior than in the first version

– Here we actually check that only registered readers/writers do read/write operations on the database

• The database is assumed to store integer values indexed by key

• Counting the number of pending calls to db.read (variable pr)

8

• A reader may call CR before all read invocations are completed

• For writing activity, we know that there are no pending calls to db.write when writer is null. Why?

• The solution is unfair: writers may starve

• Still, after completing OW, we assume that writers will eventually call CW. Correspondingly for readers

Summary: Active Objects

• Passive objects usually execute their methods in the thread of control of the caller (Java)

• In multithreaded applications, we must take care of proper synchronization

• Active objects execute their methods in their own thread of control

• Communication is asynchronous

• synchronous communication possible by means of asynchronous communication primitives

• Call and return are decoupled by the use of labels

• Usually, active objects use cooperative multitasking.

• Cooperative multitasking is specified using schedulers. Our scheduler will just randomly pick a next
process.

Other versions of Creol/ABS

• with time

• with probabilities

• dynamic class upgrades

• futures (call labels as first class citizens)

• (single and) multiple inheritance

• traits and deltas for software product lines

• groups (sharing a CPU)

• abstract objects defined by object sets

• awareness and modeling of (different) underlying networks

• cloud awareness

• security awareness

For Hoare-style reasoning see [Din and Owe, 2014, Din et al., 2012]

Other PMA Courses
Spring:

• INF3230/INF4231 - Formal modeling and analysis of communicating systems rewriting logic - language and tool Maude

• INF5110 - Compiler construction (each spring)

• INF5140/INF9140 - Specification and verification of parallel systems. (’15, ’17,..) Automatic verification using model checking
techniques

• INF5906/INF9906 - Selected topics in static analysis. (’16, ’18...) analysis of programs at compile time

Fall:

• INF5130/INF9130 - Selected topics in rewriting logic (’15, ’17...)

9

References
[Andrews, 2000] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Programming.

Addison-Wesley.

[Din et al., 2012] Din, C. C., Dovland, J., Johnsen, E. B., and Owe, O. (2012). Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. J. Log. Algebr. Program., 81(3):227–256.

[Din and Owe, 2014] Din, C. C. and Owe, O. (2014). A sound and complete reasoning system for asynchronous
communication with shared futures. J. Log. Algebr. Meth. Program., 83(5-6):360–383.

10

	Active Objects

