

Interpolating ADCs. Rightmost interpol.=4 (1/4)

- Redučed complexity compared to Flash ADCs \rightarrow reduced input capacitance and slightly reduced power.
- In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of ${ }^{16} \mathrm{kPFogRA月}{ }^{\circ}$ data points.

Folding A/D Converters (13.7)

- The number of latches is reduced compared to the interpolating ADC, and even more from FLASH
- The figure shows a 4 bit converter with folding rate of 4
- A group of LSBs are found separately from a group of MSBs.
- The MSB converter determines whether the input signal, V_{in}, is in one of four voltage regions (between 0 and $1 / 4,1 / 4$ and $1 / 2$, $1 / 2$ and $3 / 4$, or $3 / 4$ and 1) V_{1} to V_{4} produce a thermometer code for each of the four MSB regions

Folding block with a folding rate of four

 - Input-output response for the cross-coupled differential pair is shown lowermost

- Vout is low if, and only if, both V_{a} and V_{b} are low, otherwise high
- The output from a folding block is at a much higher frequency than the input signal, limiting the practical folding rate.
- Differential solutions in practice

Interpolating and folding and interpolating ADCs

ef

Oversampling converters (chapter 14 in "J \& M")

- For high resolution, low-to-medium-speed applications like for example digital audio

- Relaxes requirements placed on analog circuitry, including matching tolerances and amplifier gains
- Simplify requirements placed on the analog antialiasing filters for A/D converters and smoothing filters for D/A converters.
- Sample-and-Hold is usually not required on the input
- Extra bits of resolution can be extracted from converters that samples much faster than the Nyquist-rate. Extra resolution can be obtained with lower oversampling rates by exploiting noise shaping
iff
RSITETET

Dependence of achievable resolution and required clock cycles per sample for various ADC systems.

A Gigasample/Second 5-b ADC with On-Chip Track

ef

 and Hold Based on an Industrial $1-\mu \mathrm{m} \mathrm{GaAs}$ MESFET E/D Process

Oversampled converters; High resolution and relatively low speed

Figure 1. $A D C$ architectures, applications, resolution. and sampling rates.

Fig. 2. ADC sample rate vs. ENOB from 1987 to 2005.

Which ADC Architecture Is Right

 for Your Application?By Walt Kester [walt.kester@analog.com]

eff

Oversampling (without noise shaping)

- Doubling of the sampling frequency increases the dynamic range by $3 \mathrm{~dB}=0.5$ bit.
- To get a high SNR a very high fs is needed \rightarrow high power consumption.
- Oversampling usually combined with noise shaping and higher order modulators, for higher increase in dynamic range per octave ("OSR")

Advantages of 1-bit A/D converters (p. 537 in "J\&M")

- Oversampling improves signal-to-noise ratio, but not linearity
- Ex.: 12-bit converter with oversampling needs component accuracy to match better than 16-bit accuracy if a 16-bit linear converter is desired
- Advantage of 1-bit D/A is that it is inherently linear. Two points define a straight line, so no laser trimming or calibration is required
- Many audio converters presently use 1-bit converters for realizing 16- to 18-bit linear converters (with noise shaping).

Problems with some 1-bit converters ((?))
Why 1-Bit Sigma-Delta Conversion is Unsuitable for High-Quality Applications

by

Stanley P. Lipshitz and John Vanderkooy Audio Research Group, University of Waterloo Waterloo, Ontario N2L 3G1, Canada

ABSTRACT

Single-stage. 1-bit sigma-delta converters are in principle imperfectible. We prove this fact. The reason. simply stated, is that, when properly dithered, they are in constant overload. Prevention of overload allows only partial dithering to be performed. The consequence is that distortion, limit cycles, instability, and noise modulation can never be totally avoided. We demonstrate these effects, and using coherent averaging techniques, are able to display the consequent profusion of nonlinear artefacts which are usually hidden in the noise floor. Recording, editing. storage, or conversion systems using single-stage, 1-bit sigma-delta modulators, are thus inimical to audio of the highest quality. In contrast, multi-bit sigma-delta converters, which output linear PCM code, are in principle as to guarantee the absence of all distortion. lo at least two bits in the converter.) They can be properly dithered so it adopts 1 -bit sigma-delta conversion as the basis for any high-quality processing. archiving. or distribution format to replace multi-bit, linear PCM.

Audio Engineering Society
Convention Paper 5395
Presented at the 110 th Convention
2001 May 12-15 Amsterdam. The Netherlands

Oversampling with noise shaping (14.2)

- Oversampling combined with noise shaping can give much more dramatic improvement in dynamic range each time the sampling frequency is doubled.
- The sigma delta modulator converts the analog signal into a noise-shaped low-resolution digital signal.
- The decimator converts to a high resolution digital signal

universitetet Ios.o

Multi-order sigma delta noise shapers (sangil Park, Motorola)

Note: Higher order Noise Shaper has less baseband noise

Ex. 14.5

- Given that a 1-bit A/D converter has a 6 dB SNR, which sample rate is required to obtain a 96-dB SNR (or 16 bits) if $\mathrm{f}_{0}=25 \mathrm{kHz}$ for straight oversampling as well as first-and second-order noise shaping?
- Oversampling with no noise shaping: From ex. 14.3 we know that straight oversampling requires a sampling rate of 54 THz .
- $(6.02 \mathrm{~N}+1.76+10 \mathrm{log}$ $(\mathrm{OSR})=96$
<->
$6+10 \log \mathrm{OSR}=96)$
<-> $10 \log \mathrm{OSR}=90$

解 universitetet

Ex. 14.5

$\mathrm{SNR}_{\text {max }}=6.02 \mathrm{~N}+1.76-5.17+30 \log (\mathrm{OSR}$ We see here that doubling the OSR gives an SNR improvement for a first-order mod 9 dB . pared to the 0.5 r, equivalently, a gain of 1.5 bits/octave. This result should be compared to the 0.5 bits/octave when oversampling with no noise shaping.

- Oversampling with 1st order noise shaping:
- 6-5.17 + $30 \log ($ OSR $)=96$ $O S R=f_{s} / 2 f_{0}$
- 30log (OSR) $=96-6+5.17=95.17$

A doubling of the OSR gives an SNR improvement of $9 \mathrm{~dB} /$ octave for a 1st order modulator;
$95.17 / 9=10.57 \quad 2^{10.56} \times 2^{*} 25 \mathrm{kHz}=75.48 \mathrm{MHz}$ OR: $\log (O S R)=95.17 / 30=3.17 \rightarrow$ OSR $=1509.6$ 1509.6 * $(2 * 25 \mathrm{kHz})=75.48 \mathrm{MHz}$

ef

Ex. 14.5

$\mathrm{SNR}_{\max }=6.02 \mathrm{~N}+1.76-12.9+50 \log (\mathrm{OSR})$
We see here that doubling the OSR improves the SNR for a second-order mow lator by 15 dB or, equivalently, a gain of 2.5 bitsoctave.

The realization of the second-order modulator using switched-capacitor te
niques is straightforward and is left as an exercise for the interested reader.

- Oversampling with 2 nd order noise shaping:
- $6-12.9+50 \log (O S R)=96 \quad$ OSR $=\mathrm{fs} / 2 f_{0}$
- $50 \log (\mathrm{OSR})=96-6+12.9=102.9$

A doubling of the OSR gives an SNR improvement of 15 dB / octave for a 2nd order modulator;
$102.9 / 15=6.86 \quad 2^{6.86} \times 2 * 25 \mathrm{kHz}=5.81 \mathrm{MHz}$

	Ex. 14.5 "point":	- 2 X increase in $\mathrm{M} \rightarrow$ (6L+3)dB or (L+0.5) bit increase in DR.
SvR [did]		- L: sigma-delta order - 6 db Quantizer, for 96 dB SNR.
(140		
	\%	SNR: - Plain oversampling: $\mathrm{f}_{\mathrm{s}}=54$
	-	GHz
		- 1st order : $\mathrm{f}_{\mathrm{s}}=75.48 \mathrm{M}$ - 2 nd order: $\mathrm{f}_{\mathrm{s}}=5.81 \mathrm{MH}$
		- Exam problem (INF4420) below
	C.	A

Sigma Delta converters,ISSCC 2008

- ISSCC- Foremost global forum - "CT": continous time		
¿	$5=2$	(6) Msymgstiteret

Additional litterature

- Stanley P. Lipshitz, John Vanderkooy: Why 1-bit Sigma Delta Conversion is Unsuitable for High Quality Applications, Journal of the audio engineering society, 2001.
- Y. Chiu, B. Nicolic, P. R. Gray: Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS, Proceedings of Custom Integrated Circuits Conference, 2005.
- Richard Hagelauer, Frank Oehler, Gunther Rohmer, Josef Sauerer, Dieter Seitzer: A GigaSample/Second 5-b ADC with On-Chip Track-And-Hold Based on an Industrial 1 um GaAs MESFET E/D Process, IEEE Journal of Solid-State Circuits ("JSSC"), October 1992.
- Walt Kester: Which ADC Architecture is right for your application?, Analog Dialogue, Analog Devices, 2005.
- Richard Lyons, Randy Yates: "Reducing ADC Quantization Noise", MicroWaves \& RF, 2005
- Sangil Park: "Principles of sigma-delta modulators for analog to digital converters", Motorola
- B. E. Boser, B. A. Wooley: "The design of sigma delta modulation analog to digital converters, IEEE JSSC, 1988.
- John P. Bentley: Principles of Measurement Systems, 2nd ed., Bentley, 1989
- Lecture Notes, University of California, Berkeley,

EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/

UNIVERSITETET I OSLO

Next Time, 23/3-10:

- More from Chapter 14; Oversampling Converters (14.2, 14.3, 14.4, 14.5, 14.7)
- Beginning of chapter 16; Phase-Locked Loops (16.1)

ef

"Nifty Gadget" page 3 and 4	
Are odher apreaches worth trying our? Will some restriction be tiffed? Whil yoo suve the world with your Nifty Gadget?	
6 References	
What is the backpround reading lest? Where is the related work' Where as the prior modl	
Where com I find important muteral?	Common errors An inapprogriate method is used, for example due to lack of knowledge about defferent methods: erroneous use of chosen method.
Can you ourline fatilary calculas or afusever complicated theory or results yoe are suing thar mill obscure the text?	- Result
Appendix B	Answers to the forwarded questions by meams of the achieved results.
A beein showid divaus de folloming wepicx - Iatroduction	Common errons The results are not properly connected to the problem; blurry presentation; the results are intermuxed with discussion.
Presumasics of the problem or phencemence no be addresied, the sifuation where the probleme or phesomeson occurk. and references to earlier relevant research.	- Discussion
Commen ertors Problem es not properly specified er formulated, invofficiest sefermoes to ember work.	Disussion of the accurscy and relevance of the resuls: comparison with other researchers results.
- Purpose	Too far reaching conclusions: guesswork not supported by the data; introdaction of a new problem and a discussion around this.
Comines errars The purpone as sot mextioced, sot connected to earlier reseach. of not in line with what dhe achat contents of the thesis.	- Conclusion Consequences of the achieved results. for example for new research. theory and applications.
- Problem/Hypothects Qurstions that need to be anwered to reach the goal and or hypothess formulated be mrans of uederlying theories	Common errors The conclussons are too far reaching with respect to the achaeved results; the conclasions do not correspond with the purpore.
Commese errors Mavel problem deicrigtion: deficiencies in He conaectases berween queitioni, badly formalated bypotheni.	
- Method	39
	UNIVERSITETET I OSLO

