INF 4300 04.12.13 Repetition - classification Anne Solberg (anne@ifi.uio.no)	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $
04.12.13 INF 4300 1	INF 4300 2
Euclidean distance vs. Mahalanobis distance	Discriminant functions for the normal density
• Euclidean distance between point x and class center μ : $(x-\mu)^{T}(x-\mu) = x-\mu ^{2}$ • Mahalanobis distance between x and μ : $r^{2} = (x-\mu)^{T} \Sigma^{-1}(x-\mu)$	 We saw that the minimum-error-rate classification can computed using the discriminant functions
INF 4300 3	INF 4300 4

Case 1: $\Sigma_i = \sigma^2 I$

• An equivalent formulation of the discriminant functions:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_i \mathbf{0}$$

where
$$\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i$$
 and $wi0 = -\frac{1}{2\sigma^2} \boldsymbol{\mu}_i' \boldsymbol{\mu}_i + \ln P(\omega_i)$

• The equation $q_i(\mathbf{x}) = q_i(\mathbf{x})$ can be written as

$$\mathbf{w}^{\prime}(\mathbf{x} - \mathbf{x}_{0}) = 0$$

where $\mathbf{w} = \mathbf{\mu}_{i} - \mathbf{\mu}_{j}$

and
$$x_0 = \frac{1}{2} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j) - \frac{\sigma^2}{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|} \ln \frac{P(\omega_i)}{P(\omega_j)} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$

- $\mathbf{w} = \mu_i \mu_i$ is the vector between the mean values.
- This equation defines a hyperplane through the point x_0 , and orthogonal to w.
- If $P(\omega_i) = P(\omega_i)$ the hyperplane will be located halfway between the mean values.

INF 4300

5

7

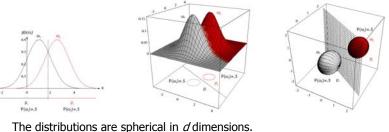
Case 2: Common covariance, $\Sigma_i = \Sigma$

- If we assume that all classes have the same shape of data clusters, an intuitive model is to assume that their probability distributions have the same shape
- By this assumption we can use all the data to estimate the covariance matrix
- This estimate is common for all classes, and this means that also in this case the discriminant functions become linear functions

$$g_{j}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{j})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{j}) - \frac{1}{2} \ln |\boldsymbol{\Sigma}| + \ln P(\omega_{j})$$
$$= -\frac{1}{2(\sigma^{2}I)} (\mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} - 2\boldsymbol{\mu}_{j}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \boldsymbol{\mu}_{j}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{j}) - \frac{1}{2} \ln |\boldsymbol{\Sigma}| + \ln P(\omega_{j})$$

Common for all classes, no need to compute Since $\mathbf{x}^T \mathbf{x}$ is common for all classes, $g_i(\mathbf{x})$ again reduces to a linear function of **x**.

A simple model, $\Sigma_i = \sigma^2 I$



- The decision boundary is a generalized hyperplane of *d*-1 dimensions
- The decision boundary is perpendicular to the line separating the two mean values
- This kind of a classifier is called a linear classifier, or a linear discriminant function
 - Because the decision function is a linear function of **x**.
- If $P(\omega_i) = P(\omega_i)$, the decision boundary will be half-way between μ_i and μ_{i}

INF 4300

Case 2: Common covariance, $\Sigma_i = \Sigma$

• An equivalent formulation of the discriminant functions is

 $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w i_0$ where $\mathbf{w}_i = \mathbf{\Sigma}^{-1} \mathbf{\mu}_i$ and $wi_0 = -\frac{1}{2} \boldsymbol{\mu}_i^{\ t} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(\boldsymbol{\omega}_i)$

- The decision boundaries are agian hyperplanes.
- Because $\mathbf{w}_i = \mathbf{\Sigma}^{-1}(\mu_i^- \mu_j)$ is not in the direction of $(\mu_i^- \mu_j)$, the hyperplan wil not be orthogonal to the line between the means.

6

Case 3:, Σ _j =arbitrary	k-Nearest-Neighbor classification
 The discriminant functions will be quadratic: g_i(x) = x'W_ix + wⁱ_ix + wi₀ where W_i = -¹/₂Σ_i⁻¹, w_i = Σ_i⁻¹μ_i and wi₀ = -¹/₂μ_i'Σ_i⁻¹μ_i - ¹/₂ln Σ_i + ln P(ω_i) The decision surfaces are hyperquadrics and can assume any of the general forms: - hyperplanes - hyperplanes - pairs of hyperplanes - hyperellisoids, - hyperparaboloids - hyperhyperboloid 	 A very simple classifier. Classification of a new sample x_i is done as follows: Out of N training vectors, identify the k nearest neighbors (measure by Euclidean distance) in the training set, irrespectively of the class label. k should be odd. Out of these k samples, identify the number of vectors k_i that belong to class ω_i, <i>i:1,2,,M</i> (if we have <i>M</i> classes) Assign x_i to the class ω_i with the maximum number of k_i samples. k must be selected a priori.
INF 4300 9	INF 4300 10