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Suppose we have J, j=1,...] classes. o is the class label for a
pixel, and xis the observed feature vector).

We can use Bayes rule to find an expression for the class with
the highest probability:
p(x| wj)P(a)j)
p(x)
likelihood x prior probability
normalizing factor

P(o; | x)=

posterior probability =

P(w;) is the prior probability for class ;. If we don't have special
knowledge that one of the classes occur more frequent than
other classes, we set them equal for all classes. (P(w;)=1/3,

j=1'IIIJ)'
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Euclidean distance vs.
Mahalanobis distance

Discriminant functions
for the normal density

e Euclidean distance
between point x and class
center p:

(x= ) (= pa) = e

e Mahalanobis distance .
between x and p:

r?=(x—p) = (x-p)

-0
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We saw that the minimum-error-rate classification can
computed using the discriminant functions

g;(x)=Inp(x|®)+InP(e,)
With a multivariate Gaussian we get:

(0 = () Z () - S 2z =2 Infs [+ In P(o)

Let ut look at this expression for some special cases:
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Case 1: 2,.=0’1

A simple model, ;=071

¢ An equivalent formulation of the discriminant functions:

g;(x) = wix+w,0

where w; :ipi and Wi0:721 pip; +InP(w)

O'2 O'2
* The equation g,(x)=g;(x) can be written as
w'(x-x,)=0
where w =p; - p;
1 ol P(@)
and X, ==\p; -p; J-——In——=p, -
XO 2(”| ”J) Hlli'lle P((ol)(”' I'I’J)
e w=p;-is the vector between the mean values.
¢ This equation defines a hyperplane through the point x,, and
orthogonal to w.
o If P(w;)=P(w;) the hyperplane will be located halfway between the
mean values.
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¢ The distributions are spherical in d dimensions.
¢ The decision boundary is a generalized hyperplane of d-7 dimensions

e The decision boundary is perpendicular to the line separating the two
mean values

e This kind of a classifier is called a linear classifier, or a linear
discriminant function
— Because the decision function is a linear function of x.
o If Plw)= P(w;), the decision boundary will be half-way between p; and
Y
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Case 2: Common covariance, 2= 2

Case 2: Common covariance, 2;= 2

o If we assume that all classes have the same shape of data
clusters, an intuitive model is to assume that their probability
distributions have the same shape

¢ By this assumption we can use all the data to estimate the
covariance matrix

¢ This estimate is common for all classes, and this means that
also in this case the discriminant functions become linear
functions ) )

gJ(x)=—E(x—uJ)TE’l(x—pJ)—Eln‘EHIn P(@;)

1 _ _ _ 1
- 2071 (x"Ex-2piE X+ plE 1pj)—§|n‘2‘.‘+ InP(w;)

Common for all classes, no need to compute
Since x™ is common for all classes, g;(x) again reduces to

a linear function of x.
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¢ An equivalent formulation of the discriminant functions is

g; (x) = wix+wi,

wherew, =X,

and wi, = %ui‘z*lpi +InP(w,)

e The decision boundaries are agian hyperplanes.
 Because w;= Z!(;- ) is not in the direction of (u- ), the
hyperplan wil not be orthogonal to the line between the means.
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Case 3:, 2;=arbitrary

k-Nearest-Neighbor classification

The discriminant functions will be quadratic:
0; (x) = X' W,x + wix + Wi,

where W, = —%Ei’l, w, =2y

and wi, = %pi‘z;lpi %m\zih InP(a,)

The decision surfaces are hyperquadrics and can assume any of
the general forms:

— hyperplanes

— hypershperes

— pairs of hyperplanes

— hyperellisoids,

— hyperparaboloids

— hyperhyperboloid
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¢ A very simple classifier.

e (Classification of a new sample x;is done as follows:

— Out of N training vectors, identify the & nearest neighbors
(measure by Euclidean distance) in the training set,
irrespectively of the class label. & should be odd.

— Out of these & samples, identify the number of vectors &;
that belong to class w, , /:1,2,....M (if we have M classes)

— Assign x;to the class o; with the maximum number of %;
samples.

e Ak must be selected a priori.
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