INF 4300 17.10.16 Classifier evaluation KNN-classification Kmeans-clustering Anne Solberg (anne@ifi.uio.no)	• \mathbf{x}_{i} - feature vector for pixel i • ω_{i} . The class label for pixel i • K - the number of classes given in the training data Multiband image with n spectral channels or features $p(\mathbf{x} \mid \boldsymbol{\omega}_{s}) = \frac{1}{(2\pi)^{n/2} \boldsymbol{\Sigma}_{s} ^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{s})^{t} \boldsymbol{\Sigma}_{s}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{s})\right]$
17.10.16 INF 4300 1	INF 4300 2
From last week: Discriminant functions for the normal density	Case 1: Σ _i =σ ² I
• When finding the class with the highest probability, these functions are equivalent: $g_{i}(\mathbf{x}) = P(\omega_{i} \mathbf{x}) = \frac{p(\mathbf{x} \omega_{i})P(\omega_{i})}{p(\mathbf{x})}$ $g_{i}(\mathbf{x}) = p(\mathbf{x} \omega_{i})P(\omega_{i})$ $g_{i}(\mathbf{x}) = \ln p(\mathbf{x} \omega_{i}) + \ln P(\omega_{i})$ • Let us now look at $g_{i}(\mathbf{x}) = \ln p(\mathbf{x} \omega_{i}) + \ln P(\omega_{i})$ • With a multivariate Gaussian we get: $g_{i}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_{i})^{t} \Sigma_{i}^{-1}(\mathbf{x} - \mathbf{\mu}_{i}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \Sigma_{i} + \ln P(\omega_{i})$	 Now we get an equivalent formulation of the discriminant functions: g_i(x) = wⁱ_ix + w_{i0} where w_i = ¹/_{σ²} μ_i and w_{i0} = -¹/_{2σ²} μⁱ_jμ_i + ln P(ω_i) An equation for the decision boundary g_i(x)=g_j(x) can be written as wⁱ(x-x₀) = 0 where w = μ_i - μ_j and x₀ = ¹/₂(μ_i - μ_j) - ^{σ²}/_{μ_i - μ_j² ln [^{P(ω_i)}/_{P(ω_j)}](μ_i - μ_j)} w=μ_i-μ_j is the vector between the mean values. This equation defines a hyperplane through the point x₀, and orthogonal to w
Let ut look at this expression for some special cases:	 If P(ω_i)=P(ω_j) the hyperplane will be located halfway between the mean values.

3

4

Proving this involves some algebra, see the proof at https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm INF 4300

- The discriminant function (when $\Sigma_j = \sigma^2 I$) that defines the border between class 1 and 2 in the feature space is a straight line.
- The discriminant function intersects the line connecting the two class means at the point $x_0=(\mu_1-\mu_2)/2$ (if we do not consider prior probabilities).
- Consider prior probabilities).
 The discriminant function will also be normal to the line connecting the means.

μ₁ μ₂ Decision boundary x_i

5

7

A simple model, $\Sigma_i = \sigma^2 I$

- The distributions are spherical in d dimensions.
- The decision boundary is a generalized hyperplane of *d*-1 dimensions
- The decision boundary is perpendicular to the line separating the two mean values
- This kind of a classifier is called a linear classifier, or a linear discriminant function
 - Because the decision function is a linear function of *x*.
- If $P(\omega_i) = P(\omega_i)$, the decision boundary will be half-way between μ_i and μ_j

INF 4300

Case 2: Common covariance, $\Sigma_i = \Sigma$

- If we assume that all classes have the same shape of data clusters, an intuitive model is to assume that their probability distributions have the same shape
- By this assumption we can use all the data to estimate the covariance matrix
- This estimate is common for all classes, and this means that also in this case the discriminant functions become linear functions

$$g_{j}(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{j})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{j}) - \frac{1}{2} \ln |\boldsymbol{\Sigma}| + \ln P(\omega_{j})$$
$$= -\frac{1}{2(\sigma^{2}I)} (\mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} - 2\boldsymbol{\mu}_{j}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \boldsymbol{\mu}_{j}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{j}) - \frac{1}{2} \ln |\boldsymbol{\Sigma}| + \ln P(\omega_{j})$$

Common for all classes, no need to compute Since $\mathbf{x}^T \mathbf{x}$ is common for all classes, $g_j(\mathbf{x})$ again reduces to a linear function of \mathbf{x} .

INF 4300

Common covariance, $\Sigma_i = \Sigma$

- The classes can be described by hyperellipsoides in *d* dimensions.
- All hyperellipsoids have the same orientation.
- The decision boundary will again be a hyperplane.
- Because $w = \Sigma^{-1}(\mu_i \mu_j)$ is generally not in the direction of $\mu_i \mu_j$, the hyperplane will not be perpendicular to the line between the means.
- Consider a point x₀ on the line μ_i-μ_j, defined by the prior probabilities:

INF 4300

- If $P(\omega_i) = P(\omega_i)$, x_0 will be half way between the means.
- The separating hyperplane will *intersect* the line at x_0

8

Case 3:, Σ_i =arbitrary

- When all classes are modeled as having different shapes, the discriminant functions cannot be simplified
- This means that the discriminant functions will be quadratic functions
- Decision boundaries will be hyperquadrics and assume any of the general forms:
 - hyperplanes, pairs of hyperplanes, hyperspheres, hyperellisoides, hyperparaboloids, hyperhyperboloids...

INF 4300

9

11

Case 3:, Σ_i =arbitrary

• The discriminant functions will be quadratic:

 $g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w i_0$

where $\mathbf{W}_i = -\frac{1}{2}\boldsymbol{\Sigma}_i^{-1}, \quad \mathbf{w}_i = \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i$

and $wi_0 = -\frac{1}{2} \mathbf{\mu}_i^T \mathbf{\Sigma}_i^{-1} \mathbf{\mu}_i - \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i)$

- The decision surfaces are hyperguadrics and can assume any of the general forms:
 - hyperplanes
 - hypershperes
 - pairs of hyperplanes
 - hyperellisoids,
 - Hyperparaboloids,...
- The next slides show examples of this.
- In this general case we cannot intuitively draw the decision boundaries just by looking at the mean and covariance. 10

INF 4300

Is the Gaussian classifier the only choice?

- The Gaussian classifier gives linear or quadratic discriminant function.
- Other classifiers can give arbitrary complex decision surfaces (often piecewise-linear)
 - Mixtures of Gaussians
 - Other probability density functions (t-distribution, exponetial distributions).
 - Neural networks
 - Support vector machines
 - Ensembles of simple classifiers ADAboost
 - Random forest/decision trees
 - kNN (k-Nearest-Neighbor) classification

Using masks to train and test

• Training mask: a mask where regions to train each class are marked using different pixel values, e.g. class label=1 for class 1, 2 for class 2 etc. •Test mask: a similar mask as training, but to estimate classifier accuracy only.

Training a classifier

- Obtain as many ground truth samples for each class as possible
 - If visual inspection is reliable, experts can mark training regions interactively.
 - For remote sensing, go out in the field and collect field samples (or use images from a different sensor)
 - For symbol recognition, mark a set of symbols manually.
 - For medical applications, use e.g. tissue samples or interpretations made by experts.
- Divide the ground truth into a training set and a test set.
- Use feature extraction and feature selection/evaluation to determine the best set of features.
- Decide if a linear or quadratic classifier is needed.
 - $\hat{\mu}_s$ has n elements
 - $\hat{\Sigma}_s$ has n(n-1)/2 elements

Estimating μ_s and Σ_s

• For each class, compute μ_s (and Σ_s) either with a for-loop on each feature, or use a vector implementation.

$$\hat{\mathbf{u}}_s = \frac{1}{M_s} \sum_{m=1}^{M_s} \mathbf{x}_m,$$

where the sum is over all training samples belonging to class s

$$\hat{\Sigma}_{s} = \frac{1}{M_{s}} \sum_{m=1}^{M_{s}} (\mathbf{x}_{m} - \hat{\boldsymbol{\mu}}_{s}) (\mathbf{x}_{m} - \hat{\boldsymbol{\mu}}_{s})^{t}$$

where the sum is over all training samples belonging to class s

$$\sigma_{ij,s}^{2} = \frac{1}{M_{s}} \sum_{m=1}^{M_{s}} \left(x_{m,i} - \hat{\mu}_{i,s} \right) \left(x_{m,j} - \hat{\mu}_{j,s} \right)^{2}$$

for the covariance between feature i and j for class s

INF 4300

14

Training

INF 4300

for i=1:N
for j=i:M
if mask(i,j)>==K
increment nof. Samples in class K
store the feature vector f(i,j) in a vector of training samples from class K
end
end
end

For class k=1:K compute mean(k) and sigma(k)

23.10.13

15

13

Classifying new data

• For each sample, compute the posterior probabilities for each class.

$$P(\omega_{s} \mid x) \propto p(x \mid \omega_{s}) P(\omega_{s})$$

$$= \left[\frac{1}{(2\pi)^{P/2} |\Sigma_{s}|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu_{s})^{t} \Sigma_{s}^{-1}(x - \mu_{s})\right]\right] P(\omega_{s})$$

- Classify the sample to the class with the highest posterior probability.
- Evaluate the performance of the classifier on a different dataset.
- We can also produce images of the posterior probability for each class.

Validating classifier performance

- Classification performance is evaluated on a different set of samples with known class the test set.
- The training set and the test set must be independent!
- Normally, the set of ground truth pixels (with known class) is partionioned into a set of training pixels and a set of test pixels of approximately the same size.
- This can be repeated several times to compute more robust estimates as average test accuracy over several different partitions of test set and training set.
 - By selecting e.g. 10 random partitions of the set of samples into a training set and a test set.

INF 4300

Confusion matrices

• A matrix with the true class label versus the estimated class labels for each class

Estimated class labels

INF 4300

18

Confusion matrix - cont.

Alternatives:

- •Report nof. correctly classified pixels for each class.
- •Report the percentage of correctly classified pixels for each class.
- •Report the percentage of correctly classified pixels in total.
 - •Why is this not a good measure if the number of test pixels from each class varies between classes?

	Class 1	Class 2	Class 3	Total #sam ples
Class 1	80	15	5	100
Class 2	5	140	5	150
Class 3	25	50	125	200
Total	110	205	135	450

True / False positives / negatives

- True positive (TP): Patient has cancer and test result is positive.
- True negative (TN): A healthy patient and a negative test result.
- False positive (FP): Healthy patient that gets a positive test result.
- False negative (FN): Cancer patient that gets a negative test result.
- Good to have: TP & TN
- Bad to have: FP (but this will probably be detected)
- Worst to have: FN (may go un-detected)

 Another approach is to decide on some threshold on the aposteriori probability
– and if a sample falls below this threshold for all classes, then declare it an outlier.

The two last cases should lead to

a rejection of the sample!

23

Doubt samples

- Doubt samples are samples for which the class with the highest probability is not significantly more probable than some of the other classes (e.g. two classes have essentially equal probability).
- Doubt pixels typically occurr on the border between two classes ("mixels")
 - Close to the decision boundary the probabilities will be almost equal.
- Classification software can allow the user to specify thresholds for doubt.

INF 4300

25

27

- Crossvalidation / Leave n Out
- A very simple (but computationally complex) idea allows us us to "fake" a large test set
 - Train the classifier on a set of *N*-*n* samples
 - Test the classifier on the *n* remaining samples
 - Repeat n/N times (dependent on subsampling)
 - Report average performance on the repeated experiments as "test set" error
- An example with leave-1-out and 30 samples:
 - Select one sample to leave out
 - Train on the remaining 29 samples
 - Classify the one sample and store its class label
 - Repeat this 30 times
 - Count the number of misclassifications among the 30 experiments.
- Leave-n-Out estimation
 - generally overestimates the classification accuracy.
 - Feature selection should be performed within the loop, not in advance!!!
- Using a training set and a test set of approximately the same size is better.

The training / test set dilemma

- Ideally we want to maximize the size of both the training and test dataset
- Obviously there is a fixed amount of available data with known labels
- A very simple approach is to separate the dataset in two random subsets
- For small sample sizes we may have to use another strategy: Cross-validation
- This is a good strategy when we have very few "ground truth" samples.
 - Common in medicine where we might have a small number of patients with a certain type of cancer.
 - The cost of obtaining more ground truth data might be so high that we have to do with a small number of ground truth samples.

INF 4300

26

The covariance matrix and dimensionality

- Assume we have S classes and a d-dimensional feature vector.
- With a fully multivariate Gaussian model, we must estimate S different mean vectors and S different covariance matrices from training samples.
 - $\hat{\mu}_s$ has d elements

$\hat{\Sigma}_{s}$ has d(d+1)/2 elements

- Assume that we have M_s training samples from each class
- Given $M_{\rm s},$ there is a maximum of the achieved classification performance for a certain value of d
 - increasing n beyond this limit will lead to worse performance.
- Adding more features is not always a good idea!
- Total number of samples given by a rule of thumb: <u>M>10 d S</u>
- If we have limited training data, we can use diagonal covariance matrices or regularization

The "curse" of dimensionality

- In practice, the curse means that, for a given sample size, there is a maximum number of features one can add before the classifier starts to degrade.
- For a finite training sample size, the correct classification rate initially increases when adding new features, attains a maximum and then begins to decrease.
- For a high dimensionality, we will need lots of training data to get the best performance.
- => ≈ 10 samples / feature / class.

 $\int_{1}^{1} \int_{1}^{1} \int_{1$

31

Use few, but good features

- To avoid the "curse of dimensionality" we must take care in finding a set of relatively few features.
- A good feature has high within-class homogeneity, and should ideally have large between-class separation.
- In practise, one feature is not enough to separate all classes, but a good feature should:
 - separate some of the classes well
 - Isolate one class from the others.
- If two features look very similar (or have high correlation), they are often redundant and we should use only one of them.
- Class separation can be studied by:
 - Visual inspection of the feature image overlaid the training mask
 - Scatter plots
- Evaluating features as done by training can be difficult to do automatically, so manual interaction is normally required.

INF 4300

How do we beat the "curse of dimensionality"?

INF 4300

- Use regularized estimates for the Gaussian case
 - Use diagonal covariance matrices
 - Apply regularized covariance estimation
- Generate few, but informative features
 - Careful feature design given the application
- Reducing the dimensionality
 - Feature selection select a subset of the original features (more in INF5300)
 - Feature transforms compute a new subset of features based on a linear combination of all features (next week)
 - Example 1: Principal component transform
 - Unsupervised, finds the combination that maximized the variance in the data.
 - Example 2: Fisher's linear discriminant
 - Supervised, finds the combination that maximizes the distance between the classes.

Regularized covariance matrix estimation

- Case 1 :Diagonal covariance matrix.
- Case 2: Common covariance matrix
- Let the covariance matrix be a weighted combination of a class-specific covariance matrix Σ_k and a common covariance matrix Σ (estimated from training samples for all classes) :

$$\Sigma_k(\alpha) = \frac{(1-\alpha)n_k\Sigma_k + \alpha n\Sigma}{(1-\alpha)n_k + \alpha n}$$

where $0 \le \alpha \le 1$ must be determined, and n_k and n is the number of training samples for class k and overall.

Alternatively:

$$\Sigma_k(\beta) = (1 - \beta)\Sigma_k + \beta I$$

- The effect of these are that we can use a quadratic classifier even if we have little training data/ill-conditioned $\Sigma_{\rm k}$
- We still have to be able to compute $\Sigma_{k'}$ but the only the regularized/more robust $\Sigma_{k}(\alpha)$ or $\Sigma_{k}(\beta)$ must be inverted.

Exhaustive feature selection

 If – for some reason – you know that you will use d out of D available features, an exhaustive search will involve a number of combinations to test:

$$n = \frac{D!}{(D-d)!\,d\,!}$$

d!=1*2*..*d

 If we want to perform an exhaustive search through D features for the optimal subset of the d ≤ m "best features", the number of combinations to test is

$$n = \sum_{d=1}^{m} \frac{D!}{(D-d)! d!}$$

• Impractical even for a moderate number of features! $d \le 5$, D = 100 => n = 79.374.995

INF 4300

33

35

Distance measures used in feature selection

- In feature selection, each feature combination must be ranked based on a criterion function.
- Criteria functions can either be distances between classes, or the classification accuracy on a validation test set.
- If the criterion is based on e.g. the mean values/covariance matrices for the training data, distance computation is fast.
- Better performance at the cost of higher computation time is found when the classification accuracy on a validation data set (different from training and testing) is used as criterion for ranking features.
 - This will be slower as classification of the validattion data needs to be done for every combination of features.

Suboptimal feature selection

- Select the best single features based on some quality criteria, e.g., estimated correct classification rate.
 - A combination of the best single features will often imply correlated features and will therefore be suboptimal.
- "Sequential forward selection" implies that when a feature is selected or removed, this decision is final.
- "Stepwise forward-backward selection" overcomes this.
 - A special case of the "add a, remove r algorithm".
- Improved into "floating search" by making the number of forward and backward search steps data dependent.
 - "Adaptive floating search"
 - "Oscillating search".

INF 4300

Distance measures between classes

- How do be compute the distance between two classes:
 - Distance between the closest two points?
 - Maximum distance between two points?
 - Distance between the class means?
 - Average distance between points in the two classes?
 - Which distance measure?
 - Euclidean distance or Mahalanobis distance?
- Distance between K classes:
 - How do we generalize to more than two classes?
 - Average distance between the classes?
 - Smallest distance between a pair of classes?

Class separability measures

- How do we get an indication of the separability between two classes?
 - Euclidean distance between class means $|\mu_r\text{-}\mu_s|$
 - Bhattacharyya distance
 - Can be defined for different distributions
 - For Gaussian data, it is

$$B = \frac{1}{8} \left(\mu_r - \mu_s \right)^T \left(\frac{\Sigma_r + \Sigma_s}{2} \right)^{-1} \left(\mu_r - \mu_s \right) + \frac{1}{2} \ln \frac{\left| \frac{1}{2} (\Sigma_r + \Sigma_s) \right|}{\sqrt{|\Sigma_r||\Sigma_s|}}$$

- Mahalanobis distance between two classes:

$$\Delta = (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2)$$
$$\Sigma = N_1 \Sigma_1 + N_2 \Sigma_2$$

INF 5300

37

Examples of feature selection - Method 1 -Individual feature selection

- Each feature is treated individually (no correlation/covariance between features is consideren)
- Select a criteria, e.g. a distance measure
- Rank the feature according to the value of the criteria C(k)
- Select the set of features with the best individual criteria value
- Multiclass situations:
 - Average class separability or
 - C(k) = min distance(i,j) worst case \leftarrow Often used
- Advantage with individual selection: computation time
- Disadvantage: no correlation is utilized.

INF 4300

38

Method 2 - Sequential backward selection

- Select I features out of d
- Example: 4 features x₁,x₂,x₃,x₄
- Choose a criterion C and compute it for the vector $[x_1,x_2,x_3,x_4]^{\mathsf{T}}$
- Eliminate one feature at a time by computing $[x_1, x_2, x_3]^T$, $[x_1, x_2, x_4]_T$, $[x_1, x_3, x_4]^T$ and $[x_2, x_3, x_4]^T$
- Select the best combination, say $[x_1, x_2, x_3]^T$.
- From the selected 3-dimensional feature vector eliminate one more feature, and evaluate the criterion for $[x_1, x_2]^T$, $[x_1, x_3]_T$, $[x_2, x_3]^T$ and select the one with the best value.
- Number of combinations searched: 1+1/2((d+1)d-l(l+1))

Method 3: Sequential forward selection

- Compute the criterion value for each feature. Select the feature with the best value, say x₁.
- Form all possible combinations of features x1 (the winner at the previous step) and a new feature, e.g. [x₁,x₂]^T, [x₁,x₃]^T, [x₁,x₄]^T, etc. Compute the criterion and select the best one, say [x₁,x₃]^T.
- Continue with adding a new feature.
- Number of combinations searched: Id-I(I-1)/2.
 - Backwards selection is faster if I is closer to d than to 1.

Supervised or unsupervised classification

- Supervised classification
 - Classify each object or pixel into a set of k known classes
 - Class parameters are estimated using a set of training samples from each class.

• Unsupervised classification

- Partition the feature space into a set of *k* clusters
- *k* is not known and must be estimated (difficult)
- In both cases, classification is based on the value of the set of *n* features x₁,...,x_n.
- The object is classified to the class which has the highest posterior probability.
- "The clusters we get are not the classes we want".

INF 4300

45

47

Unsupervised classification/clustering

- Divide the data into clusters based on similarity (or dissimilarity)
- Similarity or dissimilarity is based on distance measures (sometimes called proximity measures)
 - Euclidean distance, Mahalanobis distance etc.
- Two main approaches to clustering
 - non-hierarchical (sequential)

divisive

hierarchical

- agglomerative
- Non-hierarachical methods are often used in image analysis

INF 4300

K-means clustering

- Note: K-means algorithm normally means ISODATA, but different definitions are found in different books
- K is assumed to be known
- 1. Start with assigning K cluster centers
 - k random data points, or the first K points, or K equally spaces points
 - For k=1:K, Set μ_k equal to the feature vector x_k for these points.
- 2. Assign each object/pixel x_i in the image to the closest cluster center using Euclidean distance.
 - Compute for each sample the distance r2 to each cluster center:

$r^{2} = (x_{i} - \mu_{k})^{T} (x_{i} - \mu_{k}) = ||x_{i} - \mu_{k}||^{2}$

- Assign x_i to the closest cluster (with minimum r value)
- 3. Recompute the cluster centers based on the new labels.
- 4. Repeat from 2 until #changes<limit.

 $\ensuremath{\mathsf{ISODATA}}$ K-means: splitting and merging of clusters are included in the algorithm

51

INF 4300

How do we determine k?

- The number of natural clusters in the data rarely corresponds to the number of information classes of interest.
- Cluster validity indices can give indications of how many clusters there are.
- Use cluster merging or splitting tailored to the application.
- Rule of thumb for practical image clustering:
 - start with approximately twice as many clusters as expected information classes
 - determine which clusters correspond to the information classes
 - split and merge clusters to improve.

Example: K-means clustering

<section-header><text><text><text><text><text><text><text>

Visual inspection of feature 2

Class 2 (forest) seems to be well separated

59

Visual inspection of feature 3

Class 2 (forest) seems to be well separated, Class 1 (urban) seems to be well separated

Visual inspection of feature 4

Class 1 (water) seems to be well separated, Maybe also class 4 (agricultural)

Visual inspection of feature 5

Water and forest appears similar - but the variance might be different

Urban and agricultural appears similar – but the variance might be different

INF 4300	61	INF 4300	62

Visual inspection of feature 6

Seems similar to feature 5, but with better contrast

Selected scatter plots (gscatter)

Scatterplot between feature 1 and 4

Scatterplot between feature 5 and 6

Classified images

The entire image classified to the most probable class

65

67

Display the posterior probabilities as images

Posterior probability for class water

Posterior probability for class forest

Posterior probability for class agricultural

INF 4300

66

Confusion matrix for the training set

True class	Assigned to Class1	Assigned to Class2	Assigned to Class 3	Assigned to Class4
Class 1	1340	2	0	310
Class 1	43	1253	0	2
Class 3	0	0	1738	0
Class 4	131	3	0	1266

Accuracy per class: Averaged over all classes: 91.7% Class1: 81% Class2: 96% Class3: 100% Class4: 90%

INF 4300

Confusion matrix for the test set

True class	Assigned to Class1	Assigned to Class2	Assigned to Class 3	Assigned to Class4
Class 1	1474	3	1	251
Class 1	513	2311	0	0
Class 3	14	0	1953	0
Class 4	213	2	0	1390

Accuracy per class: Class1: 85% Class2: 81% Class3: 98% Class4: 86%

s: Averaged over all classes: 87.5%

Dark values: Probabilities close to 0

Bright values: Probabilities close to 1

Learning goals for this lecture	Next week
 Understand how different measures of classification accuracy work: Confusion matrix Sensitivity/specifity/TP/TN/FP/FN Average classification accuracy Be familiar with the curse of dimensionality and the importance of selecting few, but good features Know simple forward and backward feature selection. Understand kNN-classification Understand the difference between supervised and unsupervised classification Understand the Kmeans-algorithm. 	 Dimensionality reduction by linear feature transforms Create new features in a lower-dimensional space from a linear combination of the input features Principal component transform Fisher's linear discriminant transform
INF 4300 69	17.10.16 INF 4300 70