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Classifier evaluation
KNN-classification
Kmeans-clustering

Anne Solberg (anne@ifi.uio.no)

• xi – feature vector for  pixel i
• i- The class label for pixel i 
• K – the number of classes given in

the training data
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Mask with training pixels

Multiband image with
n spectral channels or features
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From last week: Discriminant functions
for the normal density

• When finding the class with the highest probability, these functions
are equivalent:

• Let us now look at
• With a multivariate Gaussian we get:

• Let ut look at this expression for some special cases: 
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Case 1: Σj=σ2I
• Now we get an equivalent formulation of the discriminant functions:

• An equation for the decision boundary gi(x)=gj(x) can be written as

• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 

orthogonal to w. 
• If P(i)=P(j) the hyperplane will be located halfway between the

mean values.
• Proving this involves some algebra, see the proof at 

https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm
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• The discriminant function (when
Σj=σ2I) that defines the border 
between class 1 and 2 in the feature 
space is a straight line.

• The discriminant function intersects the
line connecting the two class means at 
the point x0=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the
means. 

1

2

xi

x0

Decision boundary
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A simple model, Σj=σ2I

• The distributions are spherical in d dimensions.
• The decision boundary is a generalized hyperplane of d-1 dimensions
• The decision boundary is perpendicular to the line separating the two

mean values
• This kind of a classifier is called a linear classifier, or a linear 

discriminant function
– Because the decision function is a linear function of x.

• If P(i)= P(i), the decision boundary will be half-way between i and 
j
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Case 2: Common covariance, Σj= Σ

• If we assume that all classes have the same shape of data 
clusters, an intuitive model is to assume that their probability 
distributions have the same shape

• By this assumption we can use all the data to estimate the 
covariance matrix

• This estimate is common for all classes, and this means that 
also in this case the discriminant functions become linear 
functions
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Common for all classes, no need to compute
Since xTx is common for all classes, gj(x) again reduces to 
a linear function of x.
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Common covariance, Σj= Σ

• The classes can be described by hyperellipsoides in d dimensions.
• All hyperellipsoids have the same orientation.
• The decision boundary will again be a hyperplane.
• Because w= Σ-1(i-j) is generally not in the direction of i-j, the

hyperplane will not be perpendicular to the line between the means. 
• Consider a point x0 on the line i-j. defined by the prior probabilities:

– If P(i)= P(i), x0 will be half way between the means.
– The separating hyperplane will intersect the line at x0
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Case 3:, Σj=arbitrary

• When all classes are modeled as having different
shapes, the discriminant functions cannot be 
simplified

• This means that the discriminant functions will be 
quadratic functions

• Decision boundaries will be hyperquadrics and 
assume any of the general forms:
– hyperplanes, pairs of hyperplanes, hyperspheres, 

hyperellisoides, hyperparaboloids, hyperhyperboloids...

INF 4300 10

Case 3:, Σj=arbitrary
• The discriminant functions will be quadratic:

• The decision surfaces are hyperquadrics and can assume any of
the general forms:
– hyperplanes
– hypershperes
– pairs of hyperplanes
– hyperellisoids, 
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries

just by looking at the mean and covariance. 
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Is the Gaussian classifier 
the only choice?

• The Gaussian classifier gives linear or quadratic
discriminant function.

• Other classifiers can give arbitrary complex decision
surfaces (often piecewise-linear)
– Mixtures of Gaussians
– Other probability density functions (t-distribution, exponetial

distributions).
– Neural networks
– Support vector machines
– Ensembles of simple classifiers

ADAboost
Random forest/decision trees

– kNN (k-Nearest-Neighbor) classification

Using masks to train and test
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• Training mask: a mask where 
regions to train each class are 
marked using different pixel 
values, e.g. class label=1 for 
class 1, 2 for class 2 etc. 
•Test mask: a similar mask as 
training, but to estimate 
classifier accuracy only. 
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Training a classifier
• Obtain as many ground truth samples for each class as possible

– If visual inspection is reliable, experts can mark training regions 
interactively.

– For remote sensing, go out in the field and collect field samples (or use
images from a different sensor)

– For symbol recognition, mark a set of symbols manually.
– For medical applications, use e.g. tissue samples or interpretations made by 

experts.
• Divide the ground truth into a training set and a test set.
• Use feature extraction and feature selection/evaluation to determine

the best set of features.

• Decide if a linear or quadratic classifier is needed.

s̂ has n elements
s̂ has n(n-1)/2 elements

Estimating s and s

• For each class, compute s (and s) either with a for-loop on
each feature, or use a vector implementation.
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Training

for i=1:N
for j=i:M

if mask(i,j)>==K
increment nof. Samples in class K
store the feature vector f(i,j) in a vector of training samples from class K

end
end
end 

For class k=1:K
compute mean(k) and sigma(k)
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Classifying new data

• For each sample, compute the posterior probabilities
for each class.

• Classify the sample to the class with the highest
posterior probability.

• Evaluate the performance of the classifier on a 
different dataset. 

• We can also produce images of the posterior
probability for each class.
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Validating classifier performance
• Classification performance is evaluated on a different 

set of samples with known class - the test set.
• The training set and the test set must be 

independent!
• Normally, the set of ground truth pixels (with known 

class) is partionioned into a set of training pixels and 
a set of test pixels of approximately the same size. 

• This can be repeated several times to compute more 
robust estimates as average test accuracy over 
several different partitions of test set and training 
set.
– By selecting e.g. 10 random partitions of the set of samples 

into a training set and a test set. 
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Confusion matrices
• A matrix with the true class label versus the estimated 

class labels for each class
Estimated class labels

True class labels

Class 1 Class 2 Class 3 Total 
#sampl
es

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450
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Confusion matrix - cont.

Class 
1

Class 
2

Class 
3

Total 
#sam
ples

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450

Alternatives: 
•Report nof. correctly classified 
pixels for each class.
•Report the percentage of 
correctly classified pixels for 
each class.
•Report the percentage of 
correctly classified pixels in 
total.

•Why is this not a good 
measure if the number of 
test pixels from each class 
varies between classes?
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True / False  positives / negatives

• True positive  (TP):
Patient has cancer 

and test result is positive.

• True negative (TN):
A healthy patient

and a negative test result.

• False positive (FP):
Healthy patient that gets a positive test result.

• False negative (FN):
Cancer patient that gets a negative test result.

• Good to have: TP & TN
• Bad to have: FP (but this will probably be detected)
• Worst to have: FN  (may go un-detected)

TP

F
N

TN

FP

E.g., testing for cancer
No cancer | Cancer
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Sensitivity and specificity
• Sensitivity:

the portion of the data set that tested positive 
out of all the positive patients tested: 

• Sensitivity = TP/(TP+FN)
• The probability that the test is positive 

given that the patient is sick. 

• Higher sensitivity means that 
fewer decease cases go undetected.

• Specificity:
the portion of the data set that tested negative 
out of all the negative patients tested:

• Specificity = TN/(TN+FP)
• The probability that a test is negative 

given that the patient is not sick.

• Higher specificity means that 
fewer healthy patients  are labeled as sick.

TP

F
N

TN

FP

Bayes classification with loss functions

• In cases where different classes have different importance (e.g. 
sick/healthy), we can incorporate this into a Bayesian classifier 
if we consider the loss.

• Let (i|j) be the loss if we decide class i if the true class is 
j.

• The risk of deciding class i is then:
• To minimize the overall risk, compute R(i|x) for i=1…c and 

choose the class for which R(i|x) is minimum.
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Outliers and doubt

• In a classification problem, we might want to identify  
outliers and doubt samples

• We might want an ideal classifier to report
– ’this sample is from class l’ (usual case)
– ’this sample is not from any of the classes’ 

(outlier)
– ’this sample is too hard for me’ (doubt/reject)

• The two last cases should lead to 
a rejection of the sample!
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Outliers
• Heuristically defined as ”… samples which did not come 

from the assumed population of samples” 
• The outliers can result from some breakdown in 

preprocessing.
• Outliers can also come from pixels from other classes 

than the classes in the training data set.
– Example: K tree species classes, but a few road pixels 

divide the forest regions.
• One way to deal with outliers is to model them as a 

separate class, e.g., a gaussian with very large variance, 
and estimate prior probability from the training data

• Another approach is to decide on some threshold on the 
aposteriori probability– and if a sample falls below this 
threshold for all classes, then declare it an outlier. 
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Doubt samples

• Doubt samples are samples for which the class with 
the highest probability is not significantly more 
probable than some of the other classes (e.g. two 
classes have essentially equal probability).

• Doubt pixels typically occurr on the border between 
two classes (”mixels”)
– Close to the decision boundary the probabilities will be 

almost equal.

• Classification software can allow the user to specify 
thresholds for doubt.
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The training / test set dilemma
• Ideally we want to maximize the size of both the training and 

test dataset
• Obviously there is a fixed amount of available data with known 

labels
• A very simple approach is to separate the dataset in two 

random subsets
• For small sample sizes we may have to use another strategy: 

Cross-validation
• This is a good strategy when we have very few ”ground truth” 

samples.
– Common in medicine where we might have a small number of 

patients with a certain type of cancer. 
– The cost of obtaining more ground truth data might be so high that 

we have to do with a small number of ground truth samples. 
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Crossvalidation / Leave – n - Out
• A very simple (but computationally complex) idea allows us us to 

”fake” a large test set
– Train the classifier on a set of N-n samples
– Test the classifier on the n remaining samples
– Repeat  n/N times (dependent on subsampling)
– Report average performance on the repeated experiments 

as ”test set” error
• An example with leave-1-out and 30 samples:

– Select one sample to leave out
– Train on the remaining 29 samples
– Classify the one sample and store its class label
– Repeat this 30 times
– Count the number of misclassifications among the 30 experiments.

• Leave-n-Out estimation 
generally overestimates the classification accuracy.
– Feature selection should be performed within the loop, not in advance!!!

• Using a training set and a test set of approximately 
the same size is better. 
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The covariance matrix and dimensionality

• Assume we have S classes and a d-dimensional feature vector.
• With a fully multivariate Gaussian model, we must estimate S 

different mean vectors  and S different covariance matrices 
from training samples.

• Assume that we have Ms training samples from each class
• Given Ms, there is a maximum of the achieved classification 

performance for a certain value of d 
– increasing n beyond this limit will lead to worse performance.

• Adding more features is not always a good idea!

• Total number of samples given by a rule of thumb:  M>10 d S

• If we have limited training data, 
we can use diagonal covariance matrices or regularization

s̂ has d elements
s̂ has d(d+1)/2 elements
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The ”curse” of dimensionality
– In practice, the curse means that, for a given sample size, 

there is a maximum number of features one can add before 
the classifier starts to degrade.

• For a finite training sample size, 
the correct classification rate 
initially increases when adding 
new features, attains a maximum 
and then begins to decrease.

• For a high dimensionality, 
we will need lots of training data 
to get the best performance.

• => ≈10 samples / feature / class.

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

of the two classes is assumed.

Use few, but good features
• To avoid the ”curse of dimensionality” we must take care in finding 

a set of relatively few features.
• A good feature has high within-class homogeneity, 

and should ideally have large between-class separation.
• In practise, one feature is not enough to separate all classes, 

but a good feature should:
– separate some of the classes well
– Isolate one class from the others. 

• If two features look very similar (or have high correlation), 
they are often redundant and we should use only one of them. 

• Class separation can be studied by:
– Visual inspection of the feature image overlaid the training mask
– Scatter plots 

• Evaluating features as done by training can be difficult to do automatically, 
so manual interaction is normally required. 
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How do we beat the ”curse of dimensionality”?
• Use regularized estimates for the Gaussian case 

– Use diagonal covariance matrices
– Apply regularized covariance estimation

• Generate few, but informative features
– Careful feature design given the application

• Reducing the dimensionality
– Feature selection – select a subset of the original features (more in 

INF5300)
– Feature transforms – compute a new subset of features based on a 

linear combination of all features (next week)
• Example 1: Principal component transform

– Unsupervised, finds the combination that maximized the
variance in the data. 

• Example 2: Fisher’s linear discriminant
– Supervised, finds the combination that maximizes the

distance between the classes.  
INF 5300 32

Regularized covariance matrix estimation
• Case 1 :Diagonal covariance matrix.
• Case 2: Common covariance matrix
• Let the covariance matrix be a weighted combination of a class-specific

covariance matrix k and a common covariance matrix  (estimated
from training samples for all classes) :

where 01 must be determined, and nk and n is the number of
training samples for class k and overall. 

• Alternatively: 

where the parameter 01 must be determined. 
• The effect of these are that we can use a quadratic classifier even if we

have little training data/ill-conditioned k

• We still have to be able to compute k, but the only the
regularized/more robust k(α) or k(β) must be inverted.
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Exhaustive feature selection

• If – for some reason – you know that you will use d 
out of D available features, an exhaustive search will 
involve a number of combinations to test:

• If we want to perform an exhaustive search through D 
features for the optimal subset of the d ≤ m “best 
features”, the number of combinations to test is 

• Impractical even for a moderate number of features!
d ≤ 5, D = 100  =>  n = 79.374.995
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Suboptimal feature selection 

• Select the best single features based on some quality 
criteria, e.g., estimated correct classification rate.
– A combination of the best single features will often imply 

correlated features and will therefore be suboptimal . 

• “Sequential forward selection” implies that when a 
feature is selected or removed, this decision is final. 

• “Stepwise forward-backward selection” overcomes this. 
– A special case of the “add - a, remove - r algorithm”. 

• Improved into “floating search” by making the number of 
forward and backward search steps data dependent. 
– “Adaptive floating search”
– “Oscillating search”.
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Distance measures used in feature 
selection

• In feature selection, each feature combination must be ranked 
based on a criterion function. 

• Criteria functions can either be distances between classes, or 
the classification accuracy on a validation test set. 

• If the criterion is based on e.g. the mean values/covariance 
matrices for the training data, distance computation is fast. 

• Better performance at the cost of higher computation time is 
found when the classification accuracy on a validation data set 
(different from training and testing) is used as criterion for 
ranking features. 
– This will be slower as classification of the validattion data needs to be done 

for every combination of features. 
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Distance measures between classes 

• How do be compute the distance between two classes:
– Distance between the closest two points?
– Maximum distance between two points?
– Distance between the class means?
– Average distance between points in the two classes?
– Which distance measure?

• Euclidean distance or Mahalanobis distance?

• Distance between K classes:
– How do we generalize to more than two classes?
– Average distance between the classes?
– Smallest distance between a pair of classes?
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Class separability measures

• How do we get an indication of the separability 
between two classes?
– Euclidean distance between class means |r- s|
– Bhattacharyya distance

• Can be defined for different distributions
• For Gaussian data, it is

– Mahalanobis distance between two classes:
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Examples of feature selection - Method 1 -
Individual feature selection

• Each feature is treated individually (no correlation/covariance 
between features is consideren)

• Select a criteria, e.g. a distance measure
• Rank the feature according to the value of the criteria C(k)
• Select the set of features with the best individual criteria value
• Multiclass situations:

– Average class separability or
– C(k) = min distance(i,j) - worst case 

• Advantage with individual selection: computation time
• Disadvantage: no correlation is utilized.

Often used
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Method 2 - Sequential backward selection

• Select l features out of d
• Example: 4 features x1,x2,x3,x4

• Choose a criterion C and compute it for the vector [x1,x2,x3,x4]T

• Eliminate one feature at a time by computing [x1,x2,x3]T, 
[x1,x2,x4]T, [x1,x3,x4]T and [x2,x3,x4]T

• Select the best combination, say [x1,x2,x3]T.

• From the selected 3-dimensional feature vector eliminate one 
more feature, and evaluate the criterion for [x1,x2]T, [x1,x3]T, 
[x2,x3]T and select the one with the best value.

• Number of combinations searched: 
1+1/2((d+1)d-l(l+1))
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Method 3: Sequential forward selection

• Compute the criterion value for each feature. Select the 
feature with the best value, say x1.

• Form all possible combinations of features x1 (the winner at 
the previous step) and a new feature, e.g. [x1,x2]T, [x1,x3]T, 
[x1,x4]T, etc. Compute the criterion and select the best one, 
say [x1,x3]T.

• Continue with adding a new feature.
• Number of combinations searched: ld-l(l-1)/2.

– Backwards selection is faster if l is closer to d than to 1. 



An alternative classifier
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k-Nearest-Neighbor classification

• A very simple classifier.
• Classification of a new sample xi is done as follows: 

– Out of N training vectors, identify the k nearest neighbors 
(measured by Euclidean distance) in the training set, 
irrespectively of the class label.    

– Out of these k samples, identify the number of vectors ki
that belong to class i , i:1,2,....M (if we have M classes)

– Assign xi to the class i with the maximum number of ki
samples. 

• k should be odd, and must be selected a priori. 

INF 4300 43

kNN-example 



If k=1, will be classified as

If k=5, will be classified as

INF 4300 44

About kNN-classification
• If k=1 (1NN-classification), each sample is assigned to the same 

class as the closest sample in the training data set. 
• If the number of training samples is very high, 

this can be a good rule.
• If k->, this is theoretically a very good classifier.
• This classifier involves no ”training time”, but the time needed 

to classify one pattern xi will depend on the number of training 
samples, as the distance to all points in the training set must be 
computed. 

• ”Practical” values for k: 3<=k<=9
• Classification performance should always be computed on the 

test data set. 
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Supervised or unsupervised classification
• Supervised classification

– Classify each object or pixel into a set of k known classes
– Class parameters are estimated using a set of training 

samples from each class.

• Unsupervised classification
– Partition the feature space into a set of k clusters
– k is not known and must be estimated (difficult)

• In both cases, classification is based on the value of
the set of n features x1,....xn.

• The object is classified to the class which has the
highest posterior probability.

• ”The clusters we get are not the classes we want”. 
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Unsupervised classification/clustering

• Divide the data into clusters based on similarity 
(or dissimilarity)

• Similarity or dissimilarity is based on distance 
measures (sometimes called proximity measures)
– Euclidean distance, Mahalanobis distance etc.

• Two main approaches to clustering
– hierarchical - non-hierarchical 

(sequential)
• divisive
• agglomerative 

• Non-hierarachical methods are often used in image 
analysis
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K-means clustering 

• Note: K-means algorithm normally means ISODATA, but different 
definitions are found in different books

• K is assumed to be known
1. Start with assigning K cluster centers

– k random data points, or the first K points, or K equally spaces points
– For k=1:K, Set k equal to the feature vector xk for these points.

2. Assign each object/pixel xi in the image to the closest cluster center 
using Euclidean distance.
• Compute for each sample the distance r2 to each cluster center:

• Assign xi to the closest cluster (with minimum r value) 

3. Recompute the cluster centers based on the new labels.
4. Repeat from 2 until #changes<limit.

ISODATA K-means: splitting and merging of clusters are included in 
the algorithm

    22
kiki

T
ki xxxr  
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k-means example

X2

X3

X5

X1

X6

X7

X8

X4
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k-means example

X2

X3

X5

X1

X6

X7

X8

X4

μ1

μ3

μ2

Step 1:

Choose k cluster centres, μk
(0),

randomly from the available 
datapoints.

Here: k = 3
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k-means example

X2

X3

X5

X1

X6

X7

X8

X4

μ1

μ3

μ2

Step 2:

Assign each of the objects in x to 
the nearest cluster center μk

(i)
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i
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k-means example

X2

X3

X5

X1

X6

X7

X8

X4

μ1

μ3

μ2

Step 3:

Recalculate cluster centres μk
(i+1)

based on the clustering in 
iteration i




 
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)(
)1( 1

i
jn cx

ni
j

i
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N

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k-means example

X2

X3

X5

X1

X7

X8

X4

μ1

μ2

X6

μ3

Step 4:

If the clusters don’t change; 
μk

(i+1)≈ μk
(i) (or prespecified 

number of iterations i reached), 
terminate, 
else reassign - increase iteration i
and goto step 2.
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k-means example

X(6)

X2

X5

X1

X7

X8

X4

μ1

μ2

X6

Step 3 in next iteration:

Recalculate cluster centres.

μ3

X3
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k-means variations

• The generic algorithm has many improvements
– ISODATA – allow for merging and splitting of clusters

• Among other things, this seeks to improve 
an initial ”bad” choice of k

– k-medians is another variation
– k-means optimizes a probabilistic model 
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How do we determine k?
• The number of natural clusters in the data rarely corresponds to 

the number of information classes of interest.

• Cluster validity indices can give indications of how many clusters 
there are.

• Use cluster merging or splitting tailored to the application.

• Rule of thumb for practical image clustering:
– start with approximately twice as many clusters as expected 

information classes
– determine which clusters correspond to the information classes
– split and merge clusters to improve.
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Example:  K-means clustering

Original

Kmeans
K=5

Kmeans
K=10

Supervised
4 classes



A classification example
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Landsat image with 6 spectral bands
The 6 bands will be the features
Training areas and test areas shown 
in mask

Upper part: RGB-false color image created from bands 
4,5 and 6 with training and test regions overlaid.

Lower part: image of training regions only
•

1

2
3

4

Visual inspection of feature 1 
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Class 2 (forest) seems to be well separated,
Maybe also class 1 (urban)

1

2 3

4

Visual inspection of feature 2 
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Class 2 (forest) seems to be well separated

Visual inspection of  feature 3 
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Class  2 (forest) seems to be well separated,
Class 1 (urban) seems to be well separated



Visual inspection of  feature 4 
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Class 1 (water) seems to be well separated,
Maybe also class 4 (agricultural)

Visual inspection of feature 5 
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Water and forest appears similar 
- but the variance might be 
different

Urban and agricultural appears 
similar – but the variance might 
be different

Visual inspection of feature 6 
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Seems similar to feature 5,
but with better contrast

Selected scatter plots (gscatter)
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Scatterplot between feature 1 and 4 Scatterplot between feature 5 and 6



Classified images
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The entire image classified to the most probable class

Display the posterior probabilities
as images
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Posterior probability for class urban Posterior probability for class forest

Posterior probability for class water
Posterior probability for class agricultural

Dark values: 
Probabilities close to 0

Bright values:
Probabilities close to 1

Confusion matrix
for the training set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1340 2 0 310

Class 1 43 1253 0 2

Class 3 0 0 1738 0

Class 4 131 3 0 1266
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Accuracy per class:     Averaged over all classes: 91.7%
Class1: 81%
Class2: 96%
Class3: 100%
Class4: 90%

Confusion matrix
for the test set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1474 3 1 251

Class 1 513 2311 0 0

Class 3 14 0 1953 0

Class 4 213 2 0 1390
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Accuracy per class:      Averaged over all classes: 87.5%
Class1: 85%
Class2: 81%
Class3: 98%
Class4: 86%



Learning goals for this lecture

• Understand how different measures of classification 
accuracy work:
– Confusion matrix
– Sensitivity/specifity/TP/TN/FP/FN
– Average classification accuracy

• Be familiar with the curse of dimensionality and the 
importance of selecting few, but good features

• Know simple forward and backward feature selection.
• Understand kNN-classification
• Understand the difference between supervised and 

unsupervised classification
• Understand the Kmeans-algorithm.
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Next week

• Dimensionality reduction by linear feature transforms
– Create new features in a lower-dimensional space from a 

linear combination of the input features
– Principal component transform
– Fisher’s linear discriminant transform
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