

Last time - and today, Tuesday 16th of March:

Last time:
13.1 Integrating Converters
13.2 Successive-Approx. Converters
13.3 Algorithmic (or cyclic) A/D Converters
13.4 Flash (or parallel) converters
13.5 Two-Step A/D converters
13.8 Pipelined A/D Converters
13.9 Time-Interleaved A/D Converters

Today - from the following chapters:
13.6 Interpolating A/D Converters
13.7 Folding A/D Converters
14.1 Oversampled converters

Interpolating ADCs. Rightmost interpol.=4 (1/4)

- Reduč̄̄ed complexity compared to Flash ADCs \rightarrow reduced input capacitance and slightly reduced power.
- In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of ${ }^{16} \mathrm{kNFOQRA月}{ }^{0}$ data points.

Interpolating ADCs (214)

Fin 1394
eff
UNIVERSITETET

Interpolating ADCs (3/4)

- Amplifier outputs V_{1} and V_{2} as well as their interpolated values are shown lowermost (fig. 13.24)
- The reference points created from interpolated values (for example $\mathrm{V}_{2 \mathrm{a}}, \mathrm{V}_{2 \mathrm{~b}}, \mathrm{~V}_{2 \mathrm{c}}$) have latches potentially triggering in order, for increasing (or decreasing) input.
- For good linearity the interpolated signals need only cross the latch threshold at the correct points

Interpolating ADCs (4/4)

Fin 1394 Pncecihin tramanan........

Fig. 13.25 Adding series resistors to equalize delay times to the latch comparators.

- To achieve good linearity V_{1} and V_{2} need to be linear between their own thresholds. In figure 13.24 this linear region corresponds to $0.25<\mathrm{V}_{\text {in }}<0.5$ (horizontally)
- For fast operation the delays to each of the latches must be made to equal each other as much as possible. In fig. 13.25 this is done using resistors.

UNIVERSITETET

Example, based on Fig. 13.23 (1/2)

- $\mathrm{Vin}=0.4 \mathrm{~V}$, gain of -10, logic levels of 0 and 5 volts. \rightarrow
- V4 = 5 V
- V3 $=5 \mathrm{~V}$
- $\mathrm{V} 2=3.5 \mathrm{~V}$
- $\mathrm{V} 1=1.0 \mathrm{~V}$

UNIVERSITETET

Example - interpolating ADC (2/2)

16. mars 2010
efj

Folding A/D Converters (13.7)

- The number of latches is
 reduced compared to the interpolating ADC, and even more from FLASH
- The figure shows a 4 bit converter with folding rate of 4
- A group of LSBs are found separately from a group of MSBs.
- The MSB converter determines whether the input signal, V_{in}, is in one of four voltage regions (between 0 and $1 / 4,1 / 4$ and $1 / 2$, $1 / 2$ and $3 / 4$, or $3 / 4$ and 1)
- V_{1} to V_{4} produce a thermometer code for each of the four MSB regions

Similar to folding block responses on previous slide..

- Bipolar folder outputs

- Ex: Input 1.05:
- F1 > threshold=0 -> "1"
- F2 > threshold=0 -> "1"
- F3 > threshold=0 -> "1"
- F4 < threshold=0 -> "0"
- Thermometer code produced for each of the four MSB regions (between 0 and $1 / 4,1 / 4$ and $1 / 2,1 / 2$ and $3 / 4$, or $3 / 4$ and 1 for previous slide)
- (in certain respects related to interpolation in Fig 13.24)

Folding block with a folding rate of four

- Input-output response for
 the cross-coupled differential pair is shown lowermost
- Vout is low if, and only if, both V_{a} and V_{b} are low, otherwise high
- The output from a folding block is at a much higher frequency than the input signal, limiting the practical folding rate.
- Differential solutions in practice

UNIVERSITETET

Folding and Interpolating ADC

- By introducing interpolation, the number of folding blocks is reduced
- Input capacitance is reduced (if both folding and interpolating is combined)
- Folding-rate of four and interpolate-by-two
- (Literature references on page 523)

UNIVERSITETET

Interpolating and folding and interpolating ADCs

Resolution	Sampling rate	ENOB	Power dissip.	Supply voltage	architecture	reference
8 bit	100 MHz	$\begin{aligned} & 6.5 \text { bit@5V, } \\ & 7.1 \text { bit@8V } \end{aligned}$	1.2W@5V	5 or 8 V	interpolating	Steyaert, Roovers, Craninckx, CICC 1993
5 bit	5 GHz	4 bit at 5GHz	$\begin{aligned} & 113 \\ & \text { mW@1V } \end{aligned}$	1 V	interpolating	Wang, Liu, VLSI-DAT '2007
6 bit	200 MHz	5.35 bit	$\begin{aligned} & 35 \\ & \mathrm{~mW} @ 3.3 \mathrm{~V} \end{aligned}$	3.3V	folding and interpolating	Yin, Wang, Liu, ICSICT, 2008
6 bit	200 MHz	5.5 bit	$\begin{aligned} & 78.8 \\ & \mathrm{~mW} @ 2.5 \mathrm{~V} \end{aligned}$	2.5V	folding and interpolating	Silva, Fernandes, ISCAS, 2003

UNIVERSITETET I OSLO

Oversampling converters (chapter 14 in "J \& M")

- For high resolution, low-to-medium-speed applications like for example digital audio

- Relaxes requirements placed on analog circuitry,
including matching tolerances and amplifier gains
$D \begin{gathered}\text { ANALOG } \\ \text { DEVICES }\end{gathered}$
 input
- Extra bits of resolution can be extracted from converters that samples much faster than the Nyquist-rate. Extra resolution can be obtained with lower oversampling rates by exploiting noise shaping

Eff

Resolution and clock cycles per sample

. Dependence of achievable resolution and required clock cycles per
sample for various ADC systems.
A Gigasample/Second 5-b ADC with On-Chip Track and Hold Based on an Industrial $1-\mu \mathrm{m}$ GaAs

Nyquist Sampling and Oversampling

- Figure from [Kest05]
- Straight oversampling gives an SNR
 improvement of $3 \mathrm{~dB} /$ octave
- $\mathrm{fs}>2 \mathrm{f}_{0}\left(2 \mathrm{f}_{0}=\right.$
 Nyquist Rate
- OSR $=\mathrm{f}_{\mathrm{s}} / 2 \mathrm{f}_{0}$
- SNRmax = 6.02N+1.76+ 10log (OSR)

UNIVERSITETET

Oversampled converters; High resolution and relatively low speed

Figure 1. ADC architectures, applications, resolution, and sampling rates.

Fig. 2. ADC sample rate vs. ENOB from 1987 to 2005.

Which ADC Architecture Is Right for Your Application?

By Walt Kester [walt.kester@analog.com]
CQUANTIZATION NOISE (P.532-533 in nJ KM n

The quantization noise is the difference between the input and output values. $e(n)$

\rightarrow

This model is exact under the assumption that the quantization error is strongly related to the input signal (${ }^{\prime y}$ \& m^{n} p.S32) The model becomes approximate when assumption ore made about the statistical properties of $e(n)$, such as $e(n)$ being an independent white-noise signal. This model leads to a simpler understanding of $\sum \Delta$ and with some exceptions is usually reasonably accurate.

- If $x(n)$ is very active, en) can be approximated as an independent random
number uniformly distributed between $\pm \frac{\Delta}{2}$,
where Δ equals the difference between two adjacent
quantization levels.

$$
\begin{aligned}
& \text { Thus, the quantization noise } \\
& \text { power equals } \frac{\Delta^{2}}{12}(\text { sec. } 11.3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { and is independent of the } \\
& \text { Sampling frequency, fo }
\end{aligned}
$$

$$
\text { The spectral density of } e(n) \text {, }
$$

$$
S_{e}(f) \text { is white (constant over freq.) }
$$

$$
\text { and all its power within } \pm f_{s} / 2 \text {, }
$$

as shown in the figure:

$$
S_{e}(f)
$$

$$
\begin{array}{r}
\int_{-\frac{t s}{s / 2}}^{f_{s} / 2} S_{e}^{2}(f) d f=\int_{-\frac{f_{s}}{2}}^{\frac{f_{s}}{2}} k_{x}^{2} d f=\left(k_{x}\right)^{2} f_{s}^{2}=\frac{\Delta^{2}}{12} \\
k_{x}=\frac{\Delta}{\sqrt{12}} \sqrt{\frac{1}{f_{s}}}
\end{array}
$$

The spectral density height is calculated by noting that the total noise power is $\Delta^{2} / 12$ and with a two -sided def. of power equals the area under $S_{e}(f)$ def of power equals
14.1 Output and quantization errors for two quantizers fist

$$
x(n)=\{0.01,0.31,-0.11,0.80,0.52,-0.70\}
$$

Quantize 1:

$$
y_{1}(n)=\{0.0,0.5,0,1.0,0.5,-0.5\}
$$

Quantizer 2:

$$
y_{2}(n)=\{1.0,1.0,-1.0,1.0,1.0,-1.0\} e(n)=y(n)-x(n)
$$

$$
e_{1}(n)=\{-0.01,0.19,-0.11,-0.30,-0.02,0,20\}
$$

Expected power and power density height?
$e(n)$ is approximated as an independent
random number uniformly distributed between $\pm \frac{\Delta}{2}$, where \triangle equal the difference between two adjacent

Quantized II:

$$
e_{2}(n)=\{0.99,0.69,-0.89,0.20,0.48,-0.30\}
$$

 quantitation levels. $\quad p_{e}=\frac{\Delta^{2}}{12}$
"oversampling is based on the quant 1: $\frac{\Delta^{2}[\omega]}{12}=\frac{(0.5)^{2}}{12}[\omega]=0.0208 \overline{3}[\omega]$ ASSUMPTION THAT AN ADC'S TOTAL QUANTIZATION NOISE POWER (VARIANCE) is the squared valve of the quant. 2 :

$$
\frac{\Delta^{2}[w]}{12}=\frac{2^{2}[w]}{12}=0.3 \overline{3}[w]
$$

$$
\begin{aligned}
& S_{e I}^{2}(f)=\frac{0.02083}{2 \pi}\left[\frac{\mathrm{w}}{\mathrm{rad} / \mathrm{smmple}}\right]=0.00331 \frac{\mathrm{w}}{\mathrm{rad} / \text { sumac }} \\
& S_{C_{I}}^{2}(f)=\frac{0.333}{2 \pi}\left[\frac{\mathrm{w}}{\mathrm{rad} / \mathrm{samph}}\right]=0.053 \frac{\mathrm{w}}{\mathrm{rad} / \text { sample }}
\end{aligned}
$$

OVERSAMPLING
signal of interest is bandlimited to fo

NTQUIST SAMPLING

$O S R \equiv \frac{f_{s}}{2 f_{0}}$
After quantization, $y_{1}(n)$ is filtered by $H(f)$ to crate $y_{2}(n)$ that eliminates quantization noise (together with any other signals) grater than fo.

ADVANTAGE
p.

535

\times

If the input is sinusoidal, its maximum peak value without clipping is $2^{N}(\Delta / 2)$
For this wave the signal power, P_{S},
has a power equal to $P_{S}=\left(\frac{\Delta 2^{N}}{2} \frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}=\frac{\Delta^{2} 2^{2 N}}{8}$
The power of the input signal within $y_{2}(n)$
remains the same as before since we
assumed the signal's frequency content
is below fo
HOWEVER, THE QUANTIZATION NOISE POWER IS
REDUCED TU fo
$P_{e}=\int_{-f_{s / 2}}^{f_{s} / 2} S_{e}^{2}(f)|H(f)|^{2} d f=\int_{-f_{0}} k^{2} x d f$
$=\frac{2 f_{0}}{f_{s}} \cdot \frac{\Delta^{2}}{12}=\frac{\Delta^{2}}{12}\left[\frac{1}{\operatorname{OSR}}\right]$
THEREFORE, DOUBLING OSR DECREASES
THE QUANTIZATION NOISE POWER BY ONE-
HALF, OR EQUIVALENTLY, 3 dB (or equiv. O.5 bits)
$S N R_{\text {mAx }}=10 \log \left(\frac{P S}{P e}\right)=10 \log \left(\frac{3}{2} 2^{2 N}\right)+10 \log (G S R)$
$=\underbrace{6.02 N+1.76}_{\text {due to N-bit quantizer }}+\underbrace{10 \log (O S R)}_{\text {due to over sampling }}$ [dB]

$$
\begin{aligned}
& S N R_{\text {max }}=10 \log \left(\frac{P_{S}}{P_{e}}\right) \quad \wedge \quad P_{s}=\frac{\Delta^{2} 2^{2 N}}{8} \quad \wedge \quad P_{e}=\frac{\Delta^{2}}{12} \frac{1}{O S R} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& =10 \log \frac{3}{2} \cdot 2^{2 N}+10 \log 65 R \\
& =10 \log \frac{3}{2}+10 \log 2^{2 N}+10 \log 0 S R \\
& \log _{b}\left(c^{p}\right)=p \log _{b}(c \\
& \log (x y)=\log x+\log , \\
& =10 \log 2^{2 N}+1.76+10 \log 0 S R \\
& =10 \cdot 2 N \cdot \log 2+1.76+10 \log 65 R \\
& =10 \cdot 2 \cdot N \cdot 0.301+1.76+10 \log 0 S R \\
& =6.02 \mathrm{~N}+1.76+10 \log (0 \mathrm{SR}) \quad[d B) \\
& \text { (14.13) pp. } 536 \\
& i J \& M \text {. }
\end{aligned}
$$

Oversampling (without noise shaping)

- Doubling of the sampling frequency increases the dynamic range by $3 \mathrm{~dB}=0.5 \mathrm{bit}$.
- To get a high SNR a very high fs is needed \rightarrow high power consumption.
- Oversampling usually combined with noise shaping and higher order modulators, for higher increase in dynamic range per octave ("OSR")
Ef

SNRmax = 6.02N+1.76+10log(OSR) [dB]

 SNR improvement 0.5 bits / octave

Ex. 14.3

EXAMPLE 14.3

Given that a 1 -bit A/D converter has a $6-\mathrm{dB}$ SNR, what sample rate is required using oversampling (no noise shaping) to obtain a $96-\mathrm{dB}$ SNR (i.e., 16 bits) if $\mathrm{f}_{0}=25 \mathrm{kHz}$? (Note that the input into the A / D converter has to be very active for the white-noise quantization model to be valid-a difficult arrangement when using a 1-bit quantizer with oversampling without noise shaping).

Solution

Oversampling (without noise shaping) gives 3 dB /octave where 1 octave implies doubling the sampling rate. We require 90 dB divided by 3 dB / octave, or 30 octaves. Thus, the required sampling rate, f_{s}, is

$$
f_{s}=2^{30} \times 2 f_{0} \cong 54,000 \mathrm{GHz}!
$$

This example shows why noise shaping is needed to improve the SNR faster than $3 \mathrm{~dB} /$ octave, since $54,000 \mathrm{GHz}$ is highly impractical.

Advantages of 1-bit A/D converters (p. 537 in "J\&M")

- Oversampling improves signal-to-noise ratio, but not linearity
- Ex.: 12-bit converter with oversampling needs component accuracy to match better than 16 -bit accuracy if a 16 -bit linear converter is desired

- Advantage of 1-bit D/A is that it is inherently linear. Two points define a straight line, so no laser trimming or calibration is required
- Many audio converters presently use 1-bit converters for realizing 16 - to 18 -bit linear converters (with noise shaping).
éf

Problems with some 1-bit converters ((?))

Why 1-Bit Sigma-Delta Conversion is Unsuitable for High-Quality Applications

by
Stanley P. Lipshitz and John Vanderkooy Audio Research Group, University of Waterloo Waterloo, Ontario N2L 3G1, Canada

Abstract

Single-stage, 1-bit sigma-delta converters are in principle imperfectible. We prove this fact. The reason, simply stated, is that, when properly dithered, they are in constant overload. Prevention of overload allows only partial dithering to be performed. The consequence is that distortion, limit cycles, instability, and noise modulation can never be totally avoided. We demonstrate these effects, and using coherent averaging techniques, are able to display the consequent profusion of nonlinear artefacts which are usually hidden in the noise floor. Recording, editing, storage, or conversion systems using single-stage, 1-bit sigma-delta modulators, are thus inimical to audio of the highest quality. In contrast, multi-bit sigma-delta converters, which output linear PCM code, are in principle infinitely perfectible. (Here, multi-bit refers to at least two bits in the converter.) They can be properly dithered so as to guarantee the absence of all distortion, limit cycles, and noise modulation. The audio industry is misguided if it adopts 1-bit sigma-delta conversion as the basis for any high-quality processing, archiving, or distribution format to replace multi-bit, linear PCM.

> Coin Convidenioing soiely

2001 May 12-15 Amsterdam, The Netherlands
(290

Oversampling with noise shaping (14.2)

- Oversampling combined with noise shaping can give much more dramatic improvement in dynamic range each time the sampling frequency is doubled.
- The sigma delta modulator converts the analog signal into a noise-shaped low-resolution digital signal.
- The decimator converts to a high resolution digital signal

Fig. 14.5 Block diagram of an oversampling A / D converter.

UNIVERSITETET

Multi-order sigma delta noise shapers (sangil

 Park, Motorola)

Note: Higher order Noise Shaper has less baseband noise

UNIVERSITETET

OSR, modulator order and Dynamic Range

- 2 X increase in M \rightarrow (6L+3)dB or (L+0.5) bit increase in

Oversampling and noise shaping

- Given that a 1-bit A/D converter has a 6 dB SNR, which sample rate is required to obtain a 96-dB SNR (or 16 bits) if $f_{0}=25 \mathrm{kHz}$ for straight oversampling as well as first-and second-order noise shaping?
- Oversampling with no noise shaping: From ex. 14.3 we know that straight oversampling requires a sampling rate of 54 THz .
- $(6.02 \mathrm{~N}+1.76+10 \mathrm{log}$ $($ OSR $)=96$
<->
$6+10 \log \mathrm{OSR}=96)$
<-> $10 \log \mathrm{OSR}=90$

Ex. 14.5

$$
\mathrm{SNR}_{\max }=6.02 \mathrm{~N}+1.76-5.17+30 \log (\mathrm{OSR})
$$

(14.26)

We see here that doubling the OSR gives an SNR improvement for a first-order modulator of 9 dB or, equivalently, a gain of 1.5 bits/octave. This result should be compared to the 0.5 bits/octave when oversampling with no noise shaping.

Fig. 14.7 A first-order noise-shaped interpolative modulator.

- Oversampling with 1st order noise shaping:
- $6-5.17+30 \log (O S R)=96$

$$
\text { OSR }=\mathrm{f}_{\mathrm{s}} / 2 \mathrm{f}_{0}
$$

- 30log (OSR) = $96-6+5.17=95.17$

A doubling of the OSR gives an SNR improvement of $9 \mathrm{~dB} /$ octave for a 1st order modulator; $95.17 / 9=10.57 \quad 2^{10.56} \times 2^{\star} 25 \mathrm{kHz}=75.48 \mathrm{MHz}$
OR: $\log (O S R)=95.17 / 30=3.17 \rightarrow$ OSR $=1509.6$
1509.6 * $(2 * 25 \mathrm{kHz})=75.48 \mathrm{MHz}$

Ex. 14.5

$$
\mathrm{SNR}_{\max }=6.02 \mathrm{~N}+1.76-12.9+50 \log (\mathrm{OSR})
$$

We see here that doubling the OSR improves the SNR for a second-order mod lator by 15 dB or, equivalently, a gain of 2.5 bits/octave.

The realization of the second-order modulator using switched-capacitor tes niques is straightforward and is left as an exercise for the interested reader.

Fig. 14.10 Second-order $\Delta \Sigma$ modulator.

- Oversampling with 2nd order noise shaping:
- $6-12.9+50 \log ($ OSR $)=96$

OSR = fs $/ 2 \mathrm{f}_{0}$

- $50 \log (\mathrm{OSR})=96-6+12.9=102.9$

A doubling of the OSR gives an SNR improvement of 15 dB / octave for a 2nd order modulator; $102.9 / 15=6.86 \quad 2^{6.86} \times 2^{*} 25 \mathrm{kHz}=5.81 \mathrm{MHz}$

Ex. 14.5 "point":

- $2 \times$ increase in $M \rightarrow$ (6L+3)dB or (L+0.5) bit increase in DR.
- L: sigma-delta order
- 6 db Quantizer, for 96 dB SNR:
- Plain oversampling: $f_{s}=54$ GHz
- 1st order : $\mathrm{f}_{\mathrm{s}}=75.48 \mathrm{MHz}$
- 2 nd order: $\mathrm{f}_{\mathrm{s}}=5.81 \mathrm{MHz}$
- Exam problem (INF4420) below

3 a) (Weight 10%)

Sigma Delta converters,ISSCC 2008

- ISSCCForemost global forum

- "CT": continous time

$\triangle \Sigma$ DATA CONVERTERS

Chair: Zhongyuan Chang, IDT Technology, Shanghai, China Associate Chair: Yiannos Manoli, University of Freiburg, Freiburg, Germany

27.1 A 108dB-SNR 1.1mW Oversampling DAC with a Three-Level DEM Technique

K. Nguyen, A. Bandyopadhyay, B. Adams, K. Sweetland, P. Baginski

Analog Devices, Wilmington, MA
A multi-bit audio DAC in a $0.18 \mu \mathrm{~m}$ CMOS process uses a three-level DEM scheme and an ISI-free output stage to achieve 108 dB SNR while consuming a total of 1.1 mW per channel from a 1.8 V supply.

27.2 A 0.7V 36 $\mu \mathrm{W}$ 85dB-DR Audio $\Delta \Sigma$ Modulator Using a Class-C Inverter

9:00 AM
Y. Chae, I. Lee, G. Han

Yonsei University, Seoul, Korea
An audio $\Delta \Sigma$ modulator is realized in a standard $0.18 \mu \mathrm{~m}$ CMOS process, exploiting the possibility of substituting a class-C irverter for an OTA. The measurement results from the fabricated chip demonstrate 81 dB SNDR, 84 dB SNR, and 85 dB DR for a 20 kHz signal bandwidth. The chip consumes $36 \mu \mathrm{~W}$ from a 0.7 V supply.

27.3 An Inverter-Based Hybrid $\Delta \Sigma$ Modulator

R. Veldhoven, R. Rutten, L. Breems

NXP Semiconductors, Eindhoven, Netherlands
A hybrid $\Delta \Sigma$ modulator with $1^{\text {tt }}$-order analog filter, 5 b quantizer, $2^{\text {nd }}$-order digital filter, 1 b quantizer, and 1 b DAC is presented. The active circuitry is implemented solely with inverter circuits and standard digital cells. The 65 nm CMOS modulator achieves a peak NR of 77 dB in 200 kHz Power consumption is $950 \mu \mathrm{~W}$ at 12 V and the area is $0.03 \mathrm{~mm}^{2}$

Break 10:00 AM

27.4 A Noise-Coupled Time-Interleaved $\Delta \Sigma$ ADC with 4.2 MHz BW, -98 dB THD, and 79dB SNDR

10:15 AM
K. Lee ${ }^{1}$, J. Chae ${ }^{1}$, M. Aniya², K. Hamashita², K. Takasuka², S. Takeuchi², G. Temes ${ }^{1}$ Oregon State University, Corvallis, OR
${ }^{2}$ Asahi Kasei, Atsugi, Japan
A two-channel time-interleaved noise-coupled $\triangle \Sigma$ ADC is realized in $0.18 \mu \mathrm{~m}$ CMOS technology. Time interleaving doubles the effective clock rate while noise coupling raises the effective order of the noise-shaping loops, implements dithering, and also prevents tone generation in all loops, Using a 1.5 V supply, the devioe achieved $\mathrm{SFDR}>100 \mathrm{~dB}, \mathrm{THD}=-98 \mathrm{~dB}$, and an SNDR of 79 dB in a 4.2 MHz signal band.
27.5 A 28 mW Spectrum-Sensing Recontigurable 20MHz 72dB-SNR 70dB-SNDR DT $\Delta \Sigma$ ADC for $802.11 \mathrm{n} /$ WiMax Receivers
P. Malla ${ }^{1,2}$, H. Lakdawala', K. Kornegay ${ }^{3}$, K. Soumyanath ${ }^{\text {? }}$ Intel, Hillsboro, OR
Cornell University, Ithaca, NY
Georgia Institute of Technology, Atlanta, GA
A reconfigurable MASH 2-2 $\triangle \Sigma$ ADC, fabricated in 90 nm CMOS, has an 0 SR of 10.5 and uses a 1.2 V supply. It achieves SNRs of $72,62,60$, and 54 dB with a 20 MHz BW while consuming $28,20,15$, and 12 mW , respectively. The configuration and, therefore, power are determined by signal and blocker power. SNRs of 73,77 , and 78 dB are achieved for BWs of $10,5,2.5 \mathrm{MHz}$, respectively.

27.6 A 100 mW 10MHz-BW CT $\Delta \Sigma$ Modulator with 87 dB DR and -91 dBC IMD

W Yang W Schofield H. Shibata S. Korronati A Shaikh N Abacharoun, D.:15 AM Analog Devices, Wilmington, MA
$5^{\text {th }}$-order CT $\Delta \Sigma$ modulator with a hybrid feedback-feedfonward topology and 9 -level quantization is implemented in a $0.18 \mu \mathrm{~m}$ CMOS process. When clocked at 640 MHz , the modulator achieves 87 dB DR, 82 dB peak SNDR, and -91 dBc IMD over a 10 MHz BW. The modulator occupies $0.7 \mathrm{~mm}^{2}$ and consumes 100 mW from a 1.8 V supply.
27.7 A 65 nm CMOS CT $\Delta \Sigma$ Modulator with 81 dB DR and 8 MHz BW Auto-Tuned by Pulse injection

Y-S. Shu ${ }^{1}$, B-S. Song ${ }^{1}$, K. Bacrania ${ }^{2}$
University of California, San Diego, CA
${ }^{2}$ Conexant Systems, Palm Bay, FL
Active filters for CT $\Delta \Sigma$ modulators are calibrated by injecting a binary pulse dither and nulling it with an LMS algorithm. A $3^{\text {rdd-order }} 4 \mathrm{~b}$ prototype in 65 nm CMOS occupies $0.5 \mathrm{~mm}^{2}$ and consumes 50 mW at 1.3 V . At $256 \mathrm{MS} / \mathrm{s}$ (0 SR $=16$), the DR is 81 dB with a $2.4 \mathrm{~V}_{\text {Fp }}$ full-scale range. SNR and SNDR at -1 dBFS are 76 and 70 dB , respectively.

27.8 A CT $\Delta \Sigma$ ADC for Voice Coding with 92 dB DR in 45 nm CMOS

12:00 PM
L. Doerrer, F. Kuttner, A. Santner, C. Kropf, T. Puaschitz, T. Hartig Infineon, Villach, Austria
A $2^{\text {nd }}$-order CT multi-bit (4b) $\triangle \Sigma A D C$ for voice coding is implemented in a 45 nm CMOS process. The input operational amplifier is chopped to eliminate flicker noise and offset The quantizer, a power-efficient 3-comparator tracking ADC with a capacitive voltage he quence DAC, is suitable for low-voltage designs and high clock rates bandwidth of 20 kHz , the $D R$ is 86 dB . The $A D C$ consumes 1.2 mW from a 1.1 V supply when clocked at 12 MHz

ISSCC VISION STATEMENT

The International Solid-State Circuits Conference is the foremost global forum for presentation of advances in solid-state circuits and systems-on-a-chip. The Conference offers a maintain technical currency and to network with leading experts.

2nd order sigma delta modulator

Fig. 1. Block diagram of second-order $\Sigma \Delta$ modulator with decimator

Fig. 10. Second-order $\Sigma \Delta$ modulator implementation.

Fig. 13. Measured SNR for a sampling frequency of 4 MHz and a signal frequency of 1.02 kHz .

Fig. 14. Maximum operating frequency.

15. Dynamic range as a function of the oversampling ratio for a sampling frequency of 4 MHz .

The Design of Sigma-Delta Modulation Analog-to-Digital Converters

Additional litterature

- Stanley P. Lipshitz, John Vanderkooy: Why 1-bit Sigma Delta Conversion is Unsuitable for High Quality Applications, Journal of the audio engineering society, 2001.
- Y. Chiu, B. Nicolic, P. R. Gray: Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS, Proceedings of Custom Integrated Circuits Conference, 2005.
- Richard Hagelauer, Frank Oehler, Gunther Rohmer, Josef Sauerer, Dieter Seitzer: A GigaSample/Second 5-b ADC with On-Chip Track-And-Hold Based on an Industrial 1 um GaAs MESFET E/D Process, IEEE Journal of Solid-State Circuits ("JSSC"), October 1992.
- Walt Kester: Which ADC Architecture is right for your application?, Analog Dialogue, Analog Devices, 2005.
- Richard Lyons, Randy Yates: "Reducing ADC Quantization Noise", MicroWaves \& RF, 2005
- Sangil Park: "Principles of sigma-delta modulators for analog to digital converters", Motorola
- B. E. Boser, B. A. Wooley: "The design of sigma delta modulation analog to digital converters, IEEE JSSC, 1988.
- John P. Bentley: Principles of Measurement Systems, 2nd ed., Bentley, 1989.
- Lecture Notes, University of California, Berkeley,

EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/

Next Time, 23/3-10:

- More from Chapter 14; Oversampling Converters (14.2, 14.3, 14.4, 14.5, 14.7)
- Beginning of chapter 16; Phase-Locked Loops (16.1)

UNIVERSITETET

Guide to writing a thesis / report: The Design and implementation of a Nifty Gadget (page 1 and 2)

Guide to Writing a Thesis
Department of Applied Electronics
Last updated 1997-05-12

Original manuscript written by Sven Mattisson
The Design and Implementation of a Nifty Gadget

Tekla-Liz Book
April 32, 1992
Abstract
What is all this about?
hy should I read this thesis?
Is it any good? Is it any good?
What's new?

Preface

Have you done anything that doesn't have to do with your research? Have you published parts of this work before?

Acknowledgement

Who is your advisor?
Did anyone help you?
Who funded this work?
What's the name of your favorite pet?

1 Introduction

What is the use of a Nifty Gadget?
What is the problem?
What are the previous approaches?
What is your approach?
Why do it this way?
What are your resul
Why is this better?
Why haven't anyone done it before?
$\stackrel{o r}{\text { Why }}$
What is your contribution to the field of Nifty Gadgets?

2 Theoretical background

Where can I find it?
2.1 Various approaches to Nifty Gadgets

What is the relevant prior work?
Where can I find it?
Why should it be done differently?
Has anyone attempted your approach previously?
Where is that work reported?
2.2 Nifty Gadgets my way

What is the outline of your way?
Have you published it before?
3 My implementation of a Nifty Gadget
Can you describe your implementation in detail?
Why did you use this technology?
How does the theory relate to your implementation?
What are your underlying assumptions?
What did you neglect and what simplifications have you made? What tools and methods did you use
Why use these tools and methods?
4 Nifty Gadget results
Did you actually build it?
How can you test it?
How did you test it?
Why did you test it this way?
Are the results satisfactory?
Why should you (not) test it more?
What compensations had to be made to interpret the results? Why did you succeed/fail?

5 Discussion

Are your results satisfactory?
Can they be improved?
Is there a need for improvement?
04.07.2006

"Nifty Gadget" page 3 and 4

Are other approaches worth trying out?
Will some restriction be lifted?
Will you save the world with your Nifty Gadget?

6 References

What is the background reading list?
Where is the related work?
Where is the prior work?
Where can I find important material?

Appendix A

Can you outline fatilary calculus or whatever complicated theory or results you are using that will obscure the text?

Appendix B

A thesis should discuss the following topics:

- Introduction

Presentation of the problem or phenomenon to be addressed, the situation where the problem or phenomenon occurs, and references to earlier relevant research.
Common errors
Problem is not properly specified or formulated; insufficient references to earlier work.

- Purpose

What can be gained by more knowledge about the problem or phenomenon.

Common errors

The purpose is not mentioned, not connected to earlier research, or not in line with what the actual contents of the thesis.

- Problem/Hypothesis

Questions that need to be answered to reach the goal and/or hypothesis formulated be means of underlying theories.

Common errors
Missing problem description; deficiencies in the connections between questions; badly formulated hypothesis.

Common errors
An inappropriate method is used, for example due to lack of knowledge about different methods; erroneous use of chosen method

Result

Answers to the forwarded questions by means of the achieved results

Common errors

The results are not properly connected to the problem; blurry presentation; the results are intermixed with discussion

Discussion

Discussion of the accuracy and relevance of the results; comparison with other researchers results.

Common errors

Too far reaching conclusions; guesswork not supported by the data; introduction of a new problem and a discussion around this.

- Conclusion

Consequences of the achieved results, for example for new research, theory and applications.

Common errors

The conclusions are too far reaching with respect to the achieved results; the conclusions do not correspond with the purpose.

