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INF 4300 
Linear feature transforms

Anne Solberg (anne@ifi.uio.no)

Today: 
• Feature transformation through principal
component analysis

• Fisher’s linear discriminant function
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Linear feature transforms
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Signal representation vs classification

• Principal components analysis (PCA)
– - signal representation, unsupervised
– Minimize the mean square representation

error (unsupervised)
• Linear discriminant analysis (LDA)

– -classification, supervised
– Maximize the distance between

the classes (supervised)

Idea behind  (Principal Component Transform)

• Find a projection y=ATx of the
feature vector x

• Three interpretations of PCA:
– Find the projection that maximize the

variance along the selected projection
– Minimize the reconstruction error

(squared distance between original 
and transformed data)

– Find a transform that gives
uncorrelated features
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Definitions: Correlation matrix vs. 
covariance matrix

• x is the covariance matrix of x

• Rx is the correlation matrix of x

• Rx=x if x=0. 

   T
x xxE  

   T
x xxER 
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Principal component or
Karhunen-Loeve transform

• Let x be a feature vector.
• Features are often correlated, which might lead to 

redundancies.
• We now derive a transform which yields uncorrelated

features.
• We seek a linear transform y=ATx, and the yis should be 

uncorrelated. 
• The yis are uncorrelated if E[y(i)y(j)T]=0, ij.
• If we can express the information in x using uncorrelated

features, we might need fewer coefficients.
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Linear feature transforms I/II

Weights

New feature

Existing features
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Linear feature transforms II/II

• Multiple output features by applying different weights 
for each one:

∑ ,    	 ∑ ,    …      ∑
• In matrix notation y = ATx,  A=[w1 w2 … wm]

• If y has fewer elements than x, we get a feature
reduction



The weights | Visualization and intuition
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x1

x2

x

y1/||w1||

Variance of y1
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Variance along
directions from 0 to 
180 degrees

Variance of y1 cont.

• Assume mean of x is subtracted
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Called σ2
w on some 

slides

The sample covariance matrix / scatter matrix; R

Variance and projection residuals
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Projection onto w, assuming |w|=1
Single sample

Sum all n samples
(not dimensions)

σ2
w

w·w=1

«yi»

Note: Max variance ↔ min projection 
residuals!

«yi
2»



Criterion function

• Goal: Find transform minimizing representation error

• We start with a single weight-vector, w, giving us a 
single feature, y1

• Let J(w) = wTRw = σw
2

• Now, let’s find
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As we learned on the 
previous slide, 
maximizing this is 
equivalent to 
minimizing 
representation error			max	. . 1

Maximizing variance of y1

INF 4300 14

RR

R
The maximizing w is an 
eigenvector of R!

And σ2
w=λ! [Why?]

Lagrangian function for 
maximizing σ2

w with the 
constraint wTw=1

Equating zero

Unfamiliar with Lagrangian
multipliers?  See 
http://biostat.mc.vanderbilt.edu/w
iki/pub/Main/CourseBios362/Lag
rangeMultipliers-Bishop-
PatternRecognitionMachineLear
ning.pdf

- |

w2, w3, ..  I/III

• Ok, I’ve got the w1 giving me the transform (linear 
weights) that maximizes the variance / minimizes the 
representation error ..

• .. Now I want another one that again maximizes the 
variance / minimizes the representation error, but the 
new feature should be uncorrelated with my previous 
one ..

• .. Which w2 would give me this?
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Eigendecomposition of covariance matrices
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Real-valued, symmetric, 
«n-dimensional» 
covariance matrix

Eigenvector 
corresponding 
to λ1

Eigenvalue 
(let’s say 
largest)

Smallest eigenvalue

aT
iaj = 0 for i ≠ j

Remember: 
λi=variance of xTai



• What does uncorrelated mean?  Zero covariance.

• Covariance of y1 and y2:

• We already have that w1=a1

• From last slide, requiring w1’Rw2 = a1’Rw2 = 0 
means requiring w2’a1=0

w2, w3, ..  II/III
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• We want maxw w’Rw, s.t. |w|=1 and w’a1=0

• We can simply remove λ1a1a1‘ from R, creating 
Rnext = R- λ1a1a1‘, and again find maxw w’Rnextw
s.t. |w|=1

• Studying the decomposition of R (a few slides back), 
we see that the solution is the eigenvector 
corresponding to the second largest eigenvalue

• Similarly, the w3, w4 etc. are given by the following 
eigenvectors sorted according to their eigenvalues

w2, w3, .. III/III
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w2, w3, ..  III+/III
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→    w=a1

→    w=a2

→    w=a3

… etc.

maxw w’Rw, s.t. |w|=1

Eigenvectors sorted by their
corresponding eigenvalues

Example of distributions and eigenvectors
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(Illustration courtesy of «the Internet»)



Principal component transform (PCA)

• Place the m «principle» eigenvectors (the ones with the largest 
eigenvalues) along the columns of A

• Then the transform y = ATx gives you the m first principle 
components

• The m-dimensional y
– have uncorrelated elements
– retains as much variance as possible
– gives the best (in the mean-square sense) description of the 

original data (through the «image»/projection/reconstruction Ay)
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PCA is also known 
as Karhunen-Loeve 
transform

Note: The eigenvectors 
themselves can often give 
interesting information
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Geometrical interpretation of 
principal components

• The eigenvector 
corresponding to the 
largest eigenvalue is the 
direction in n-dimensional 
space with highest 
variance.

• The next principal 
component is orthogonal 
to the first, and along the 
direction with the second 
largest variance.

Note that the direction with the highest variance is 
NOT related to separability between classes. 

PCA and rotation and «whitening»
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If we use all eigenvectors in 
the transform, y = Atx, we
simply rotate our data so that
our new features are
uncorrelated, i.e., cov(y) is a 
diagonal matrix.

If we as a next step
scale each feature by 
their σ-1, 
y = D(-1/2)Atx, where
D is a diagonal 
matrix of eigenvalues
(i.e., variances), we
get cov(y)=I.  We say
that we have 
«whitened» the data.

Note: Uncorrelated variables need not appear round/spherical:
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PCA and multiband images
• We can compute the principal component transform for an 

image with n bands

• Let X be an Nxn matrix having a row for each image sample

• Sample covariance matrix (after mean subtracted): 

• Place the (sorted) eigenvectors along the columns of A

• Y=XA will then contain the image samples, however most of
the variance is in the «bands» with the lowest index
(corresponding to the largest eigenvalues), and the new
features are uncorrelated



PCA example – original image
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• Satellite image from Kjeller
• 6 spectral bands with different

wavelengths

1 Blue 0.45-0.52 Max. penetration of 
water

2 Green 0.52-0.60 Vegetation and 
chlorophyll

3 Red 0.63-0.69 Vegetation type

4 Near-IR 0.76-0.90 Biomass

5 Mid-IR 1.55-1.75 Moisture/water content
in vegetation/soil

7 Mid-IR 2.08-2.35 Minerals

Example cont: Principal component images
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Principal component 1 Principal component 2 Principal component 3 

Principal component 4 Principal component 5 Principal component 6 

Example cont: Inspecting the eigenvalues
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Plotting    s will give
indications on how
many features are
needed for 
representation
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The mean-square 
representation error we get with
m of the N PCA-components is 
given as

PCA and classification

• Reduce overfitting by detecting directions/components 
without any/very little variance

• Sometimes high variation means useful features for 
classification:

• .. and sometimes not:
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Intro to Fisher’s linear discriminant

Fisher’s LDA
(supervised)

PCA
(unsupervised)
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Criterion function - a first attempt

• To find a good projection vector for classification, we need to define a 
measure of separation between the projections. This will be the criterion
function J(w)

• A naive choice would be projected mean difference,                             ,
s.t. |w|=1.

This criterion does not 
consider variance in y.

Optimal only when
cov(x) = σ2I for all classes
(then var(y) does not 
change with w).

2

μ1

μ2

w simply becomes a 
scaled difference in 

means (μ1-μ2)

Decision line 
(not optimal!)
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A criterion function including variance

• Fisher’s solution: Maximize a function that
represents the difference between the
means, scaled by a measure of the within-
class scatter

• Define classwise scatter (scaled variance)

• is within class scatter

• Fisher’s criterion is then

• We look for a projection where examples
from the same class are close to each
other, while at the same time projected
mean values are as far apart as possible
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Scatter matrices – M classes
• Within-class scatter matrix:

• Between-class scatter matrix:
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Sample covariance matrix for
the means

Fisher criterion in terms of within-class 
and between-class scatter matrices:



Multiple classes, Sw = σ2I
• If Sw=σ2I, we can fix ||w||=1 and make the denominator in J(w) 

independent of w  J(w) guided by the spread of the means (Sb) 
only:

• Weight-vector giving maximum separability is given by principal
eigenvector of Sb

– Second best (and orthogonal to first) by next-to-principal
– … etc. for higher dimensional settings
– … until a maximum of M-1 dimensions (number of classes minus one) [If 

classes are «isotropically» Gaussian distributed, all discriminatory
information is in this subspace!]
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J(w)=wTSbw
We should know
how to maximize
this s.t. |w|=1 by 
now!

General Sw I/II
• We saw that Sw=I gave Fisher criterion independent of Sw, and 

only dependent on Sb

• We can get there by «whitening» the data before applying the 
Fisher criterion
– Whitening data by rotation and scaling -> No general loss as 

distribution overlap does not change

• We must find y=ATx that yields Swy = I
– We have seen that PCA gives uncorrelated data, per-feature scaling 

can give unit variance per feature:
– y = D-1/2ATx, where A has eigenvectors of Sw as columns, and D is 

a diagonal matrix with corresponding eigenvalues
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General Sw II/II

• Let B = D-1/2AT (the whitening transform)
• Sb becomes after whitening step:

Sby = BSbBT

• Ignoring the denominator (which is now independent
of w), we get
– Jy(w) = wTSbyw = wTBSbBTw,  s.t. |w|=1

• The weight-vectors, w*, maximizing separation are
now given by the principal eigenvectors of BSbBT (in 
the whitened space)

• In the original space, w = BTw* = AD-1/2w*

INF 4300 35

Set Jy(w*)=J(w)
to see this

Solving Fisher more directly
• Alternatively, you can notice that

• .. is a «generalized Rayleigh quotient» and look up the solution 
for its maximum, which is the principal eigenvector of

• The following solutions (orthogonal in Sw, i.e., wi
TSwwj=0, for 

i≠j) are the next principal eigenvectors

INF 4300 36

Sw
-1Sb

Note that the obtained ws are identical (up to scaling)
to those from the two-step procedure from the previous slides
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Computing Fishers linear discriminant

• For l=M-1:
– Form a matrix C such that its columns are the M-1 

eigenvectors of
– Set

– This gives us the maximum J3 value.
– This means that we can reduce the dimension from m to M-

1 without loss in class separability power (but only if J3 is a 
correct measure of class separability.)

– Alternative view: with a Bayesian model we compute the
probabilities P(i|x) for each class (i=1,...M). Once M-1 
probabilities are found, the remaining P(M|x) is given 
because the P(i|x)’s sum to one.

xbxwSS 1

xCy Tˆ
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Computation: Case 2: l<M-1

• Form C by selecting the eigenvectors corresponding
to the l largest eigenvalues of

• We now have a loss of discriminating power since

xbxwSS 1

xy JJ ,3ˆ,3 

INF 4300 39

Limitations of Fisher’s discriminant

• Its criterion function is based on all classes having a similarly-shaped Gaussian
distribution

– Any deviance from this could lead to problems / suboptimal or poor solutions

• It produces at most M-1 (meaningful) feature projections

• One could «overfit» Sw

• It will fail when the discriminatory information is not in the mean but in the
variance of the data (failing to meet that stated in the first bulletpoint!)
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Fisher’s discriminant example

Original 3D data

Best 2 PCABest 2 Fisher’s



Summary

• PCA (unsupervised)
– Max variance <-> min projection error
– Eigenvectors of sample cov.mat. / scatter matrix

• Fisher’s linear discriminant (supervised)
– Maximizes spread of means while minimizing intra-class

spread
– Swy=I and «whitening of data»
– Eigenvectors of Sw

-1Sb

– At most nClasses-1 features
– Limitations
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Literature on pattern recognition

• A review on statistical pattern recognition (still good 
fifteen years on):

– A. Jain, R. Duin and J. Mao: Statistical pattern recognition: a review, IEEE Trans. 
Pattern analysis and Machine Intelligence, vol. 22, no. 1, January 2001, pp. 4--

• Classical PR-books
– R. Duda, P. Hart and D. Stork, Pattern Classification, 2. ed. Wiley, 2001
– B. Ripley, Pattern Recognition and Neural Networks, Cambridge Press, 1996.
– S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 2006.


