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Repetition -Erosion of a binary image
Simplified notation

• To compute the erosion  of pixel (x,y) in 
image f with the structuring element S:  
place the structuring elements such that 
its origo is at (x,y). Compute

• Erosion of the image f with structuring 
element S is denoted     

ε (f|S) = f ө S

• Erosion of a set A with the stucturing 
element B is defined as the position of all 
pixels x in A such that B is included in A 
when origo of B is at x.
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
otherwise 0

f fits S if 1
),( yxg

 ABxBA x   

gives
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Dilation of a binary image

• Place S such that origo lies in pixel (x,y) 
and use the rule

• The image  f dilated by the structuring 
element S is denoted:  

• Dilation of a set A with a structuring 
element B is defined as the position of all 
pixels x such that B overlaps with at least 
one pixel in A when the origin is placed 
at x.
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1 1 1

1 1 1

Dilated by

gives

0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 1 1 0
0 1 1 1 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 0 1 1 1 0
0 0 1 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0

0 1 0
1 1 1
0 1 0

0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0
0 0 0 1 1 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 0 0
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
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Opening
• Erosion of an image removes all structures that the structuring element 

can not fit inside, and shrinks all other structures.

• Dilating the result of the erosion with the same structuring element, 
the structures that survived the erosion (were shrunken, not deleted) 
will be restored. 

• This is called morphological opening:

• The name tells that the operation can create an opening between 
two structures that are connected only in a thin bridge, 
without shrinking the structures (as erosion would do).

  SfSf  Sθ
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Closing
• A dilation of an object grows the object and can fill gaps.

• If we erode the result with the rotated structuring element, 
the objects will keep their structure and form, 
but small holes filled by dilation will not appear. 

• Objects merged by the dilation will not be separated again.

• Closing is defined as 

• This operation can close gaps between two structures 
without growing the size of the structures like dilation would.

  SfSf ˆθŜ
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Gray level morphology

• We apply a simplified definition of morphological operations 
on gray level images
– Grey-level erosion, dilation, opening, closing

• Image f(x,y)
• Structuring element b(x,y)

– Nonflat or flat
• Assume symmetric, flat structuring element, origo at center 

(this is sufficient for normal use). 
• Erosion and dilation then correspond to local minimum and maximum 

over the area defined by the structuring element
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Interpretation of grey-level 
opening and closing

• Intensity values are interpreted as 
height curves over the (x,y)-plane.

• Opening of f by b: 
Push the structuring element up 
from below towards the curve f. 
The value assigned is the highest 
level b can reach. 

smooths bright values down.

• Closing: 
Push the structuring element down 
from above towards the curve f. 

smooths dark values upwards.
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Top-hat transformation
• Purpose: detect (or remove) structures of a certain size.
• Top-hat: detects light objects on a dark background 

– also called white top-hat.
• Bottom-hat: detects dark objects on a bright background 

– also called black top-hat.
• Top-hat:

• Bottom-hat: 

• Very useful for correcting uneven illumination/objects 
on a varying background 

)( bff 

fbf  )(
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Example – top-hat

Original, un-even
background

Global thresholding 
using Otsu’s method.

Objects in the lower right
corner disappear.
Misclassification of 
background in upper left 
corner.

Opening with a 40x40
structuring element

removes objects and
gives an estimate of the

background

Top-hat transform
(original – opening)

Top-hat, thresholded
with global threshold
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Learning goals - morphology
• Understand in detail binary morphological operations 

and selected applications:
– Basic operators (erosion, dilation, opening, closing)

• Understand the mathematical definition, 
perform them ”by hand” on new objects

– Applications of morphology: 
• edge detection, connected components, convex hull etc. 
• Verify the examples in the book 

• Grey-level morphology: 
– Understand how grey-level erosion and dilation 

(and opening and closing) works.
– Understand the effect these operations have on images.
– Understand top-hat, bottom-hat and what they are used for. 

10INF 4300



Two correlated features – features align on a line
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Mean vectors and covariance matrices 
in N dimensions

• If f(x) is a n-dimensional feature vector, we can formulate its 
mean vector and covariance matrix as:

with n features, the mean vector  will be of size 1xn and  or 
size nxn.

• The matrix will be symmetric as kl= lk
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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes.  is the class label for a 
pixel, and x is the observed  gray level (or feature vector).  

• We can use Bayes rule to find an expression for the class with 
the highest probability:

• For thresholding, P(j) is the prior probability for background or 
foreground. If we don't have special knowledge that one of the 
classes occur more frequent than other classes, we set them 
equal for all classes. (P(j)=1/J, j=1.,,,J).

• Small p means a probability distribution
• Capital P means a probability (scalar value between 0 and 1)
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xp

Pxp
xP jj

j


 

factor gnormalizin

yprobabilitprior 
yprobabilitposterior  




likelihood

Probability of error 
• If we have 2 classes, we make an error either if we 

decide 1 if the true class is 2 if we decide 2 if the 
true class is 1.

• If P(1|x) > P(2|x) we have more belief that x 
belongs to 1, and we decide 1.

• The probability of error is then:
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Back to classification error for thresholding

- Background - Foreground

In this region, foreground pixels 
are misclassified as background In this region, background pixels are

misclassified as foreground










 dxxpxerrorPdxxerrorPerrorP )()|(),()(

Minimizing the error

• When we derived the optimal threshold, we showed 
that the minimum error was achieved for placing the 
threshold (or decision boundary as we will call it 
now) at the point where 

P(1|x) = P(2|x)
• This is still valid. 

INF 4300 16










 dxxpxerrorPdxxerrorPerrorP )()|(),()(



INF 3300 17

Bayes decision rule
• In the 2 class case, our goal of minimizing the error 

implies a decision rule:
Decide ω1 if P(ω1|x)>P(ω2|x);  otherwise ω2 

• For J classes, the rule analogusly extends to choose 
the class with maximum a posteriori probability

• The decision boundary is the”border” between 
classes i and j, simply where P(ωi|x)=P(ωj|x) 
– Exactly where the threshold was set in minimum error 

thresholding!

Discriminant functions 
• The decision rule

can be written as assign x to 1 if

• The classifier computes J discriminant functions gi(x) 
and selects the class corresponding to the largest 
value of the discriminant function. 

• Since classification consists of choosing the class that 
has the largest value, a scaling of the discriminant 
function gi(x) by f(gi(x)) will not effect the decision if 
f is a monotonically increasing function.

• This can lead to simplifications as we will soon see.
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Equivalent discriminant 
functions

• The following choices of discriminant functions give 
equivalent decisions:

• The effect of the decision rules is to divide the feature space 
into c decision regions R1,......Rc.

• If gi(x)>gj(x) for all ji, then x is in region Ri.
• The regions are separated by decision boundaries, surfaces in 

features space where the discriminant functions for two classes 
are equal 
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The conditional density p(x| s)
• Any probability density function can be used to model p(x| s) 
• A common model is the multivariate Gaussian density.
• The multivariate Gaussian density:

• If we have d features, s is a vector of length d and and s a dd 
matrix (depends on class s)

• |s| is the determinant of the matrix s,  and s
-1 is the inverse
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Inspecting p(x|s)
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The mean  vectors s for each class   
• The mean vector for class s is defined as the expected value of 

x:

• with d features, the mean vector  will be of size 1xd.
• If we have Ms training samples that we know belong to class s, 

we can estimate the mean vector as:
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The covariance  matrix s for each class   
• The covariance for class s is defined as the expected value of (x-)(x- )t:

• with d features, the covariance matrix s will be of size dxd.
• If we have Ms training samples that we know belong to class s, we can estimate the 

covariance matrix s . (The estimate of a random variable  f is denoted    ) 

• Each term ij is computed as:
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More on the covariance  matrix s

• The covariance matrix s will always be symmetric and positive 
semidefinite. 

• If all components of x have non-zero variance, s will be positive 
definite. 

• ij is the covariance between features i and j. 
• If features xi and x j are uncorrelated, ij = 0.
• In the general case, s will have d(d+1)/2 different values.
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A 2D Gaussian model

• Parameters μ and Σ define a density 
as a ”bump”

• The curves on the plot are contours 
of equal probability, just as the 
contours on a map

• The matrix Σ in this case has three 
different elements, variance in each 
of the axes, and covariance between 
the axes

• 11
2 is the variance for feature 1

• 12=21 is the covariance between 
feature 1 and 2

• 22
2 is the variance for feature 2
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The covariance matrix and ellipses
• In 2D, the Gaussian model can be 

thought of as approximating the classes in 
2D feature space with ellipses.

• The mean vector =[1, 2] defines the 
the center point of the ellipses.

• 12, the covariance between the features 
defines the orientation of the ellipse.

• 11 and 22 defines the width of the 
ellipse. 

• The ellipse defines points where the 
probability density is equal

– Equal in the sense that the distance to the 
mean as computed by the Mahalanobis 
distance is equal.

– The Mahalanobis distance between a point 
x and the class center  is:









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2221

1211




S

      xxr T 12
The main axes of the ellipse 

is determined by the 
eigenvectors of .

The eigenvalues of  gives 
their length.
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Euclidean distance vs. 
Mahalanobis distance

• Euclidean distance 
between point x and class 
center :

• Mahalanobis distance 
between x and :

    2  xxx T

      xxr T 12



Points with equal 
distance to  lie on a 

circle.

Points with equal 
distance to  lie on an 

ellipse.

Discriminant functions
for the normal density

• We saw last lecture that the minimum-error-rate classification 
can be computed using the discriminant functions 

• With a multivariate Gaussian we get:

• Let ut look at this expression for some special cases: 
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Case 1: Σj=σ2I
• The discriminant functions simplifies to linear functions using 

such a shape on the probability distributions
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Case 1: Σj=σ2I
• Now we get an equivalent formulation of the discriminant functions:

• An equation for the decision  boundary  gi(x)=gj(x) can be written as

• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 

orthogonal to w. 
• If P(i)=P(j) the hyperplane will be located halfway between the 

mean values.
• Proving this involves some algebra, see the proof at 

https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm
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• If the features were indepenent (Σj=σ2I) 
the discriminant function was simplified to: 

• This results in linear decision boundaries.
• Computing this discriminant function to 

classify pattern xi involves computing the 
distance from the point to the mean values 
s for each class. 
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• The discriminant function (when 
Σj=σ2I) that defines the border 
between class 1 and 2 in the feature 
space is a straight line.

• The discriminant function intersects the 
line connecting the two class means at 
the point x0=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the 
means. 

1

2

xi

x0

Decision boundary
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Case 2: Common covariance, Σj= Σ

• If we assume that all classes have the same shape of data 
clusters, an intuitive model is to assume that their probability 
distributions have the same shape

• By this assumption we can use all the data to estimate the 
covariance matrix

• This estimate is common for all classes, and this means that 
also in this case the discriminant functions become linear 
functions
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Since xTx is common for all classes, gj(x) again reduces to 

a linear function of x.
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Case 2: Common covariance, Σj= Σ
• An equivalent formulation of the discriminant functions is

• The decision boundaries are again hyperplanes.
• The decision boundary has the equation:

• Because wi= Σ-1(i- j) is not in the direction of (i- j), the hyperplane
will not be orthogonal to the line between the means.
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Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of 
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries 

just by looking at the mean and covariance. 
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Confusion matrices
• A matrix with the true class label versus the estimated 

class labels for each class
Estimated class labels

T
rue class labels

Class 1 Class 2 Class 3 Total # of 
samples

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450
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True / False  positives / 
negatives

• True positive  (TP):
Patient has cancer 

and test result is positive.

• True negative (TN):
A healthy patient

and a negative test result.

• False positive (FP):
Healthy patient that gets a positive test result.

• False negative (FN):
Cancer patient that gets a negative test result.

• Good to have: TP & TN
• Bad to have: FP (but this will probably be detected)
• Worst to have: FN  (may go un-detected)

TP

F
N

TN

FP

E.g., testing for cancer
No cancer | Cancer
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Sensitivity and specificity

• Sensitivity:
the portion of the data set that tested positive 
out of all the positive patients tested: 

• Sensitivity = TP/(TP+FN)
• The probability that the test is positive 

given that the patient is sick. 

• Higher sensitivity means that 
fewer decease cases go undetected.

• Specificity:
the portion of the data set that tested negative 
out of all the negative patients tested:

• Specificity = TN/(TN+FP)
• The probability that a test is negative 

given that the patient is not sick.

• Higher specificity means that 
fewer healthy patients  are labeled as sick.

TP

F
N

TN

FP



INF 4300 39

Outliers and doubt
• In a classification problem, we might want to identify  

outliers and doubt samples

• We might want an ideal classifier to report
– ’this sample is from class l’ (usual case)
– ’this sample is not from any of the classes’ 

(outlier)
– ’this sample is too hard for me’ (doubt/reject)

• The two last cases should lead to 
a rejection of the sample!
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The covariance matrix and dimensionality

• Assume we have S classes and a d-dimensional feature vector.
• With a fully multivariate Gaussian model, we must estimate S 

different mean vectors  and S different covariance matrices 
from training samples.

• Assume that we have Ms training samples from each class
• Given Ms, there is a maximum of the achieved classification 

performance for a certain value of d 
– increasing n beyond this limit will lead to worse performance.

• Adding more features is not always a good idea!

• Total number of samples given by a rule of thumb:  M>10 d S

• If we have limited training data, 
we can use diagonal covariance matrices or regularization

s̂ has d elements

s̂ has d(d+1)/2 elements
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The ”curse” of dimensionality
– In practice, the curse means that, for a given sample size, 

there is a maximum number of features one can add before 
the classifier starts to degrade.

• For a finite training sample size, 
the correct classification rate 
initially increases when adding 
new features, attains a maximum 
and then begins to decrease.

• For a high dimensionality, 
we will need lots of training data 
to get the best performance.

• => ≈10 samples / feature / class.

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

of the two classes is assumed.

Use few, but good features

• To avoid the ”curse of dimensionality” we must take care in finding 
a set of relatively few features.

• A good feature has high within-class homogeneity, 
and should ideally have large between-class separation.

• In practise, one feature is not enough to separate all classes, 
but a good feature should:
– separate some of the classes well
– Isolate one class from the others. 

• If two features look very similar (or have high correlation), 
they are often redundant and we should use only one of them. 

• Class separation can be studied by:
– Visual inspection of the feature image overlaid the training mask
– Scatter plots 

• Evaluating features as done by training can be difficult to do automatically, 
so manual interaction is normally required. 
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How do we beat the ”curse of dimensionality”?

• Use regularized estimates for the Gaussian case 
– Use diagonal covariance matrices
– Apply regularized covariance estimation 

• Generate few, but informative features
– Careful feature design given the application

• Reducing the dimensionality
– Feature selection – select a subset of the original features (more in 

INF5300)
– Feature transforms – compute a new subset of features based on a 

linear combination of all features (INF 5300)

• Example 1: Principal component transform 
– Unsupervised, finds the combination that maximized 

the variance in the data. 
• Example 2: Fisher’s linear discriminant 

– Supervised, finds the combination that maximizes 
the distance between the classes.  
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Distance measures used in feature 
selection

• In feature selection, each feature combination must be ranked 
based on a criterion function. 

• Criteria functions can either be distances between classes, or 
the classification accuracy on a validation test set. 

• If the criterion is based on e.g. the mean values/covariance 
matrices for the training data, distance computation is fast. 

• Better performance at the cost of higher computation time is 
found when the classification accuracy on a validation data set 
(different from training and testing) is used as criterion for 
ranking features. 
– This will be slower as classification of the validattion data needs to be done 

for every combination of features. 
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Distance measures between classes 

• How do be compute the distance between two classes:
– Distance between the closest two points?
– Maximum distance between two points?
– Distance between the class means?
– Average distance between points in the two classes?
– Which distance measure?

• Euclidean distance or Mahalanobis distance?

• Distance between K classes:
– How do we generalize to more than two classes?
– Average distance between the classes?
– Smallest distance between a pair of classes?
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Class separability measures
• How do we get an indication of the separability 

between two classes?
– Euclidean distance between class means |r- s|
– Bhattacharyya distance

• Can be defined for different distributions
• For Gaussian data, it is

– Mahalanobis distance between two classes:
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Method 2 - Sequential backward selection

• Select l features out of d
• Example: 4 features x1,x2,x3,x4

• Choose a criterion C and compute it for the vector [x1,x2,x3,x4]T

• Eliminate one feature at a time by computing [x1,x2,x3]T, 
[x1,x2,x4]T, [x1,x3,x4]T and [x2,x3,x4]T

• Select the best combination, say [x1,x2,x3]T.

• From the selected 3-dimensional feature vector eliminate one 
more feature, and evaluate the criterion for [x1,x2]T, [x1,x3]T, 
[x2,x3]T and select the one with the best value.

• Number of combinations searched: 
1+1/2((d+1)d-l(l+1))
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Method 3: Sequential forward selection

• Compute the criterion value for each feature. Select the 
feature with the best value, say x1.

• Form all possible combinations of features x1 (the winner at 
the previous step) and a new feature, e.g. [x1,x2]T, [x1,x3]T, 
[x1,x4]T, etc. Compute the criterion and select the best one, 
say [x1,x3]T.

• Continue with adding a new feature.
• Number of combinations searched: ld-l(l-1)/2.

– Backwards selection is faster if l is closer to d than to 1. 
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k-Nearest-Neighbor 
classification

• A very simple classifier.
• Classification of a new sample xi is done as follows: 

– Out of N training vectors, identify the k nearest neighbors 
(measured by Euclidean distance) in the training set, 
irrespectively of the class label.    

– Out of these k samples, identify the number of vectors ki
that belong to class i , i:1,2,....M (if we have M classes)

– Assign xi to the class i with the maximum number of ki
samples. 

• k should be odd, and must be selected a priori. 
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K-means clustering 

• Note: K-means algorithm normally means ISODATA, but different 
definitions are found in different books

• K is assumed to be known
1. Start with assigning K cluster centers

– k random data points, or the first K points, or K equally spaces points
– For k=1:K, Set k equal to the feature vector xk for these points.

2. Assign each object/pixel xi in the image to the closest cluster center 
using Euclidean distance.
• Compute for each sample the distance r2 to each cluster center:

• Assign xi to the closest cluster (with minimum r value) 

3. Recompute the cluster centers based on the new labels.
4. Repeat from 2 until #changes<limit.

ISODATA K-means: splitting and merging of clusters are included in 
the algorithm
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