Linear feature transforms INF 4300 • Feature extraction can be stated as • Given a feature space $x_i \in \mathbb{R}_n$ find an optimal mapping Linear feature transforms $y = f(x) : \mathbb{R}_n \to \mathbb{R}_m$ with m < n. • An optimal mapping in classification :the transformed feature vector y yield the same classification rate as x. Anne Solberg (anne@ifi.uio.no) • The optimal mapping may be a non-linear function Today: • Difficult to generate/optimize non-linear transforms · Feature transformation through principal • Feature extraction is therefore usually limited to linear component analysis transforms $y = A^T x$ Fisher's linear discriminant function y_1 $a_{11} \quad a_{11} \quad \dots \quad a_{1n}$ X_2 $a_{21} a_{22} \dots a_{2n}$ y_2 = ÷ a_{m1} 24.10.16 INF 4300 1 INF 4300 2 Signal representation vs classification Idea behind (Principal Component Transform) Principal components analysis (PCA) • Find a projection **y**=A^T**x** of the - signal representation, unsupervised feature vector x Minimize the mean square representation error (unsupervised) • Three interpretations of PCA: Linear discriminant analysis (LDA) -classification, supervised - Find the projection that maximize the - Maximize the distance between \sim variance along the selected projection the classes (supervised) -eature Minimize the reconstruction error (squared distance between original and transformed data) - Find a transform that gives signal teoresentation uncorrelated features

Feature 1

4

Definitions: Correlation matrix vs. covariance matrix

- Σ_x is the covariance matrix of x $\Sigma_x = E[(x - \mu)(x - \mu)^T]$
- R_x is the correlation matrix of x

$$R_x = E\left[(x)(x)^T\right]$$

• $R_x = \Sigma_x$ if $\mu_x = 0$.

Principal component or Karhunen-Loeve transform

- Let x be a feature vector.
- Features are often correlated, which might lead to redundancies.
- We now derive a transform which yields **uncorrelated** features.
- We seek a linear transform y=A^Tx, and the y_is should be uncorrelated.
- The y_i s are uncorrelated if $E[y(i)y(j)^T]=0$, $i \neq j$.
- If we can express the information in x using uncorrelated features, we might need <u>fewer</u> coefficients.

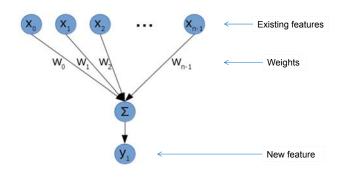
INF 4300

Linear feature transforms I/II

INF 4300

5

7



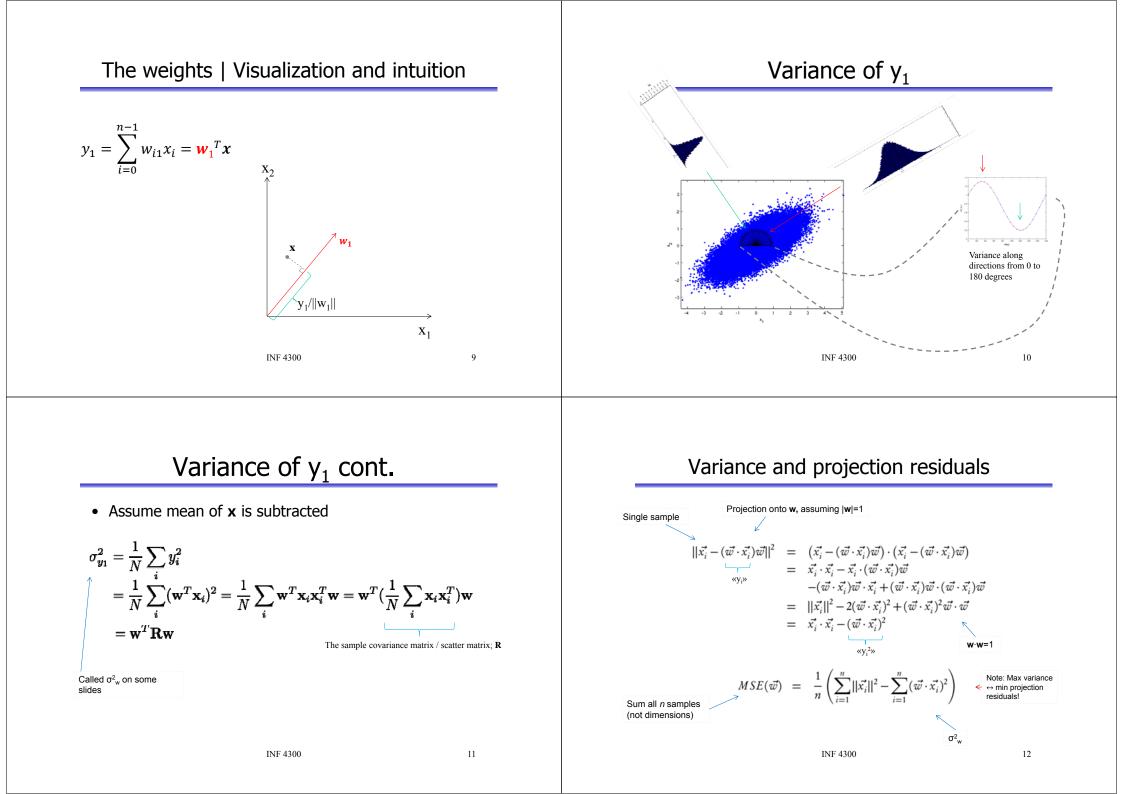
Linear feature transforms II/II

• Multiple output features by applying different weights for each one:

 $y_1 = \sum_{i=0}^{n-1} w_{i1} x_i, \quad y_2 = \sum_{i=0}^{n-1} w_{i2} x_i, \quad \dots \quad y_m = \sum_{i=0}^{n-1} w_{im} x_i$

- In matrix notation $\mathbf{y} = \mathbf{A}^{\mathsf{T}}\mathbf{x}$, $\mathbf{A} = [\mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_m]$
- If **y** has fewer elements than **x**, we get a feature reduction

6



Criterion function

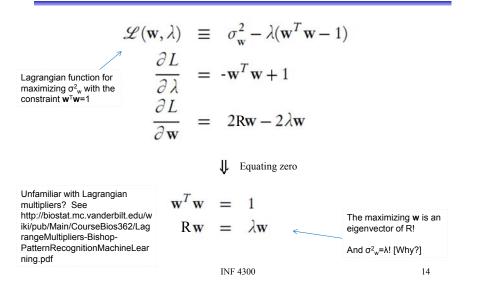
- Goal: Find transform minimizing representation error
- We start with a single weight-vector, **w**, giving us a single feature, y₁
- Let $J(\mathbf{w}) = \mathbf{w}^T \mathbf{R} \mathbf{w} = \sigma_w^2$
- Now, let's find $\max_{\substack{w \\ s.t. ||w|| = 1}} J(w)$

As we learned on the previous slide, maximizing this is equivalent to minimizing representation error

13

15

Maximizing variance of y_1

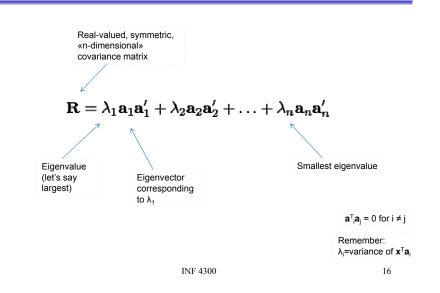


w₂, **w**₃, ... I/III

INF 4300

- Ok, I've got the **w**₁ giving me the transform (linear weights) that maximizes the variance / minimizes the representation error ..
- .. Now I want another one that again maximizes the variance / minimizes the representation error, but the new feature should be uncorrelated with my previous one ..
- .. Which w₂ would give me this?

Eigendecomposition of covariance matrices



w₂, **w**₃, .. II/III

- What does uncorrelated mean? Zero covariance.
- Covariance of y₁ and y₂:

$$\frac{1}{N}\sum_{i}^{N}y_{1}(i)'y_{2}(i)=\frac{1}{N}\sum_{i}^{N}\mathbf{w}_{1}'\mathbf{x}(i)\mathbf{x}(i)'\mathbf{w}_{2}=\mathbf{w}_{1}'\mathbf{R}\mathbf{w}_{2}$$

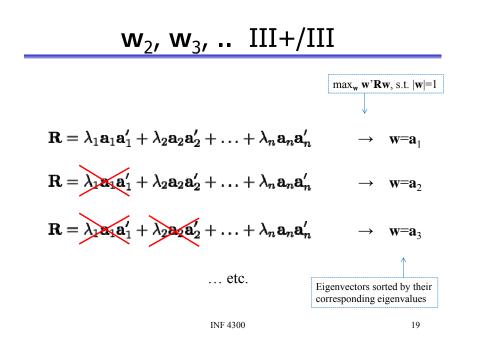
- We already have that **w**₁=**a**₁
- From last slide, requiring w₁'Rw₂ = a₁'Rw₂ = 0 means requiring w₂'a₁=0

```
INF 4300
```

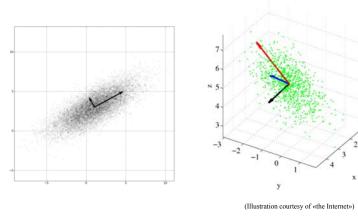
17

w₂, **w**₃, .. III/III

- We want $\max_{\mathbf{w}} \mathbf{w}' \mathbf{R} \mathbf{w}$, s.t. $|\mathbf{w}| = 1$ and $\mathbf{w}' \mathbf{a}_1 = 0$
- We can simply remove $\lambda_1 a_1 a_1$ ' from **R**, creating $\mathbf{R}_{next} = \mathbf{R} \cdot \lambda_1 a_1 a_1$ ', and again find max_w w' \mathbf{R}_{next} w s.t. $|\mathbf{w}|=1$
- Studying the decomposition of R (a few slides back), we see that the solution is the eigenvector corresponding to the second largest eigenvalue
- Similarly, the w_3 , w_4 etc. are given by the following eigenvectors sorted according to their eigenvalues INF 4300 18



Example of distributions and eigenvectors



Principal component transform (PCA)

- Place the *m* «principle» eigenvectors (the ones with the largest eigenvalues) along the columns of A
- Then the transform **y** = **A**^T**x** gives you the *m* first principle components
- The *m*-dimensional **y**
 - have uncorrelated elements
 - retains as much variance as possible
 - gives the best (in the mean-square sense) description of the original data (through the «image»/projection/reconstruction Ay)

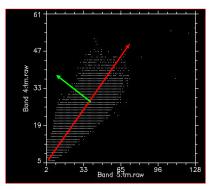
Note: The eigenvectors themselves can often give interesting information PCA is also known as Karhunen-Loeve transform

21

INF 4300

Geometrical interpretation of principal components

- The eigenvector corresponding to the largest eigenvalue is the direction in n-dimensional space with highest variance.
- The next principal component is orthogonal to the first, and along the direction with the second largest variance.

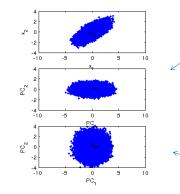


Note that the direction with the highest variance is NOT related to separability between classes.

INF 5300

22

PCA and rotation and «whitening»



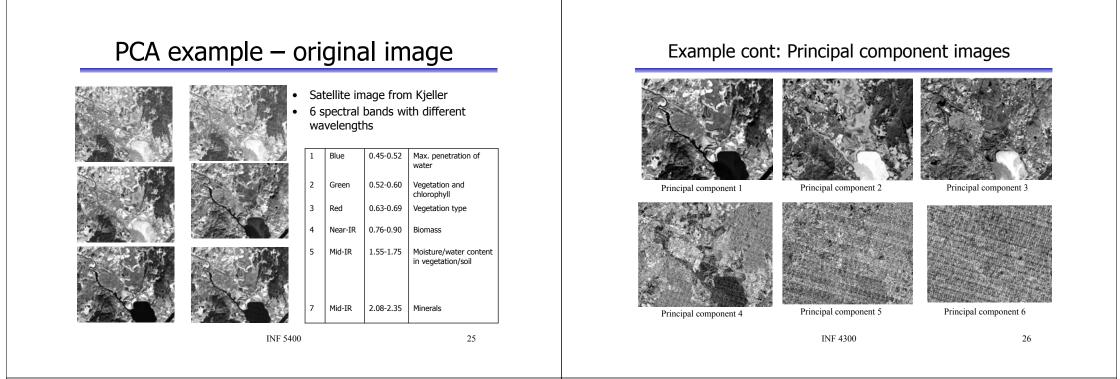
Note: Uncorrelated variables need not appear round/spherical:

If we use all eigenvectors in the transform, $\mathbf{y} = \mathbf{A}^{t}\mathbf{x}$, we simply rotate our data so that our new features are uncorrelated, i.e., $cov(\mathbf{y})$ is a diagonal matrix.

If we as a next step scale each feature by their σ^{-1} , $\mathbf{y} = \mathbf{D}^{(-1/2)}\mathbf{A}^{t}\mathbf{x}$, where \mathbf{D} is a diagonal matrix of eigenvalues (i.e., variances), we get cov(\mathbf{y})=I. We say that we have «whitened» the data.

PCA and multiband images

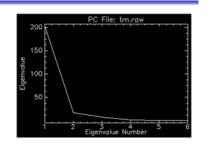
- We can compute the principal component transform for an image with *n* bands
- Let **X** be an *N*x*n* matrix having a row for each image sample
- Sample covariance matrix (after mean subtracted): $R = \frac{1}{N}X^{T}X$
- Place the (sorted) eigenvectors along the columns of A
- Y=XA will then contain the image samples, however most of the variance is in the «bands» with the lowest index (corresponding to the largest eigenvalues), and the new features are uncorrelated



Example cont: Inspecting the eigenvalues

The mean-square representation error we get with m of the N PCA-components is given as

$$E\left[\|x - \hat{x}\|^2\right] = \sum_{i=1}^{N-1} \lambda_i - \sum_{i=1}^m \lambda_i = \sum_{i=m}^{N-1} \lambda_i$$



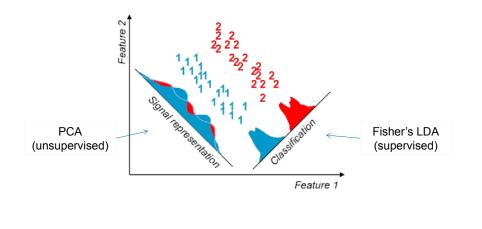
Plotting λs will give indications on how many features are needed for representation

PCA and classification

- Reduce overfitting by detecting directions/components without any/very little variance
- Sometimes high variation means useful features for classification:

• .. and sometimes not:

Intro to Fisher's linear discriminant



INF 4300

A criterion function including variance

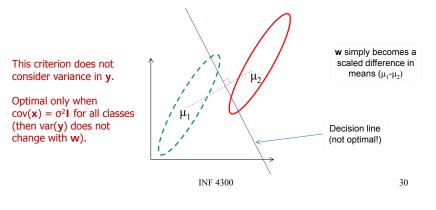
- Fisher's solution: Maximize a function that represents the difference between the means, scaled by a measure of the within-class scatter
- Define classwise scatter (scaled variance) $\tilde{s}_{i}^{2} = \sum_{y \in \omega_{i}} (y - \tilde{\mu}_{i})^{2}$
- "** + ** is within class scatter
- Fisher's criterion is then

$$J({f w})=rac{| ilde{\mu}_1- ilde{\mu}_2|^2}{ ilde{s}_1^2+ ilde{s}_2^2}$$

 We look for a projection where examples from the same class are close to each other, while at the same time projected mean values are as far apart as possible

Criterion function - a first attempt

- To find a good projection vector for classification, we need to define a measure of separation between the projections. This will be the criterion function J(w)
- A naive choice would be projected mean difference, $J(w) = |\tilde{\mu}_1 \tilde{\mu}_2|^2$, s.t. $|\mathbf{w}|=1$.



Scatter matrices – M classes

• Within-class scatter matrix:

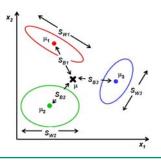
$$S_w = \sum_{i=1}^M P(\omega_i) S_i$$
$$S_i = E[(x - \mu_i)(x - \mu_i)_T]$$

Weighted average of each class' sample covariance matrix

• Between-class scatter matrix:

$$\begin{split} S_b &= \sum_{i=1}^M P(\omega_i) (\mu_i - \mu) (\mu_i - \mu)^T \\ \mu &= \sum_{i=1}^M P(\omega_i) \mu_i \end{split}$$

Sample covariance matrix for the means



Fisher criterion in terms of within-class and between-class scatter matrices:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_b \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}$$

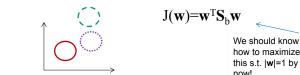
31

29

INF 4300

Multiple classes, $S_w = \sigma^2 I$

If S_w=σ²I, we can fix ||w||=1 and make the denominator in J(w) independent of w → J(w) guided by the spread of the means (S_b) only:



- Weight-vector giving maximum separability is given by principal eigenvector of \mathbf{S}_{b}
 - Second best (and orthogonal to first) by next-to-principal
 - ... etc. for higher dimensional settings
 - ... until a maximum of M-1 dimensions (number of classes minus one) [If classes are «isotropically» Gaussian distributed, all discriminatory information is in this subspace!]

INF 5300

33

General S_w I/II

- We saw that ${\bf S}_w{=}{\bf I}$ gave Fisher criterion independent of ${\bf S}_w{,}$ and only dependent on ${\bf S}_b$
- We can get there by «whitening» the data before applying the Fisher criterion
 - Whitening data by rotation and scaling -> No general loss as distribution overlap does not change
- We must find $y = A^T x$ that yields $S_{wy} = I$
 - We have seen that PCA gives uncorrelated data, per-feature scaling can give unit variance per feature:
 - $y = D^{-1/2}A^Tx$, where A has eigenvectors of S_w as columns, and D is a diagonal matrix with corresponding eigenvalues

$$\mathbf{S}_{w_y} = \frac{1}{N} \sum_{i} (\mathbf{D}^{-1/2} \mathbf{A}^T \mathbf{x}_i) (\mathbf{D}^{-1/2} \mathbf{A}^T \mathbf{x}_i)^T = \mathbf{D}^{-1/2} \mathbf{A}^T \mathbf{S}_w \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{D}^{-1/2} \mathbf{D} \mathbf{D}^{-1/2} = \mathbf{I}$$

INF 4300

34

General S_w II/II

- Let $\mathbf{B} = \mathbf{D}^{-1/2} \mathbf{A}^{\mathsf{T}}$ (the whitening transform)
- S_b becomes after whitening step:

 $\mathbf{S}_{by} = \mathbf{B}\mathbf{S}_{b}\mathbf{B}^{\mathsf{T}}$

- Ignoring the denominator (which is now independent of **w**), we get
 - $J_y(w) = w^T S_{by} w = w^T B S_b B^T w$, s.t. |w|=1
- The weight-vectors, w^{*}, maximizing separation are now given by the principal eigenvectors of BS_bB^T (in the whitened space)

Set $J_y(\mathbf{w}^*)=J(\mathbf{w})$ to see this

35

• In the original space, $\mathbf{w} = \mathbf{B}^{\mathsf{T}}\mathbf{w}^* = \mathbf{A}\mathbf{D}^{-1/2}\mathbf{w}^*$

Solving Fisher more directly

• Alternatively, you can notice that

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_b \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}$$

• ... is a «generalized Rayleigh quotient» and look up the solution for its maximum, which is the principal eigenvector of

$\boldsymbol{S}_w^{-1}\boldsymbol{S}_b$

The following solutions (orthogonal in S_w, i.e., w^T_iS_ww_j=0, for i≠j) are the next principal eigenvectors

Note that the obtained **w**s are identical (up to scaling) to those from the two-step procedure from the previous slides

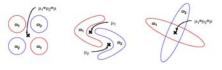
INF 4300

Computation: Case 2: I<M-1 Computing Fishers linear discriminant • For I=M-1: • Form C by selecting the eigenvectors corresponding to the I largest eigenvalues of Form a matrix C such that its columns are the M-1 eigenvectors of $S_{xw}^{-1}S_{xb}$ $S_{rw}^{-1}S_{rh}$ - Set $\hat{y} = C^T x$ • We now have a loss of discriminating power since - This gives us the maximum J_3 value. - This means that we can reduce the dimension from m to M- $J_{3,\hat{y}} < J_{3,x}$ 1 without loss in class separability power (but only if J_3 is a correct measure of class separability.) - Alternative view: with a Bayesian model we compute the probabilities $P(\omega_i|x)$ for each class (i=1,...M). Once M-1 probabilities are found, the remaining $P(\omega_M|x)$ is given because the $P(\omega_i|\mathbf{x})$'s sum to one. INF 5300 37 INF 5300 38

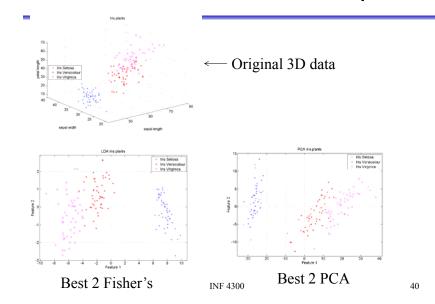
Limitations of Fisher's discriminant

- Its criterion function is based on all classes having a similarly-shaped Gaussian distribution

 Any deviance from this could lead to problems / suboptimal or poor solutions
- It produces at most M-1 (meaningful) feature projections
- One could «overfit» **S**_w
- It will fail when the discriminatory information is not in the mean but in the variance of the data (failing to meet that stated in the first bulletpoint!)



Fisher's discriminant example



Summary

- PCA (unsupervised)
 - Max variance <-> min projection error
 - Eigenvectors of sample cov.mat. / scatter matrix
- Fisher's linear discriminant (supervised)
 - Maximizes spread of means while minimizing intra-class spread

INF 5300

- Swy=I and «whitening of data»
- Eigenvectors of $S_w^{-1}S_b$
- At most nClasses-1 features
- Limitations

Literature on pattern recognition

a-class	 A review on statistical pattern recognition (still good fifteen years on): A. Jain, R. Duin and J. Mao: Statistical pattern recognition: a review, IEEE Trans. Pattern analysis and Machine Intelligence, vol. 22, no. 1, January 2001, pp. 4 Classical PR-books R. Duda, P. Hart and D. Stork, Pattern Classification, 2. ed. Wiley, 2001 B. Ripley, Pattern Recognition and Neural Networks, Cambridge Press, 1996. S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 2006. 	
41	INF 4300	42