
10.10.16 INF 4300 1

INF 4300 
10.10.16 

Multivariate classification
Anne Solberg (anne@ifi.uio.no)

Based on Chapter 2 (2.1-2.6) in Duda and Hart: 
Pattern Classification

Today’s focus
• From a d-dimensional feature vector x=[x1,….xd]T

• Given K different classes k=1,…K
• Compute the probability that x belongs to class k 

P(k|x)= p(x|k)P(k)/const
• How should the multivariate density p(x|k) be?
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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes.  is the class label for a 
pixel, and x is the observed feature vector).  

• We can use Bayes rule to find an expression for the class with
the highest probability:

• P(j) is the prior probability for class j. If we don't have special
knowledge that one of the classes occur more frequent than
other classes, we set them equal for all classes. (P(j)=1/J, 
j=1.,,,J).
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Bayes rule explained

• p(x|j) is the probability density function that models the
likelihood for observing feature vector x if the pixel belongs to 
class j.  
– Typically we assume a type of distribution, e.g. Gaussian, and 

the mean and covariance of that distribution is fitted to some
data that we know belong to that class. This fitting is called
classifier training. 

• P(j|x) is the posterior probability that the pixel actually belongs to 
class j given the observed feature vector x.

• p(x) is just a scaling factor that assures that the probabilities sum 
to 1. 
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The conditional density p(x| s)
• Any probability density function can be used to model p(x| s) 
• A common model is the multivariate Gaussian density.
• The multivariate Gaussian density:

• If we have d features, s is a vector of length d and and s a dd
matrix (depends on class s)

• |s| is the determinant of the matrix s,  and s
-1 is the inverse
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Symmetric dd matrix
ii is the variance of feature i
ij is the covariance between
feature i and feature j 
Symmetric because ij = ji

Mean vectors and covariance matrices
in d dimensions

• If x is a d-dimensional feature vector for one object/pixel, we
can formulate its mean vector and covariance matrix as:

• with d features, the mean vector  will be of size 1xd and  of
size dxd.
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Inspecting p(x|s)
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Scalar 1xn vector
transposed

nx1 vector
transposed

nxn matrix
Inverse of covariance
matrix

Scalar probability

The mean vectors s for each class
• The mean vector for class s is defined as the expected value of

x:

• with d features, the mean vector  will be of size 1xd.
• If we have Ms training samples that we know belong to class s, 

we can estimate the mean vector as:
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Link to moments
• From lecture on moments:

• If f=[x,y] is a sample from distribution p(x,y), the
mean is defined as 

INF 4300 9








yx
y

yx
x

yxyp

yxxp

),(

),(





The covariance matrix s for each class
• The covariance for class s is defined as the expected value of (x-)(x- )t:

• with d features, the covariance matrix s will be of size dxd.
• If we have Ms training samples that we know belong to class s, we can estimate the

covariance matrix s . (The estimate of a random variable  f is denoted ) 

• Each term ij is computed as:
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More on the covariance matrix s

• The covariance matrix s will always be symmetric and positive 
semidefinite. 

• If all components of x have non-zero variance, s will be positive 
definite. 

• ij is the covariance between features i and j. 
• If features xi and x j are uncorrelated, ij = 0.
• In the general case, s will have d(d+1)/2 different values.

INF 4300 11 INF 4300 12

A 2D Gaussian model
• Parameters μ and Σ define a density 

as a ”bump”
• The curves on the plot are contours 

of equal probability, just as the 
contours on a map

• The matrix Σ in this case has three 
different elements, variance in each 
of the axes, and covariance between 
the axes

• 11
2 is the variance for feature 1

• 12=21 is the covariance between 
feature 1 and 2

• 22
2 is the variance for feature 2
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From lecture on moments: 
Moments of inertia or Variance

• The two second order central moments measure the spread of points
around the y- and x-axis through the centre of mass

• What does 20 and 02 correspond to in this
lecture (assume we have to features)?

• The cross moment of intertia is given by

– Statisticians call this covariance or correlation.

• Orientation of the object can be derived from these moments.

INF 4300 13

From lecture on moments: Object orientation
• Orientation is defined as the angle, relative to the X-axis, 

of an axis through the centre of mass 
that gives the lowest moment of inertia.

• Orientation θ relative to X-axis found by minimizing:

where the rotated coordinates are given by

• We found that object orientation was given by:
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Can we use this to find the orientation of the covariance matrix?
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The covariance matrix and ellipses
• In 2D, the Gaussian model can be 

thought of as approximating the classes in 
2D feature space with ellipses.

• The mean vector =[1, 2] defines the
the center point of the ellipses.

• 12, the covariance between the features 
defines the orientation of the ellipse.

• 11 and 22 defines the width of the
ellipse. 

• The ellipse defines points where the
probability density is equal

– Equal in the sense that the distance to the
mean as computed by the Mahalanobis
distance is equal.

– The Mahalanobis distance between a point
x and the class center  is:
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The main axes of the ellipse 
is determined by the
eigenvectors of .
The eigenvalues of  gives
their length.
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Euclidean distance vs. 
Mahalanobis distance

• Euclidean distance
between point x and class
center :

• Mahalanobis distance
between x and :

    2  xxx T

      xxr T 12



Points with equal
distance to  lie on a 
circle.

Points with equal
distance to  lie on an 
ellipse.



Discriminant functions
for the normal density

• When finding the class with the highest probability, these functions
are equivalent:

• Let us now look at
• With a multivariate Gaussian we get:

• Let ut look at this expression for some special cases: 
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Case 1: Σj=σ2I
• In this case  we assume that the features are uncorrelated

(independent) with the same variance σ2

• The covariances σij=0 (by definition if the features are uncorrelated).
• The discriminant functions can be expressed as: 

• Thus we model the probabilities as n-dimensional spheres because
points that have equal discriminant function will lie on a circle around
the mean i .

• Σj
-1=I/σ2

• |Σj|= σ2n
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Case 1: Σj=σ2I
• The discriminant functions simplifies to linear functions using

such a shape on the probability distributions
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Common for all classes, no need to compute these terms
Since xTx is common for all classes, an equivalent gj(x) is  a linear 
function of x: .
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Linear algebra basics:
Inner product between two vectors.

• The inner product (or dot
product) between two vectors (of
length N)a  and b or is given by 

• The angle between two vectors A 
and B is defined as: 

• If the inner product of two
vectors is zero, they are normal to 
each other.
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Case 1: Σj=σ2I
• Now we get an equivalent formulation of the discriminant functions:

• An equation for the decision boundary gi(x)=gj(x) can be written as

• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 

orthogonal to w. 
• If P(i)=P(j) the hyperplane will be located halfway between the

mean values.
• Proving this involves some algebra, see the proof at 

https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm
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• If the features were indepenent (Σj=σ2I) 
the discriminant function was simplified to: 

• This results in linear decision boundaries.
• Computing this discriminant function to 

classify pattern xi involves computing the
distance from the point to the mean values
s for each class. 
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• The discriminant function (when
Σj=σ2I) that defines the border 
between class 1 and 2 in the feature 
space is a straight line.

• The discriminant function intersects the
line connecting the two class means at 
the point x0=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the
means. 

1

2

xi

x0

Decision boundary
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A simple model, Σj=σ2I

• The distributions are spherical in d dimensions.
• The decision boundary is a generalized hyperplane of d-1 dimensions
• The decision boundary is perpendicular to the line separating the two

mean values
• This kind of a classifier is called a linear classifier, or a linear 

discriminant function
– Because the decision function is a linear function of x.

• If P(i)= P(i), the decision boundary will be half-way between i and 
j
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Minimum distance classification
• If all classes have equal prior probabilities, x0 will be the point halfway

between the mean vectors. 
• Classification will consist of assigning feature vector x to the same class

as the closest mean measured by Euclidean distance ||x-i||.
• A classifier based on the Euclidean distance is called a minimum 

distance classifier. 
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Case 2: Common covariance, Σj= Σ
• If we assume that all classes have the same shape of data 

clusters, an intuitive model is to assume that their probability 
distributions have the same shape

• By this assumption we can use all the data to estimate the 
covariance matrix

• This estimate is common for all classes, and this means that 
also in this case the discriminant functions become linear 
functions
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Common for all classes, no need to compute
Since xTx is common for all classes, gj(x) again reduces to 
a linear function of x.
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Case 2: Common covariance, Σj= Σ
• An equivalent formulation of the discriminant functions is

• The decision boundaries are again hyperplanes.
• Because wi= Σ-1(i- j) is not in the direction of (i- j), the

hyperplan will not be orthogonal to the line between the means.
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Common covariance, Σj= Σ

• The classes can be described by hyperellipsoides in d dimensions.
• All hyperellipsoids have the same orientation.
• The decision boundary will again be a hyperplane.
• Because w= Σ-1(i-j) is generally not in the direction of i-j, the

hyperplane will not be perpendicular to the line between the means. 
• Consider a point x0 on the line i-j. defined by the prior probabilities:

– If P(i)= P(i), x0 will be half way between the means.
– The separating hyperplane will intersect the line at x0
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Case 3:, Σj=arbitrary
• When all classes are modeled as having different

shapes, the discriminant functions cannot be 
simplified

• This means that the discriminant functions will be 
quadratic functions

• Decision boundaries will be hyperquadrics and 
assume any of the general forms:
– hyperplanes, pairs of hyperplanes, hyperspheres, 

hyperellisoides, hyperparaboloids, hyperhyperboloids...
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Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries

just by looking at the mean and covariance. 
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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The full model, Σj=arbitrary - example
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A multiclass example
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Is the Gaussian classifier 
the only choice?

• The Gaussian classifier gives linear or quadratic
discriminant function.

• Other classifiers can give arbitrary complex decision
surfaces (often piecewise-linear)
– Mixtures of Gaussians
– Other probability density functions (t-distribution, exponetial

distributions).
– Neural networks
– Support vector machines
– Ensembles of simple classifiers

ADAboost
Random forest/decision trees

– kNN (k-Nearest-Neighbor) classification

Using masks to train and test
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• Training mask: a mask where 
regions to train each class are 
marked using different pixel 
values, e.g. class label=1 for 
class 1, 2 for class 2 etc. 
•Test mask: a similar mask as 
training, but to estimate 
classifier accuracy only. 
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Training a classifier
• Obtain as many ground truth samples for each class as possible

– If visual inspection is reliable, experts can mark training regions 
interactively.

– For remote sensing, go out in the field and collect field samples (or use
images from a different sensor)

– For symbol recognition, mark a set of symbols manually.
– For medical applications, use e.g. tissue samples or interpretations made by 

experts.
• Divide the ground truth into a training set and a test set.
• Use feature extraction and feature selection/evaluation to determine

the best set of features.

• Decide if a linear or quadratic classifier is needed.
ŝ has n elements
ŝ has n(n-1)/2 elements

Estimating s and s

• For each class, compute s (and s) either with a for-loop on
each feature, or use a vector implementation.
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s class  tobelonging samples  trainingallover  is sum  thewhere
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Training

for i=1:N
for j=i:M

if mask(i,j)>==K
increment nof. Samples in class K
store the feature vector f(i,j) in a vector of training samples from class K

end
end
end 

For class k=1:K
compute mean(k) and sigma(k)
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Classifying new data
• For each sample, compute the posterior probabilities

for each class.

• Classify the sample to the class with the highest
posterior probability.

• Evaluate the performance of the classifier on a 
different dataset. 

• We can also produce images of the posterior
probability for each class.
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Validating classifier performance
• Classification performance is evaluated on a different 

set of samples with known class - the test set.
• The training set and the test set must be 

independent!
• Normally, the set of ground truth pixels (with known 

class) is partionioned into a set of training pixels and 
a set of test pixels of approximately the same size. 

• This can be repeated several times to compute more 
robust estimates as average test accuracy over 
several different partitions of test set and training 
set.
– By selecting e.g. 10 random partitions of the set of samples 

into a training set and a test set. 
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Confusion matrices
• A matrix with the true class label versus the estimated 

class labels for each class
Estimated class labels

True class labels

Class 1 Class 2 Class 3 Total 
#sampl
es

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450
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Confusion matrix - cont.

Class 
1

Class 
2

Class 
3

Total 
#sam
ples

Class 1 80 15 5 100
Class 2 5 140 5 150
Class 3 25 50 125 200
Total 110 205 135 450

Alternatives: 
•Report nof. correctly classified 
pixels for each class.
•Report the percentage of 
correctly classified pixels for 
each class.
•Report the percentage of 
correctly classified pixels in 
total.

•Why is this not a good 
measure if the number of 
test pixels from each class 
varies between classes?

A classification example
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Landsat image with 6 spectral bands
The 6 bands will be the features
Training areas and test areas shown 
in mask

Upper part: RGB-false color image created from bands 
4,5 and 6 with training and test regions overlaid.

Lower part: image of training regions only
•

1

2
3

4

Visual inspection of feature 1 
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Class 2 (forest) seems to be well separated,
Maybe also class 1 (urban)

1

2 3

4

Visual inspection of feature 2 

INF 4300 48

Class 2 (forest) seems to be well separated



Visual inspection of  feature 3 
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Class  2 (forest) seems to be well separated,
Class 1 (urban) seems to be well separated

Visual inspection of  feature 4 
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Class 1 (water) seems to be well separated,
Maybe also class 4 (agricultural)

Visual inspection of feature 5 
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Water and forest appears similar 
- but the variance might be 
different

Urban and agricultural appears 
similar – but the variance might 
be different

Visual inspection of feature 6 
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Seems similar to feature 5,
but with better contrast



Selected scatter plots (gscatter)
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Scatterplot between feature 1 and 4 Scatterplot between feature 5 and 6

Classified images
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The entire image classified to the most probable class

Display the posterior probabilities
as images
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Posterior probability for class urban Posterior probability for class forest

Posterior probability for class water
Posterior probability for class agricultural

Dark values: 
Probabilities close to 0

Bright values:
Probabilities close to 1

Confusion matrix
for the training set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1340 2 0 310
Class 1 43 1253 0 2
Class 3 0 0 1738 0
Class 4 131 3 0 1266
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Accuracy per class:     Averaged over all classes: 91.7%
Class1: 81%
Class2: 96%
Class3: 100%
Class4: 90%



Confusion matrix
for the test set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1474 3 1 251
Class 1 513 2311 0 0
Class 3 14 0 1953 0
Class 4 213 2 0 1390
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Accuracy per class:      Averaged over all classes: 87.5%
Class1: 85%
Class2: 81%
Class3: 98%
Class4: 86%

Learning goals from this lecture
• Be able to use and implement Bayes rule with a d-

dimensional Gaussian distribution.
• Know how s and s are estimated. 
• Understand the 2-dimensional case where a 

covariance matrix is illustrated as an ellipse. 
• Be able to simplify the general discriminant function

for 3 cases.
• Have a geometric interpretation of classification with

2 features. 

INF 4300 58

If time….
• The following slides are presented if time allows.
• Otherwise, they are presented next week.
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k-Nearest-Neighbor classification
• A very simple classifier.
• Classification of a new sample xi is done as follows: 

– Out of N training vectors, identify the k nearest neighbors 
(measured by Euclidean distance) in the training set, 
irrespectively of the class label.    

– Out of these k samples, identify the number of vectors ki
that belong to class i , i:1,2,....M (if we have M classes)

– Assign xi to the class i with the maximum number of ki
samples. 

• k should be odd, and must be selected a priori. 
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kNN-example 



If k=1, will be classified as

If k=5, will be classified as
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About kNN-classification
• If k=1 (1NN-classification), each sample is assigned to the same 

class as the closest sample in the training data set. 
• If the number of training samples is very high, 

this can be a good rule.
• If k->, this is theoretically a very good classifier.
• This classifier involves no ”training time”, but the time needed 

to classify one pattern xi will depend on the number of training 
samples, as the distance to all points in the training set must be 
computed. 

• ”Practical” values for k: 3<=k<=9
• Classification performance should always be computed on the 

test data set. 
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Supervised or unsupervised classification
• Supervised classification

– Classify each object or pixel into a set of k known classes
– Class parameters are estimated using a set of training 

samples from each class.
• Unsupervised classification

– Partition the feature space into a set of k clusters
– k is not known and must be estimated (difficult)

• In both cases, classification is based on the value of 
the set of n features x1,....xn.

• The object is classified to the class which has the 
highest posterior probability.

• ”The clusters we get are not the classes we want”. 
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Unsupervised classification/clustering

• Divide the data into clusters based on similarity 
(or dissimilarity)

• Similarity or dissimilarity is based on distance 
measures (sometimes called proximity measures)
– Euclidean distance, Mahalanobis distance etc.

• Two main approaches to clustering
– hierarchical - non-hierarchical 

(sequential)
• divisive
• agglomerative 

• Non-hierarachical methods are often used in image 
analysis
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K-means clustering 
• Note: K-means algorithm normally means ISODATA, but different 

definitions are found in different books
• K is assumed to be known
1. Start with assigning K cluster centers

– k random data points, or the first K points, or K equally spaces points
– For k=1:K, Set k equal to the feature vector xk for these points.

2. Assign each object/pixel xi in the image to the closest cluster center 
using Euclidean distance.
• Compute for each sample the distance r2 to each cluster center:

• Assign xi to the closest cluster (with minimum r value) 

3. Recompute the cluster centers based on the new labels.
4. Repeat from 2 until #changes<limit.

ISODATA K-means: splitting and merging of clusters are included in 
the algorithm

    22
kiki

T
ki xxxr  
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k-means example

X2

X3

X5

X1

X6

X7
X8

X4

INF 4300 67

k-means example

X2

X3

X5

X1

X6

X7
X8

X4

μ1

μ3

μ2

Step 1:

Choose k cluster centres, μk
(0),

randomly from the available 
datapoints.

Here: k = 3
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k-means example

X2

X3

X5

X1

X6

X7
X8

X4

μ1

μ3

μ2

Step 2:

Assign each of the objects in x to 
the nearest cluster center μk

(i)
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k-means example

X2

X3

X5

X1

X6

X7
X8

X4

μ1

μ3

μ2

Step 3:

Recalculate cluster centres μk
(i+1)

based on the clustering in 
iteration i
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k-means example

X2

X3

X5

X1

X7
X8

X4

μ1

μ2

X6

μ3

Step 4:

If the clusters don’t change; 
μk

(i+1)≈ μk
(i) (or prespecified 

number of iterations i reached), 
terminate, 
else reassign - increase iteration i
and goto step 2.
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k-means example

X(6)

X2

X5

X1

X7
X8

X4

μ1

μ2

X6

Step 3 in next iteration:

Recalculate cluster centres.

μ3

X3
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k-means variations
• The generic algorithm has many improvements

– ISODATA – allow for merging and splitting of clusters
• Among other things, this seeks to improve 

an initial ”bad” choice of k
– k-medians is another variation
– k-means optimizes a probabilistic model 
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How do we determine k?
• The number of natural clusters in the data rarely corresponds to 

the number of information classes of interest.

• Cluster validity indices can give indications of how many clusters 
there are.

• Use cluster merging or splitting tailored to the application.

• Rule of thumb for practical image clustering:
– start with approximately twice as many clusters as expected 

information classes
– determine which clusters correspond to the information classes
– split and merge clusters to improve.
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Example:  K-means clustering

Original

Kmeans
K=5

Kmeans
K=10

Supervised
4 classes


