INF 4300 – Classification III Anne Solberg 28.10.15

The agenda today:

- · More on estimating classifier accuracy
- Curse of dimensionality and simple feature selection
- kNN-classification
- K-means clustering

28.10.15 INF 4300 1

Confusion matrices

 A matrix with the true class label versus the estimated class labels for each class

Estimated class labels

True class labels

	Class 1	Class 2	Class 3	Total # of
				samples
Class 1	80	15	5	100
Class 2	5	140	5	150
Class 3	25	50	125	200
Total	110	205	135	450

True / False positives / negatives

• True positive (TP):

Patient has cancer and test result is positive.

- True negative (TN):

 A healthy patient
 and a negative test result.
- False positive (FP):
 Healthy patient that gets a positive test result.
- False negative (FN): Cancer patient that gets a negative test result.
- Good to have: TP & TN
- Bad to have: FP (but this will probably be detected)
- Worst to have: FN (may go un-detected)

INF 4300 3

Sensitivity and specificity

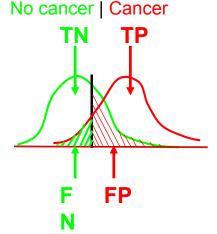
• Sensitivity:

the portion of the data set that tested positive out of all the positive patients tested:

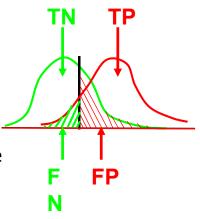
- Sensitivity = TP/(TP+FN)
- The probability that the test is positive given that the patient is sick.
- Higher sensitivity means that fewer decease cases go undetected.
- Specificity:

the portion of the data set that tested negative out of all the negative patients tested:

- Specificity = TN/(TN+FP)
- The probability that a test is negative given that the patient is not sick.
- Higher specificity means that fewer healthy patients are labeled as sick.



E.g., testing for cancer



INF 4300

Bayes classification with loss functions

- In cases where different classes have different importance (e.g. sick/healthy), we can incorporate this into a Bayesian classifier if we consider the loss.
- Let $\lambda(\alpha_i|\omega_j)$ be the loss if we decide class α_i if the true class is ω_i .
- The risk of deciding class α_i is then: $R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$
- To minimize the overall risk, compute $R(\alpha_i|x)$ for i=1...c and choose the class for which $R(\alpha_i|x)$ is minimum.

INF 4300 5

Outliers and doubt

- In a classification problem, we might want to identify outliers and doubt samples
- We might want an ideal classifier to report
 - 'this sample is from class l' (usual case)
 - 'this sample is not from any of the classes' (outlier)
 - 'this sample is too hard for me' (doubt/reject)
- The two last cases should lead to a rejection of the sample!

Outliers

- Heuristically defined as "... samples which did not come from the assumed population of samples"
- The outliers can result from some breakdown in preprocessing.
- Outliers can also come from pixels from other classes than the classes in the training data set.
 - Example: K tree species classes, but a few road pixels divide the forest regions.
- One way to deal with outliers is to model them as a separate class, e.g., a gaussian with very large variance, and estimate prior probability from the training data
- Another approach is to decide on some threshold on the aposteriori probability— and if a sample falls below this threshold for all classes, then declare it an outlier.

INF 4300 7

Doubt samples

- Doubt samples are samples for which the class with the highest probability is not significantly more probable than some of the other classes (e.g. two classes have essentially equal probability).
- Doubt pixels typically occurr on the border between two classes ("mixels")
 - Close to the decision boundary the probabilities will be almost equal.
- Classification software can allow the user to specify thresholds for doubt.

The training / test set dilemma

- Ideally we want to maximize the size of both the training and test dataset
- Obviously there is a fixed amount of available data with known labels
- A very simple approach is to separate the dataset in two random subsets
- For small sample sizes we may have to use another strategy: Cross-validation
- This is a good strategy when we have very few "ground truth" samples.
 - Common in medicine where we might have a small number of patients with a certain type of cancer.
 - The cost of obtaining more ground truth data might be so high that we have to do with a small number of ground truth samples.

INF 4300 9

Crossvalidation / Leave – n - Out

- A very simple (but computationally complex) idea allows us us to "fake" a large test set
 - Train the classifier on a set of *N-n* samples
 - Test the classifier on the *n* remaining samples
 - Repeat n/N times (dependent on subsampling)
 - Report average performance on the repeated experiments as "test set" error
- An example with leave-1-out and 30 samples:
 - Select one sample to leave out
 - Train on the remaining 29 samples
 - Classify the one sample and store its class label
 - Repeat this 30 times
 - Count the number of misclassifications among the 30 experiments.
- Leave-n-Out estimation generally overestimates the classification accuracy.
 - Feature selection should be performed within the loop, not in advance!!!
- Using a training set and a test set of approximately the same size is better.

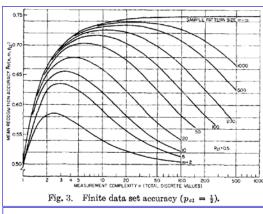
The covariance matrix and dimensionality

- Assume we have S classes and a d-dimensional feature vector.
- With a fully multivariate Gaussian model, we must estimate S different mean vectors and S different covariance matrices from training samples.
 - $\hat{\mu}_s$ has d elements
 - $\hat{\Sigma}_s$ has d(d+1)/2 elements
- Assume that we have M_s training samples from each class
- Given M_s, there is a maximum of the achieved classification performance for a certain value of d
 - increasing n beyond this limit will lead to worse performance.
- Adding more features is not always a good idea!
- Total number of samples given by a rule of thumb: M>10 d S
- If we have limited training data, we can use diagonal covariance matrices or regularization

INF 4300 11

The "curse" of dimensionality

- In practice, the curse means that, for a given sample size, there is a maximum number of features one can add before the classifier starts to degrade.
- For a finite training sample size, the correct classification rate initially increases when adding new features, attains a maximum and then begins to decrease.
- For a high dimensionality, we will need lots of training data to get the best performance.
- => ≈10 samples / feature / class.



Correct classification rate as function of feature dimensionality, for different amounts of training data.

Equal prior probabilities of the two classes is assumed.

Use few, but good features

- To avoid the "curse of dimensionality" we must take care in finding a set of relatively few features.
- A good feature has high within-class homogeneity, and should ideally have large between-class separation.
- In practise, one feature is not enough to separate all classes, but a good feature should:
 - separate some of the classes well
 - Isolate one class from the others.
- If two features look very similar (or have high correlation), they are often redundant and we should use only one of them.
- Class separation can be studied by:
 - Visual inspection of the feature image overlaid the training mask
 - Scatter plots
- Evaluating features as done by training can be difficult to do automatically, so manual interaction is normally required.

INF 4300 13

How do we beat the "curse of dimensionality"?

- Use regularized estimates for the Gaussian case
 - Use diagonal covariance matrices
 - Apply regularized covariance estimation
- Generate few, but informative features
 - Careful feature design given the application
- Reducing the dimensionality
 - Feature selection select a subset of the original features (more in INF5300)
 - Feature transforms compute a new subset of features based on a linear combination of all features (INF 5300)
 - Example 1: Principal component transform
 - Unsupervised, finds the combination that maximized the variance in the data.
 - Example 2: Fisher's linear discriminant
 - Supervised, finds the combination that maximizes the distance between the classes.

Regularized covariance matrix estimation

• Let the covariance matrix be a weighted combination of a class-specific covariance matrix Σ_k and a common covariance matrix Σ (estimated from training samples for all classes) :

$$\Sigma_{k}(\alpha) = \frac{(1-\alpha)n_{k}\Sigma_{k} + \alpha n\Sigma}{(1-\alpha)n_{k} + \alpha n}$$

where $0 \le \alpha \le 1$ must be determined, and n_k and n is the number of training samples for class k and overall.

• Alternatively:

$$\Sigma_{\nu}(\beta) = (1-\beta)\Sigma_{\nu} + \beta I$$

where the parameter $0 \le \beta \le 1$ must be determined.

- The effect of these are that we can use a quadratic classifier even if we have little training data/ill-conditioned $\Sigma_{\bf k}$
- We still have to be able to compute Σ_k, but the only the regularized/more robust Σ_k(α) or Σ_k(β) must be inverted.

INF 5300 15

Exhaustive feature selection

 If – for some reason – you know that you will use d out of D available features, an exhaustive search will involve a number of combinations to test:

$$n = \frac{D!}{(D-d)! d!}$$

 If we want to perform an exhaustive search through D features for the optimal subset of the d ≤ m "best features", the number of combinations to test is

$$n = \sum_{d=1}^{m} \frac{D!}{(D-d)! d!}$$

• Impractical even for a moderate number of features!

$$d \le 5$$
, $D = 100 = n = 79.374.995$

Suboptimal feature selection

- Select the best single features based on some quality criteria, e.g., estimated correct classification rate.
 - A combination of the best single features will often imply correlated features and will therefore be suboptimal.
- More in INF 5300
- "Sequential forward selection" implies that when a feature is selected or removed, this decision is final.
- "Stepwise forward-backward selection" overcomes this.
 - A special case of the "add a, remove r algorithm".
- Improved into "floating search" by making the number of forward and backward search steps data dependent.
 - "Adaptive floating search"
 - "Oscillating search".

INF 4300 17

Distance measures used in feature selection

- In feature selection, each feature combination must be ranked based on a criterion function.
- Criteria functions can either be distances between classes, or the classification accuracy on a validation test set.
- If the criterion is based on e.g. the mean values/covariance matrices for the training data, distance computation is fast.
- Better performance at the cost of higher computation time is found when the classification accuracy on a validation data set (different from training and testing) is used as criterion for ranking features.
 - This will be slower as classification of the validattion data needs to be done for every combination of features.

INF 5300 18

Distance measures between classes

- How do be compute the distance between two classes:
 - Distance between the closest two points?
 - Maximum distance between two points?
 - Distance between the class means?
 - Average distance between points in the two classes?
 - Which distance measure?
 - · Euclidean distance or Mahalanobis distance?
- Distance between K classes:
 - How do we generalize to more than two classes?
 - Average distance between the classes?
 - Smallest distance between a pair of classes?

INF 5300 19

Class separability measures

- How do we get an indication of the separability between two classes?
 - Euclidean distance between class means $|\mu_r \mu_s|$
 - Bhattacharyya distance
 - Can be defined for different distributions
 - For Gaussian data, it is

$$B = \frac{1}{8} (\mu_r - \mu_s)^T \left(\frac{\Sigma_r + \Sigma_s}{2} \right)^{-1} (\mu_r - \mu_s) + \frac{1}{2} \ln \frac{\left| \frac{1}{2} (\Sigma_r + \Sigma_s) \right|}{\sqrt{|\Sigma_r||\Sigma_s|}}$$

Mahalanobis distance between two classes:

$$\Delta = (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2)$$

$$\Sigma = N_1 \Sigma_1 + N_2 \Sigma_2$$

INF 5300 20

Examples of feature selection from INF 5300 - Method 1 - Individual feature selection

- Each feature is treated individually (no correlation/covariance between features is consideren)
- Select a criteria, e.g. a distance measure
- Rank the feature according to the value of the criteria C(k)
- Select the set of features with the best individual criteria value
- Multiclass situations:
 - Average class separability or
 - − C(k) = min distance(i,j) worst caseOften used
- Advantage with individual selection: computation time
- Disadvantage: no correlation is utilized.

INF 4300 21

Method 2 - Sequential backward selection

- Select I features out of d
- Example: 4 features x_1, x_2, x_3, x_4
- Choose a criterion C and compute it for the vector $[x_1,x_2,x_3,x_4]^T$
- Eliminate one feature at a time by computing $[x_1,x_2,x_3]^T$, $[x_1,x_2,x_4]_T$, $[x_1,x_3,x_4]^T$ and $[x_2,x_3,x_4]^T$
- Select the best combination, say [x₁,x₂,x₃]^T.
- From the selected 3-dimensional feature vector eliminate one more feature, and evaluate the criterion for $[x_1,x_2]^T$, $[x_1,x_3]_T$, $[x_2,x_3]^T$ and select the one with the best value.
- Number of combinations searched:
 1+1/2((d+1)d-l(l+1))

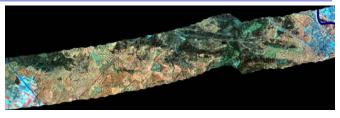
Method 3: Sequential forward selection

- Compute the criterion value for each feature. Select the feature with the best value, say x₁.
- Form all possible combinations of features x1 (the winner at the previous step) and a new feature, e.g. [x₁,x₂]^T, [x₁,x₃]^T, [x₁,x₄]^T, etc. Compute the criterion and select the best one, say [x₁,x₃]^T.
- Continue with adding a new feature.
- Number of combinations searched: Id-I(I-1)/2.
 - Backwards selection is faster if I is closer to d than to 1.

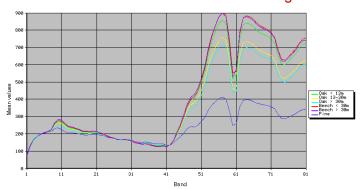
INF 4300 23

Hyperspectral image example

- A hyperspectral image from France
- 81 features/spectral bands
- 6 classes (tree species)
- μ has 81 parameters to compute for each class
- Σ has 81*80/2=3240 parameters for each class.
- 1000 training samples for each class.
- Test set: 1000-2000 samples for each class.

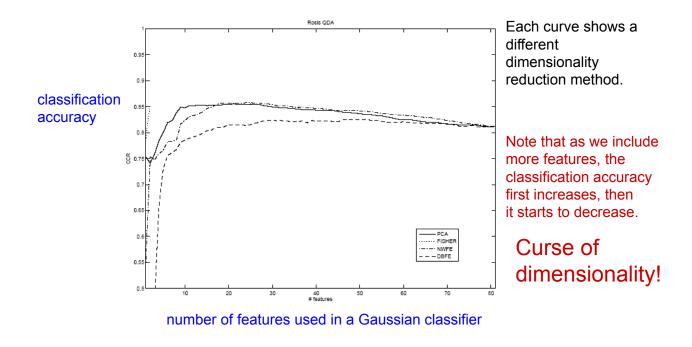


3 of the 81 bands shown as RGB image



Plots of the 81 mean values for each class

Hyperspectral example classification accuracy vs. nof. features on test set

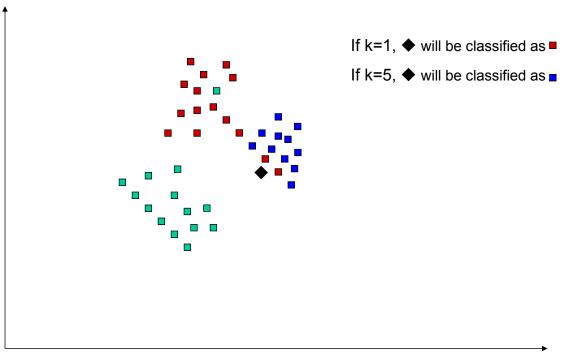


INF 4300 25

k-Nearest-Neighbor classification

- A very simple classifier.
- Classification of a new sample x_i is done as follows:
 - Out of N training vectors, identify the k nearest neighbors (measured by Euclidean distance) in the training set, irrespectively of the class label.
 - Out of these k samples, identify the number of vectors k_i that belong to class ω_i , i:1,2,...M (if we have M classes)
 - Assign x_i to the class ω_i with the maximum number of k_i samples.
- k should be odd, and must be selected a priori.

kNN-example



INF 4300 27

About kNN-classification

- If k=1 (1NN-classification), each sample is assigned to the same class as the closest sample in the training data set.
- If the number of training samples is very high, this can be a good rule.
- If k->∞, this is theoretically a very good classifier.
- This classifier involves no "training time", but the time needed to classify one pattern x_i will depend on the number of training samples, as the distance to all points in the training set must be computed.
- "Practical" values for k: 3<=k<=9
- Classification performance should always be computed on the test data set.

Supervised or unsupervised classification

- Supervised classification
 - Classify each object or pixel into a set of k known classes
 - Class parameters are estimated using a set of training samples from each class.
- Unsupervised classification
 - Partition the feature space into a set of k clusters
 - k is not known and must be estimated (difficult)
- In both cases, classification is based on the value of the set of n features $x_1, ..., x_n$.
- The object is classified to the class which has the highest posterior probability.
- "The clusters we get are not the classes we want".

INF 4300 29

Unsupervised classification/clustering

- Divide the data into clusters based on similarity (or dissimilarity)
- Similarity or dissimilarity is based on distance measures (sometimes called proximity measures)
 - Euclidean distance, Mahalanobis distance etc.
- Two main approaches to clustering
 - hierarchicalnon-hierarchical(sequential)
 - divisive
 - agglomerative
- Non-hierarachical methods are often used in image analysis

K-means clustering

- Note: K-means algorithm normally means ISODATA, but different definitions are found in different books
- K is assumed to be known
- 1. Start with assigning K cluster centers
 - k random data points, or the first K points, or K equally spaces points
 - For k=1:K, Set μ_k equal to the feature vector x_k for these points.
- 2. Assign each object/pixel x_i in the image to the closest cluster center using Euclidean distance.
 - Compute for each sample the distance r2 to each cluster center:

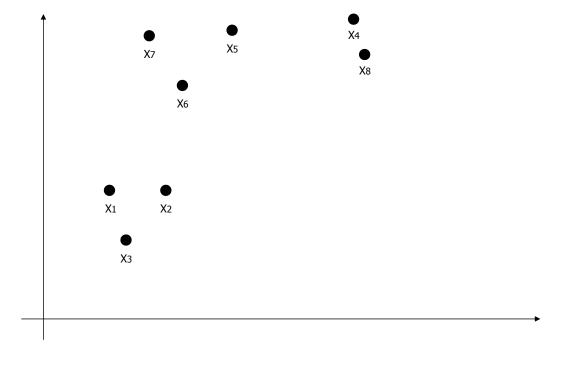
$$r^2 = (x_i - \mu_k)^T (x_i - \mu_k) = \|x_i - \mu_k\|^2$$
 Assign x_i to the closest cluster (with minimum r value)

- 3. Recompute the cluster centers based on the new labels.
- Repeat from 2 until #changes<limit.

ISODATA K-means: splitting and merging of clusters are included in the algorithm

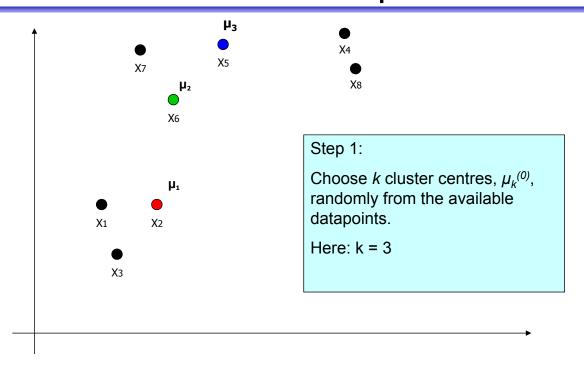
> **INF 4300** 31

k-means example



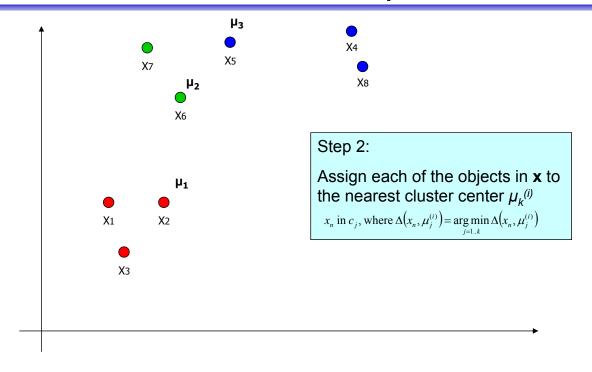
32 **INF 4300**

k-means example

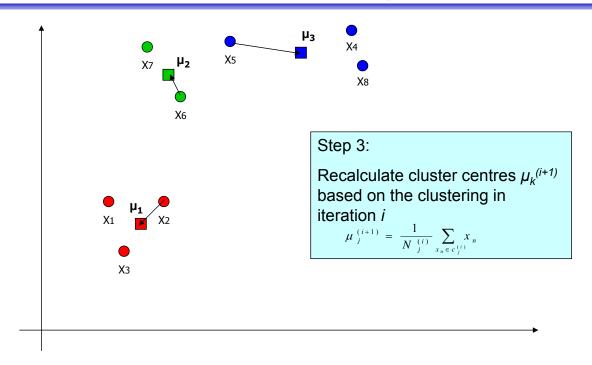


INF 4300 33

k-means example

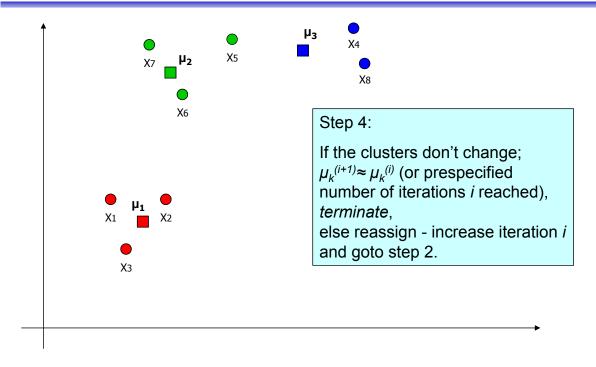


k-means example

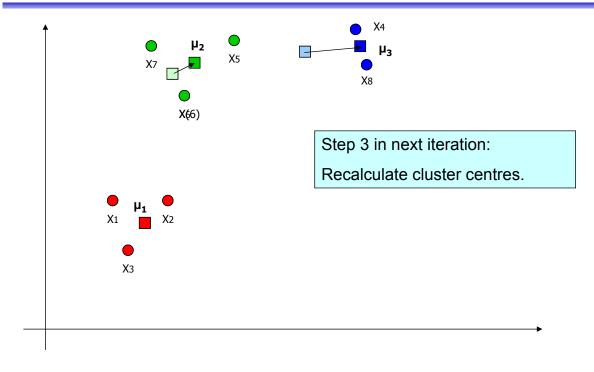


INF 4300 35

k-means example



k-means example



INF 4300 37

k-means variations

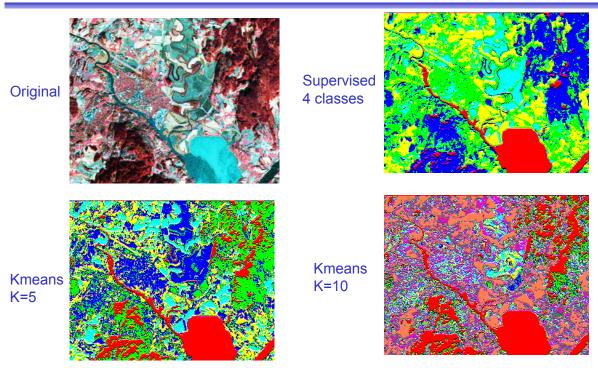
- The generic algorithm has many improvements
 - ISODATA allow for merging and splitting of clusters
 - Among other things, this seeks to improve an initial "bad" choice of *k*
 - k-medians is another variation
 - k-means optimizes a probabilistic model

How do we determine k?

- The number of natural clusters in the data rarely corresponds to the number of information classes of interest.
- Cluster validity indices can give indications of how many clusters there are.
- Use cluster merging or splitting tailored to the application.
- Rule of thumb for practical image clustering:
 - start with approximately twice as many clusters as expected information classes
 - determine which clusters correspond to the information classes
 - split and merge clusters to improve.

INF 4300 39

Example: K-means clustering

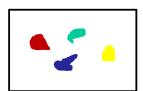


Learning goals for this lecture

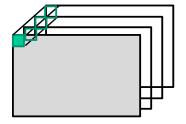
- Understand how different measures of classification accuracy work:
 - Confusion matrix
 - Sensitivity/specifity/TP/TN/FP/FN
 - Average classification accuracy
- Be familiar with the curse of dimensionality and the importance of selecting few, but good features
- Know simple forward and backward feature selection.
- Understand kNN-classification
- Understand the difference between supervised and unsupervised classification
- Understand the Kmeans-algorithm.

INF 4300 41

- x_i feature vector for pixel i
- ω_{i-} The class label for pixel i
- K the number of classes given in the training data



Mask with training pixels



Multiband image with n spectral channels or features

$$p(\mathbf{x} \mid \omega_s) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}_s|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_s)^t \mathbf{\Sigma}_s^{-1} (\mathbf{x} - \boldsymbol{\mu}_s) \right]$$