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Back to classification error for thresholding

- Background - Foreground

In this region, foreground pixels 
are misclassified as background In this region, background pixels are

misclassified as foreground
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Minimizing the error

• When we derived the optimal threshold, we showed 
that the minimum error was achieved for placing the 
threshold (or decision boundary as we will call it 
now) at the point where 

P(1|x) = P(2|x)
• This is still valid. 
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Discriminant functions 
• The decision rule

can be written as assign x to 1 if

• The classifier computes J discriminant functions gi(x) 
and selects the class corresponding to the largest 
value of the discriminant function. 

• Since classification consists of choosing the class that 
has the largest value, a scaling of the discriminant 
function gi(x) by f(gi(x)) will not effect the decision if 
f is a monotonically increasing function.

• This can lead to simplifications as we will soon see.
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Equivalent discriminant 
functions

• The following choices of discriminant functions give 
equivalent decisions:

• The effect of the decision rules is to divide the feature space 
into c decision regions R1,......Rc.

• If gi(x)>gj(x) for all ji, then x is in region Ri.
• The regions are separated by decision boundaries, surfaces in 

features space where the discriminant functions for two classes 
are equal 
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The conditional density p(x| 
s)

• Any probability density function can be used to model p(x| s) 
• A common model is the multivariate Gaussian density.
• The multivariate Gaussian density:

• If we have d features, s is a vector of length d and and s a dd 
matrix (depends on class s)

• |s| is the determinant of the matrix s,  and s
-1 is the inverse
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ii is the variance of feature i
ij is the covariance between
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Symmetric because ij = ji
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The covariance matrix and ellipses
• In 2D, the Gaussian model can be 

thought of as approximating the classes in 
2D feature space with ellipses.

• The mean vector =[1, 2] defines the 
the center point of the ellipses.

• 12, the covariance between the features 
defines the orientation of the ellipse.

• 11 and 22 defines the width of the 
ellipse. 

• The ellipse defines points where the 
probability density is equal

– Equal in the sense that the distance to the 
mean as computed by the Mahalanobis 
distance is equal.

– The Mahalanobis distance between a point 
x and the class center  is:
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The main axes of the ellipse 

is determined by the 
eigenvectors of .

The eigenvalues of  gives 
their length.
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Euclidean distance vs. 
Mahalanobis distance

• Euclidean distance 
between point x and class 
center :

• Mahalanobis distance 
between x and :

    2  xxx T
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

Points with equal 
distance to  lie on a 

circle.

Points with equal 
distance to  lie on an 

ellipse.



Discriminant functions
for the normal density

• We saw last lecture that the minimum-error-rate classification 
can be computed using the discriminant functions 

• With a multivariate Gaussian we get:

• Let ut look at this expression for some special cases: 
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Case 1: Σj=σ2I
• The discriminant functions simplifies to linear functions using 

such a shape on the probability distributions
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• The discriminant function (when 
Σj=σ2I) that defines the border 
between class 1 and 2 in the feature 
space is a straight line.

• The discriminant function intersects the 
line connecting the two class means at 
the point x0=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the 
means. 

1

2

xi

x0

Decision boundary
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Case 2: Common covariance, Σj= Σ
• An equivalent formulation of the discriminant functions is

• The decision boundaries are again hyperplanes.
• The decision boundary has the equation:

• Because wi= Σ-1(i- j) is not in the direction of (i- j), the hyperplane 
will not be orthogonal to the line between the means.
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Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of 
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries 

just by looking at the mean and covariance. 
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Distance measures used in feature 
selection

• In feature selection, each feature combination must be ranked 
based on a criterion function. 

• Criteria functions can either be distances between classes, or 
the classification accuracy on a validation test set. 

• If the criterion is based on e.g. the mean values/covariance 
matrices for the training data, distance computation is fast. 

• Better performance at the cost of higher computation time is 
found when the classification accuracy on a validation data set 
(different from training and testing) is used as criterion for 
ranking features. 
– This will be slower as classification of the validattion data needs to be done 

for every combination of features. 
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Method 2 - Sequential backward selection

• Select l features out of d
• Example: 4 features x1,x2,x3,x4

• Choose a criterion C and compute it for the vector [x1,x2,x3,x4]T

• Eliminate one feature at a time by computing [x1,x2,x3]T, 
[x1,x2,x4]T, [x1,x3,x4]T and [x2,x3,x4]T

• Select the best combination, say [x1,x2,x3]T.

• From the selected 3-dimensional feature vector eliminate one 
more feature, and evaluate the criterion for [x1,x2]T, [x1,x3]T, 
[x2,x3]T and select the one with the best value.

• Number of combinations searched: 
1+1/2((d+1)d-l(l+1))
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Method 3: Sequential forward selection

• Compute the criterion value for each feature. Select the 
feature with the best value, say x1.

• Form all possible combinations of features x1 (the winner at 
the previous step) and a new feature, e.g. [x1,x2]T, [x1,x3]T, 
[x1,x4]T, etc. Compute the criterion and select the best one, 
say [x1,x3]T.

• Continue with adding a new feature.
• Number of combinations searched: ld-l(l-1)/2.

– Backwards selection is faster if l is closer to d than to 1. 
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k-Nearest-Neighbor 
classification

• A very simple classifier.
• Classification of a new sample xi is done as follows: 

– Out of N training vectors, identify the k nearest neighbors 
(measured by Euclidean distance) in the training set, 
irrespectively of the class label.    

– Out of these k samples, identify the number of vectors ki
that belong to class i , i:1,2,....M (if we have M classes)

– Assign xi to the class i with the maximum number of ki
samples. 

• k should be odd, and must be selected a priori. 
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K-means clustering 

• Note: K-means algorithm normally means ISODATA, but different 
definitions are found in different books

• K is assumed to be known
1. Start with assigning K cluster centers

– k random data points, or the first K points, or K equally spaces points
– For k=1:K, Set k equal to the feature vector xk for these points.

2. Assign each object/pixel xi in the image to the closest cluster center 
using Euclidean distance.
• Compute for each sample the distance r2 to each cluster center:

• Assign xi to the closest cluster (with minimum r value) 

3. Recompute the cluster centers based on the new labels.
4. Repeat from 2 until #changes<limit.

ISODATA K-means: splitting and merging of clusters are included in 
the algorithm
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INF 4300 
Linear feature transforms

Anne Solberg (anne@ifi.uio.no)

Today: 

• Feature transformation through principal 
component analysis 

• Fisher’s linear discriminant function
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Definitions: Correlation matrix vs. 
covariance matrix

• x is the covariance matrix of x

• Rx is the correlation matrix of x

• Rx=x if x=0. 

   T
x xxE  

   T
x xxER 
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Principal component or
Karhunen-Loeve transform

• Let x be a feature vector.
• Features are often correlated, which might lead to 

redundancies.
• We now derive a transform which yields uncorrelated 

features.
• We seek a linear transform y=ATx, and the yis should be 

uncorrelated. 
• The yis are uncorrelated if E[y(i)y(j)T]=0, ij.
• If we can express the information in x using uncorrelated 

features, we might need fewer coefficients.

Variance of y1
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Variance along 
directions from 0 to 

180 degrees



Variance of y1 cont.
• Assume mean of x is subtracted 
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Called σ2
w on some 

slides

The sample covariance matrix / scatter matrix; R

Criterion function

• Goal: Find transform minimizing representation error

• We start with a single weight-vector, w, giving us a 
single feature, y1

• Let J(w) = wTRw = σw
2

• Now, let’s find
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As we learned on the 
previous slide, 

maximizing this is 
equivalent to 

minimizing 
representation error



Principal component transform (PCA)

• Place the m «principle» eigenvectors (the ones with the largest 
eigenvalues) along the columns of A

• Then the transform y = ATx gives you the m first principle 
components

• The m-dimensional y
– have uncorrelated elements
– retains as much variance as possible
– gives the best (in the mean-square sense) description of the 

original data (through the «image»/projection/reconstruction Ay)
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PCA is also known 
as Karhunen-Loeve 

transform

Note: The eigenvectors 
themselves can often give 

interesting information

PCA and rotation and «whitening»
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If we use all eigenvectors in 
the transform, y = Atx, we 

simply rotate our data so that 
our new features are 

uncorrelated, i.e., cov(y) is a 
diagonal matrix.

If we as a next step 
scale each feature by 

their σ-1, 
y = D(-1/2)Atx, where 

D is a diagonal 
matrix of eigenvalues 

(i.e., variances), we 
get cov(y)=I.  We say 

that we have 
«whitened» the data.

Note: Uncorrelated variables need not appear round/spherical:



Example cont: Inspecting the eigenvalues
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Plotting    s will give 
indications on how 

many features are 
needed  for 

representation 
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The mean-square 
representation error we get with 
m of the N PCA-components is 

given as

PCA and classification

• Reduce overfitting by detecting directions/components 
without any/very little variance

• Sometimes high variation means useful features for 
classification:

• .. and sometimes not:
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Intro to Fisher’s linear discriminant

Fisher’s LDA
(supervised)

PCA
(unsupervised)
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Criterion function - a first attempt

• To find a good projection vector for classification, we need to define a 
measure of separation between the projections. This will be the criterion 
function J(w)

• A naive choice would be projected mean difference,                             ,
s.t. |w|=1.

This criterion does not 
consider variance in y.

Optimal only when
cov(x) = σ2I for all classes

(then var(y) does not 
change with w).

2

μ1

μ2

w simply becomes a 
scaled difference in 

means (μ1-μ2)

Decision line 
(not optimal!)
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A criterion function including variance

• Fisher’s solution: Maximize a function that 
represents the difference between the 
means, scaled by a measure of the within-
class scatter

• Define classwise scatter (scaled variance)

• is within class scatter

• Fisher’s criterion is then

• We look for a projection where examples 
from the same class are close to each 
other, while at the same time projected 
mean values are as far apart as possible
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Scatter matrices – M classes
• Within-class scatter matrix:

• Between-class scatter matrix:
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Solving Fisher more directly
• Alternatively, you can notice that

• .. is a «generalized Rayleigh quotient» and look up the solution 
for its maximum, which is the principal eigenvector of

• The following solutions (orthogonal in Sw, i.e., wi
TSwwj=0, for 

i≠j) are the next principal eigenvectors
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Sw
-1Sb

Note that the obtained ws are identical (up to scaling)
to those from the two-step procedure from the previous slides
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Computing Fishers linear discriminant

• For l=M-1:
– Form a matrix C such that its columns are the  M-1 

eigenvectors of  
– Set 

– This gives us the maximum J3 value.
– This means that we can reduce the dimension from m to M-

1 without loss in class separability power (but only if J3 is a 
correct measure of class separability.)

– Alternative view: with a Bayesian model we compute the 
probabilities P(i|x) for each class (i=1,...M). Once M-1 
probabilities are found, the remaining P(M|x) is given 
because the P(i|x)’s sum to one.

xbxwSS 1

xCy Tˆ
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Computation: Case 2: l<M-1
• Form C by selecting the eigenvectors corresponding 

to the l largest eigenvalues of 

• We now have a loss of discriminating power since 
xbxwSS 1

xy JJ ,3ˆ,3 
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Limitations of Fisher’s discriminant
• Its criterion function is based on all classes having a similarly-shaped Gaussian 

distribution
– Any deviance from this could lead to problems / suboptimal or poor solutions

• It produces at most M-1 (meaningful) feature projections

• One could «overfit» Sw

• It will fail when the discriminatory information is not in the mean but in the 
variance of the data (failing to meet that stated in the first bulletpoint!)
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MORPHOLOGICAL 
IMAGE PROCESSING
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Opening

• Erosion of an image removes all structures that the structuring element 
cannot fit inside, and shrinks all other structures.

• Dilating the result of the erosion with the same structuring element, 
the structures that survived the erosion (were shrunken, not deleted) 
will be restored. 

• This is called morphological opening:

• The name tells that the operation can create an opening between 
two structures that are connected only in a thin bridge, 
without shrinking the structures (as erosion would do).

  SfSf  Sθ
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Closing

• A dilation of an object grows the object and can fill gaps.

• If we erode the result with the rotated structuring element, 
the objects will keep their structure and form, 
but small holes filled by dilation will not appear. 

• Objects merged by the dilation will not be separated again.

• Closing is defined as 

• This operation can close gaps between two structures 
without growing the size of the structures like dilation would.

  SfSf ˆθŜ
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Gray level morphology

• We apply a simplified definition of morphological 
operations 
on gray level images
– Grey-level erosion, dilation, opening, closing

• Image f(x,y)
• Structuring element b(x,y)

– May be nonflat or flat

• Assume symmetric, flat structuring element, origo at 
center 
(this is sufficient for normal use). 

• Erosion and dilation then correspond to local minimum 
and maximum over the area defined by the structuring 
element 40INF 4300



Gray level opening and closing

• Corresponding definition as for 
binary opening and closing

• Result in a filter effect on the 
intensity

• Opening: Bright details are 
smoothed

• Closing: Dark details are 
smoothed

 
))max(min(

Sθ

f

SfSf



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Top-hat transformation

• Purpose: detect (or remove) structures of a certain size.
• Top-hat: detects light objects on a dark background 

– also called white top-hat.

• Top-hat (image minus its opening):

• Bottom-hat: detects dark objects on a bright background 
– also called black top-hat.

• Bottom-hat (closing minus image): 

• Very useful when correcting for uneven illumination
or objects on a varying background 

)( bff 

fbf  )(
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Example – top-hat

Original, un-even
background

Global thresholding 
using Otsu’s method.

Objects in the lower right
Corner disappear.

Misclassification of 
background in upper 

right corner.

Opening with a 40x40
structuring element

removes objects and
gives an estimate of the

background

Top-hat transform
(original – opening)

Top-hat, thresholded
with global threshold
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Watershed – the idea

• A gray level image 
(or a gradient magnitude image
or some other feature image)

may be seen as a topographic relief, 
where increasing pixel value 
is interpreted as increasing height.

• Drops of water falling on a topographic relief 
will flow along paths to end up in local minima.

• The watersheds of a relief correspond to the limits of 
adjacent catchment basins of all the drops of water.
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Watershed segmentation

• Can be used on images derived from:

– The intensity image
– Edge enhanced image
– Distance transformed image (e.g. distance from object edge)

• Thresholded image. 
• From each foreground pixel, 

compute the distance to a background pixel.
– Gradient of the image

• Most common basis of WS: gradient image.
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Watershed algorithm cont.
• The topography will be flooded with integer flood 

increments from n=min-1 to n=max+1.

• Let Cn(Mi) be the set of coordinates of points in the 
catchment basin associated with Mi, flooded at stage n. 

• This must be a connected component 
and can be expressed as Cn(Mi) = C(Mi)T[n] 
(only the portion of T[n] associated with basin Mi)

• Let C[n] be union of all flooded catchments at stage n: 

)(]1[maxand)(][
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R

i
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R
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Dam construction
 Stage n-1: two basins forming 

separate connected components. 

 To consider pixels for inclusion in 
basin k in the next step (after flooding), 
they must be part of T[n], and also be 
part of the connected component q of 
T[n] that Cn-1[k] is included in. 

 Use morphological dilation iteratively.

 Dilation of C[n-1] is constrained to q.

 The dilation can not be performed on 
pixels that would cause two basins to 
be merged (form a single connected 
component)

Step n-1

Step n
q

C[n-1]

Cn-1[M1] Cn-1[M2]
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Watershed algorithm cont.

• Initialization: let C[min+1]=T[min+1]

• Then recursively compute C[n] from C[n-1]:
– Let Q be the set of connected components in T[n].
– For each component q in Q, there are three possibilities:

1. qC[n-1] is empty – new minimum 
Combine q with C[n-1] to form C[n].

2. qC[n-1] contains one connected component of C[n-1]
q lies in the catchment basin of a regional minimum
Combine q with C[n-1] to form C[n].
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“Over-segmentation” or fragmentation

 Using the gradient image directly can cause fragmentation 
because of noise and small irrelevant intensity changes

 Improved by smoothing the gradient image or using markers

Image I

Watershed 
of g

Gradient 
magnitude 
image (g)

Watershed of 
smoothed  g
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Solution: Watershed with markers

 A marker is an extended connected component in the image

 Can be found by intensity, size, shape, texture etc

 Internal markers are associated with the object 
(a region surrounded by bright point (of higher altitude))

 External markers are associated with the background 
(watershed lines)

 Segment each sub-region by some segmentation algorithm 
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How to find markers
• Apply  filtering to get a smoothed image
• Segment the smooth image to find the internal markers. 

– Look for a set of point surrounded by bright pixels. 
– How this segmentation should be done is not well defined. 
– Many methods can be used. 

• Segment smooth image using watershed to find external markers, 
with the restriction that the internal markers are the only allowed 
regional minima. 
The resulting watershed lines are then used as external markers.

• We now know that each region inside an external marker consists 
of a single object and its background. 

• Apply a segmentation algorithm (watershed, region growing, 
threshold etc. ) only inside each watershed. 


