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Repetition - classification
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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes.  is the class label for a 
pixel, and x is the observed feature vector).  

• We can use Bayes rule to find an expression for the class with
the highest probability:

• P(j) is the prior probability for class j. If we don't have special
knowledge that one of the classes occur more frequent than
other classes, we set them equal for all classes. (P(j)=1/J, 
j=1.,,,J).
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Euclidean distance vs. 
Mahalanobis distance

• Euclidean distance 
between point x and class 
center :

• Mahalanobis distance 
between x and :
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Discriminant functions
for the normal density

• We saw that the minimum-error-rate classification can
computed using the discriminant functions

• With a multivariate Gaussian we get:

• Let ut look at this expression for some special cases: 
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Case 1: Σj=σ2I
• An equivalent formulation of the discriminant functions:

• The equation gi(x)=gj(x) can be written as

• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 

orthogonal to w. 
• If P(i)=P(j) the hyperplane will be located halfway between the

mean values.
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A simple model, Σj=σ2I

• The distributions are spherical in d dimensions.
• The decision boundary is a generalized hyperplane of d-1 dimensions
• The decision boundary is perpendicular to the line separating the two 

mean values
• This kind of a classifier is called a linear classifier, or a linear 

discriminant function
– Because the decision function is a linear function of x.

• If P(i)= P(i), the decision boundary will be half-way between i and 
j
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Case 2: Common covariance, Σj= Σ

• If we assume that all classes have the same shape of data 
clusters, an intuitive model is to assume that their probability 
distributions have the same shape

• By this assumption we can use all the data to estimate the 
covariance matrix

• This estimate is common for all classes, and this means that 
also in this case the discriminant functions become linear 
functions
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Common for all classes, no need to compute
Since xTx is common for all classes, gj(x) again reduces to 
a linear function of x.
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Case 2: Common covariance, Σj= Σ

• An equivalent formulation of the discriminant functions is

• The decision boundaries are agian hyperplanes.
• Because wi= Σ-1(i- j) is not in the direction of (i- j), the

hyperplan wil not be orthogonal to the line between the means.
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Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– hyperparaboloids
– hyperhyperboloid
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k-Nearest-Neighbor classification

• A very simple classifier.
• Classification of a new sample xi is done as follows: 

– Out of N training vectors, identify the k nearest neighbors 
(measure by Euclidean distance) in the training set, 
irrespectively of the class label. k should be odd. 

– Out of these k samples, identify the number of vectors ki
that belong to class i , i:1,2,....M (if we have M classes)

– Assign xi to the class i with the maximum number of ki
samples. 

• k must be selected a priori. 


