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Introduction to classifiction
Anne Solberg (anne@ifi.uio.no)

• From scatterplots to classification
Based on Chapter 2 (2.1-2.6) in Duda and Hart: Pattern

Classification, R. Duda, P. Hart and D. Stork.
Chapter 1 Introduction

Chapter 2 Bayesian Decision Theory, 2.1-2.6
See ~inf3300/www_docs/bilder/dudahart_chap2.pdf 

and dudahart-appendix.pdf

Plan for this lecture:

• Visualizing features using scatter plots
• Explain the relation between thresholding and 

classification with 2 classes
• Background in probability theory
• Bayes rule
• Classification with a Gaussian density and a single 

feature
– Linear boundaries in feature space

• Briefly: training and testing a classifier

INF 4300 2

From features to discrimination between objects

• The following slides introduces simple tools as scatter 
plots to visualize how good a feature (or combination 
of 2-3 features) is in separating objects of different 
types/classes. 

• To evaluate features, we use training data consisting 
of objects with KNOWN CLASS.
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Scatter plots
• A 2D scatter plot is a plot of feature

values for two different features. Each
object’s feature values are plotted in 
the position given by the features
values, and with a class label telling its
object class. 

• A scatter plott visualize the space
spanned by 2 or more features: called
the feature space

• Matlab: gscatter(feature1, feature2, 
labelvector)

• Classification is done based on more 
than two features, but this is difficult
to visualize. 

• Features with good class separation
show clusters for each class, but
different clusters should ideally be 
separated. INF 4300

Feature 1: minor axis length

Feature 2: 
major axis

length
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Which numbers are well separated?
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Aristotle and Occam

• Our search for models or hypotheses that describe the laws of nature     
is based on a ”minimum complexity principle”. 

• Aristotle (384-322 BC), Physics, book I, chapter VI: 
‘The more limited, if adequate, is always preferable’.

• William of Occam (1285-1349): 
‘Pluralitas non est ponenda sine necessitate’.

• The simplest model that explains the data is the best. 

• So far, “Occam’s Razor”  has generally motivated 
the search and selection of reduced dimensionality feature sets. 

• It should also motivate us to generate
only a few but powerful features.

• Many practitioners have forgotten the minimum complexity principle.
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The ”curse-of-dimensionality”

• Also called ”peaking phenomenon”.
• For a finite training sample size,     

the correct classification rate initially 
increases when adding new features, 
attains a maximum and then begins 
to decrease.

• The implication is that:
• For a high measurement complexity, 

we will need large amounts of 
training data in order to attain the 
best classification performance.

• => 5-10 samples 
per feature per class.

Illustration from G.F. Hughes (1968).

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

of the two classes is assumed.
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Introduction to classification
• One of the most challenging topics in image analysis is recognizing a specific object in an image. To 

do that, several steps are normally used. Some kind of segmentation can delimit the spatial extent
of the foreground objects, then a set of features to describe the object characteristics are
computed, before the recognition step that decides which object type this is.

• The focus of the next lectures is the recognition step. The starting point is that we have a set of K 
features computed for an object. These features can either describe the shape or the gray 
level/color/texture properties of the object. Based on these features we need to decide what kind of
an object this is. 

• Statistical classification is the process of estimating the probability that an object belongs to one of
S object classes based on the observed value of K features. Classification can be done both
unsupervised or supervised.  In unsupervised classification the categories or classes are not known, 
and the classification process with be based on grouping similar objects together. In supervised
classification the categories or classes are known, and the classification will of consist of estimating
the probability that the object belongs to each of the S object classes. The object is assigned to the
class with highest probability. For supervised classifcation, training data is needed. Training data 
consists of a set of objects with know class type, and they are used to estimate the parameters of
the classifier. 

• Classification can be pixel-based or region-based.
• The performance of a classifier is normally computed as the accuracy it gets when classifying a 

different set of objects with known class labels called the test set. 



Concepts in classification

• In the following three lectures we will cover these
topics related to classification:
– Training set
– Validation set
– Test set
– Classifier accuracy/confusion matrices.
– Computing the probability that an object belongs to a class.

• Let each class be represented by a probability density function. 
In general many probability densities can be used but we use
the multivariate normal distribution which is commonly used.

– Bayes rule
– Discriminant functions/Decision boundaries
– Normal distribution, mean vector and covariance matrices
– kNN classification
– Unsupervised classification/clustering
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From INF2310: Thresholding

• Basic thresholding assigns all pixels in 
the image to one of 2 classes: 
foreground or background

• This can be seen as a 2-class 
classification problem based on a single 
feature, the gray level. 

• The 2 classes are background and 
foreground, and the threshold T defines
the border between them.
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Classification error for thresholding

Background probability distribution

Foreground probability distribution
Threshold t

In this region, foreground pixels 
are misclassified as background In this region, background pixels are

misclassified as foreground
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Classification error for thresholding

• We assume that b(z) is the normalized histogram for background b(z)
and f(z) is the normalized histogram for foreground.

• The histograms are estimates of the probability distribution of the gray 
levels in the image. 

• Let F and B be the prior probabilities for background and 
foreground(B+F=1)

• The normalized histogram for the image is then given by

• The probability for misclassification given a treshold t is:

)()()( zfFzbBzp 












t
F

t

B

dzzbtE

dzzftE

)()(

)()(



INF 4300 13

Find T that minimizes the error
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Minimum error is achieved by setting T equal to the
point where the probabilities for foreground and 
background are equal.
The locations in feature space where the probabilities are
equal is called decision boundary in classification. 
The goal of classification is to find the boundaries.
See 

Partitioning the feature space using
thresholding – 1 feature and 1 threshold
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Tresholding one feature gives a linear 
boundary separating the feature space

Partitioning the feature space using
thresholding – 2 features and 2 thresholds

INF 4300 15

Tresholding two features independently
gives a rectangular boxes in feature space

Can we find a line with better separation?
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We cannot isolate all classes using straight 
lines. This problem is not linearly
separable



The goal: partitioning the space with smooth
boundaries
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Distributions, standard deviation and variance

• A univariate (one feature) Gaussian distribution (normal 
distribution) is specified given the mean value  and the variance
2:

• Variance 2, standard deviation 
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Two Gaussian distributions for 
thresholding a single feature

• Assume that b(z) and f(z) are Gaussian distributions, 
then

• B and F are the mean values for background and 
foreground.

• B
2 and F

2 are the variance for background and 
foreground.
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The 2-class classification problem summarized

• Given two Gaussian distributions b(z) and f(z).
• The classes have prior probabilities F and B.
• Every pixel should be assigned to the class that

minimizes the classification error.
• The classification error is minimized at the point

where F f(z) = B b(z). 

• What we will do now is to generalize to K classes
and D features.



How do we find the best border 
beteen K classes with 2 features?

• We will find the theoretical answer and a geometrical 
interpretation of class means, variance, and the 
equivalent of a threshold.
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The goal of classification

• We estimate the decision boundaries (equivalent to 
the threshold for multivariate data) based on training 
data. 

• Classification performance is always estimated on a 
separate ”test” data set. 
– We try to measure the generalization performance.

• The classifier should perform well when classifying
new samples
– Have lowest possible classification error.

• We often face a tradeoff between classification error
on the training set and generalization ability when
determining the complexity of the decision boundary.

Probability theory - Appendix A.4

• Let x be a discrete random variable that can assume
any of a finite number of M different values. 

• The probability that x belongs to class i is
pi = Pr(x=i), i=1,...M

• A probability distribution must sum to 1 and 
probabilities must be positive so pi0 and 
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Expected values - definition
• The expected value or mean of a random variable x is: 

• The variance or second order moment 2 is: 

• These will be estimated from training data where we know the
true class labels: . 
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Pairs of random variables - definitions

• Let x and y be two random variables. 
• The joint probability of observing a pair of values

(x=i,y=j) is pij.

• Alternatively we can define a joint probability
distribution function P(x,y) for which

• The marginal distributions for x and y (if we want to 
eliminate one of them) is: 
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Statistical independence - definitions

• Variables x and y are statistical independent if and only if

• In words: two variables are indepentent if the occurrence of one
does not affect the other. 

• If two variables are not independent, they are dependent. 
• If two variables are independent, they are also uncorrelated.
• For more than two variables: all pairs must be independent. 
• Two variables are uncorrelated if

• If Cov[X ,Y] = E[X Y] − E[X ]E[Y] =0, we must have             
E[X Y] = E[X ]E[Y]

• If two variables are uncorrelated, they can still be dependent. 
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Expected values of two variables

• Expected values of two variables:
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 Where (in this
course) have you
seen similar
formulas?
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Feature 1

Feature 2

Can you sketch
approximately
x,y,?
Which is largest, 
x

2 or y
2?



Conditional probability
• If two variables are statistically dependent, knowing the value

of one of them lets us get a better estimate of the value of the
other one. We need to consider their covariance. 

• The conditional probability of x given y is defined: 

• Example: Draw two cards from a deck.  Drawing a king in the
first draw has probability 4/52. Drawing a king in the secong
draw (given that the first draw gave a king) is 3/51. 
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Bayesian decision theory
• A fundamental statistical approach to 

pattern classification.
• Named after Thomas Bayes (1702-

1761), an english priest and 
matematician. 

• It combines prior knowledge about
the problem with a probability
distribution function. 

• The most central concept (for us) is 
Bayes decision rule.
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Bayes rule in general

• The equation:

• In words:

• x are observations/feature vector,  is the unknown
class labels.

• We want to find the most probable class  given the
observed feature vector x.
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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes.  is the class label for a 
pixel, and x is the observed gray level (or feature vector).  

• We can use Bayes rule to find an expression for the class with
the highest probability:

• For thresholding, P(j) is the prior probability for background or 
foreground. If we don't have special knowledge that one of the
classes occur more frequent than other classes, we set them
equal for all classes. (P(j)=1/J, j=1.,,,J).

• Small p means a probability distribution
• Capital P means a probability (scalar value between 0 and 1)
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Bayes rule explained

• p(x|j) is the probability density function that models the likelihood 
for observing gray level x if the pixel belongs to class j.  

– Typically we assume a type of distribution, e.g. Gaussian, and 
the mean and covariance of that distribution is fitted to some 
data that we know belong to that class. This fitting is called 
classifier training. 

• P(j|x) is the posterior probability that the pixel actually belongs to 
class j. We will soon se that the the classifier that achieves the 
minimum error is a classifier that assigns each pixel to the class j
that has the highest posterior probability.

• p(x) is just a scaling factor that assures that the probabilities sum 
to 1. 
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Probability of error 

• If we have 2 classes, we make an error either if we 
decide 1 if the true class is 2 if we decide 2 if the 
true class is 1.

• If P(1|x) > P(2|x) we have more belief that x 
belongs to 1, and we decide 1.

• The probability of error is then:
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Back to classification error for thresholding

- Background - Foreground

In this region, foreground pixels 
are misclassified as background In this region, background pixels are

misclassified as foreground
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Minimizing the error

• When we derived the optimal threshold, we showed
that the minimum error was achieved for placing the
threshold (or decision boundary as we will call it 
now) at the point where

P(1|x) = P(2|x)
• This is still valid. 
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Bayes decision rule

• In the 2 class case, our goal of minimizing the error
implies a decision rule:
Decide ω1 if P(ω1|x)>P(ω2|x);  otherwise ω2 

• For J classes, the rule analogusly extends to choose
the class with maximum a posteriori probability

• The decision boundary is the”border” between
classes i and j, simply where P(ωi|x)=P(ωj|x) 
– Exactly where the threshold was set in minimum error

thresholding!

Bayes classification with J classes
and D features

• How do we generalize:
– To more the one feature at a time
– To J classes
– To consider loss functions (that some errors are more costly

than others)
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Bayes rule with J classes and d features

• If we measure d features, x will be a d-dimensional
feature vector. 

• Let {1,....,J} be a set of J classes. 
• The posterior probability for class j is now computed

as 

• Still, we assign a pixel with feature vector x to the
class that has the highest posterior probability: 

INF 4300 39








c

j
jj

jj
j

Ppxp

p
Pp

P

1
)()|()(

)(
)()|(

)|(






x

x
x

x

ijP   allfor  ),|()|P( if  Decide j11 xx 

Discriminant functions 

• The decision rule

can be written as assign x to 1 if

• The classifier computes J discriminant functions gi(x) 
and selects the class corresponding to the largest
value of the discriminant function. 

• Since classification consists of choosing the class that
has the largest value, a scaling of the discriminant
function gi(x) by f(gi(x)) will not effect the decision if
f is a monotonically increasing function.

• This can lead to simplifications as we will soon see.
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Equivalent discriminant functions

• The following choices of discriminant functions give 
equivalent decisions:

• The effect of the decision rules is to divide the feature space 
into c decision regions R1,......Rc.

• If gi(x)>gj(x) for all ji, then x is in region Ri.
• The regions are separated by decision boundaries, surfaces in 

features space where the discriminant functions for two classes 
are equal 
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The Gaussian density -
univariate case (a single feature)

• To use a classifier we need to select a probability 
density function p(x|i).

• The most commonly used probability density is the 
normal (Gaussian) distribution: 

INF 4300 42

 

  































 



dxxpxxE

dxxxp

xxp

)()()(  varianceand

)(xE mean)(or   valueexpectedwith 

2
1exp

2
1)(

222

2










Example: image and training masks 
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The masks contain labels for the
training data. 
If label=1, then the pixel belongs
to class 1 (red), and so on. 
If a pixel is not part of the
training data, it will have label 0.
A pixel belonging to class k will
have value k in the mask image.
The mask is often visualized in 
pseudo-colors on top of the input 
image, where each class is 
assign a color. 
We should have a similar mask 
for the test data.

Training a univariate Gaussian classifier

• To be able to compute the value of the discriminant function, 
we need to have an estimate of j and j

2 for each class j. 
• Assume that we know the true class labels for some pixels and 

that this is given in a mask image.  The mask has Nk pixels for 
each class. 

• Training the classifier then consists of computing  j and j
2 for 

all pixels with class label j in the mask file.
• They are computed from training data as:
• For all pixels xi with label k in the training mask, compute
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Training

for i=1:N
for j=i:M

if mask(i,j)>==K
increment nof. Samples in class K
store the feature vector f(i,j) in a vector of training samples from class K

end
end
end 

For class k=1:K
compute mean(k) and sigma(k)
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How do to classification with a 
univariate Gaussian (1 feature)

• Decide on values for the prior probabilities, P(j). If we have no
prior information, assume that all classes are equally probable 
and P(j)=1/J.

• Estimate j and j
2 based on training data based on the

formulae on the previous slide. 
• For each pixel:

For class j=1,….J, compute the discriminant function

Assign pixel x to the class C with the highest value of P(j|x) by setting 
label_image(x,y)=  C

The result after classification is an image with class labels
corresponding to the most probable class for  each pixel.  

We compute the classification error rate from an independent test 
mask. 

INF 4300 46

)(
2
1exp

2
1)()|()|(

2

j
j

j

j
jjj P

x
PxpxP 






























 


Estimating classification error

• A simple measure of classification accuracy can be to 
count the percentage of correctly classified pixels
overall (averaged for all classes), or per. class. If a 
pixel has true class label k, it is correctly classified if
j=k.

• Normally we use different pixels to train and test a 
classifier, so we have a disjoint training mask and 
test mask. 

• Estimate the classification error by classifying all 
pixels in the test set and count the percentage of
wrongly classified pixels. 

INF 4300 47 INF 4300 48

Validating classifier performance
• Classification performance is evaluated on a different 

set of samples with known class - the test set.
• The training set and the test set must be 

independent!
• Normally, the set of ground truth pixels (with known 

class) is partionioned into a set of training pixels and 
a set of test pixels of approximately the same size. 

• This can be repeated several times to compute more 
robust estimates as average test accuracy over 
several different partitions of test set and training 
set.
– By selecting e.g. 10 random partitions of the set of samples 

into a training set and a test set. 
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Confusion matrices
• A matrix with the true class label versus the estimated 

class labels for each class
Estimated class labels

True class labels

Class 1 Class 2 Class 3 Total 
#sampl
es

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450
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Confusion matrix - cont.

Class 
1

Class 
2

Class 
3

Total 
#sam
ples

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

Total 110 205 135 450

Alternatives: 
•Report nof. correctly classified 
pixels for each class.
•Report the percentage of 
correctly classified pixels for 
each class.
•Report the percentage of 
correctly classified pixels in 
total.

•Why is this not a good 
measure if the number of 
test pixels from each class 
varies between classes?

Using more than one feature

• The power of the computer lies in deciding based on
more than 1 feature at a time

• A simple trick to do this is to assume that features i 
and j and independent, then p(i,j|c)=p(i|c)p(j|c)

• The joint decision based on D independent features
is then:
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Upcoming lectures

• Multivariate Gaussian
• Classifier evaluation
• Feature selection/feature transforms
• Knn-classification
• Unsupervised classification
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