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14.7 Practical Considerations
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Fig. 16.1 The basic aechitecture of o phasedocked
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16.1Linearized small-signal analysis of general PLLs
16.2 PLLs with charge-pump phase comparators
16.3 Voltage controlled oscillators

16.4 Computer Simulations of PLLs
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PLL Basic Architecture
Low-pass
filter Gain
; + Vpa I
Vin O—— Phase ! H. (s) P K Output
—{ detector = Ip p voltage
Average voltage proportional to phase difference
Vemt
vCO
Vo
(volage controlled oscillator)
* In general. output may be V_, or V'
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PLL linear model applying to almost every PLL

» Combining above 2 equations ...
Vetls) _ 5K, yK) Hy ()
O (8) 5+ K Ky KogeH ) (5)

= This is a highpass response from input phase to control
voltage
= Can also be written as
Ogels) Kk

Ols) s+ KK

——Ven

K (5

Koscl Ty}

I

Ip

+ This is a lowpass response from input phase to output
phase

Vertt () = K, ;K H, (5)[0,,(5) =0, (s i
ontt )= BpaipH (0103 =005 § pigtarences between PLLs
K 1

0y () = —oselent®) are determined only by what
’ is used for the LP-filter
|+ ¢t (H,(s)), the Phase Detector
H,(5) = 75 (K,q) Or the oscillator (Kog,).
P
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More on the 2nd order PLL model

0] bl = TQ eV rm himpin £ = O0F%
12.¢ A ) 2 (T 5

Capture range, lock range, false lock

* The maximum difference between the input signal’s
frequency and the oscillator’s free-running frequency
where lock can eventually be attained is defined as
the capture range

* One lock is attained, as long as the input signal’s
frequency changes only slowly it will remain in lock
over a range that is much larger than the capture
range

* When a multiplier is used for the phase detector the
loop may lock to harmonics (multiple of the frequency)
of the input signal. This is called a false lock.
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Exclusive-OR Phase comparators

put given by V4 = V,, ® V... where the amplitudes of the signals are determir
by the logic levels. Some typical waveforms are shown in Fig. 16.6. It is seen 1l

el () o IO o N oy [0

Fig. 16.6 Typical woveforms when an exclusiveOR gote is used os o phase
roamnarator

* When the waveforms are 90 degrees out of phase
the output is a waveform at twice the frequency of
the input signal and has a 50 percent duty cycle.

« If all waveforms are symmetric about O volts the

average value extracted by the low-pass filter would
be zero.
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EXOR phase comp

X d phesc cow

* When the waveforms become more out of phase, the average value
of the output signal is positive; whereas when they become more in

phase, the average value of the output signal is negative
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Small-Signal Model of the Charge-Pump PLL

Ich
n,
v, wental | PU_, . )
o e N « In average the current from the CP is: |, = 22,
Voso_| detector | P, & s p 2n
2
leh

C, -
%j (de-glitching cap)
R -c
Ki‘//
Charge-pump phase comparator §
i Low-pass filter i i .
The transfer function from the loop filter is (C2 ignored):
Vip®)
| —
Hip(s) = == = R+
avg(S)
L
dox(9) _ _ (1+3RCy
in(S s2C
din(S) 1+5RC, + 1
M’in deosc

P ‘_;ﬁ J_’ 00 = 1 _ ,Ichlzosc
2 Tpll 27Cy
. | o= L -1[Z—
RCimo R*jClIChKosc

1 1+sRC
sC;  sC;

UNIVERSITETET

I OSLO




€. .M

Vin  o—

Set;
Py.dshl

I

Reset

n

FF3

Set,

a

=

FF4

Phase Frequency Detector (PFD)

—o0 Vosc

* Most commonly used sequential phase detector is
the Phase Frequency Detector (PFD).

* This circuit handles phase differences up to 2m.
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Phase Frequency Detector (PFD)

Assume P, Py, P gspir Py.asoi RESEL, Vi,
Vs are low

* V,, goes high; FF1 set/ Pu goes high ->

| ov... VCO frequency increases

* V. goes high; FF2 set temporarily,
reset goes high, causing P, and P4 go
low after some delay. Reset going high
causes FF3 and FF4 to be set and P, 4qp,
and Py 4, 90 high, which later causes
reset to go low. FF1 and FF2 are kept in

Reset
Vi o—

S

- reset mode and P, and P, low.

| e * V;, goes back to 0; FF3 reset and P 4,
v, u %} is turned off.

ino—| Sequential L, S;
phase % i i
Voo, | doecor | P, l—T—Osz . Ip « Similarly, when V. goes low, FF4 is
L

| reset goes low, FF4 is reset and P yqp
o o " (de-glitching cap) goes low. (back to original state).
- C . . . .
1 1 2 (The operation is very similar if V.
—~— leads V;,)

Charge-pump phase comparator 3
Low-pass filter
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PFD waveforms — when V,, has a much
higher frequency than Vosc

* Whenever a positive going edge of Vin
occurs, Pu goes high causing the VCO
frequency to increase, and stays high

Py until both Vin and Vosc go to 1. Then

I
_ I

E

| reset goes high, setting both Pu-dsbl
and Pd-dsbl, and causing Pu and Pd to

s 1 go low. The next time Vin goes to o,
e 1 L [ FFlisreset, which resets FF3, turning
Pu-dsbl off.
» Most of the time (here) Pu is high,
I causing Vosc to quickly increase in
v o P Cfs'h frequency until lock is achieved.
V'% wee [ jgl_'_Qvlp « No false lock
it D = G « Only suitable for digital (non-sine)
%) i R "l (de-glitching cap) inputs
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Voltage controlled oscillators (VCO)

Oscillators
|
J ]
Tuned oscillators Nonlinear oscillators
|
RC SC LC Crystal Relaxation Ring
0SC. 0SC. 0SC. OsC. 0sC. 0sc.

 Sinusoidal output oscillators usually realized some frequency
selective or tuned circuit in feedback configuration, while square-
wave output oscillators are usually realized using a nonlinear
feedback config.

e The tuned oscillators offers better frequency stability, but limited
tuning range.
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Ring oscillators

M

w [V]

1] 2 4 G 8 10 [}
t [ns] + -
Vout (quadrature)

Tinv is the delay of each inverter foe =5 =
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0.2 V subthreshold VCO

Frequency [He|

Wi es s

Figure 3. RVCO transfer function for a 5 stage
9l RYCO simulated in Cadence
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Figure 4. Sensitivity of the RVCO illustrates a
nonlinearity of 0.5 %

Linearity of Bulk-Controlled Inverter Ring VCO in Weak and Strong
Inversion

ar*. Dag 1
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Differential inverter

/'Q IB IB
Vcntl o

Vout™ O

+
Vin O_‘

Q Q
Vbiasi O LJ?’—¢ !

+
Vout

Ql Q2 I_Ovin—

Vent O—/?

* Programmable delay

e Cascode transistors Q3,
Q4 to increase output
impedance of
programmable current
sources for better PSRR

* |z = Kbias Vcentl
(proportional)

 Tau proportional to C, /
Om» fosc Proportional to
SQRT(V,,y) ;nonlinear
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Bias circuit
4 Al Al
Qg _”-J J | J
Qg ’—| QB Qs
Vhias O*’f—J = II:I
Q Q
Ventl ': Q s il To other
7 —» oscillators
b l >y Q1 E Q
Rj 21 o
T First inverter of -
Control circuitry ring oscillator

Computer simulations of PLLs

* Nontrivial due to often very wide range of time constants
present in PLLs.

» SPICE simulations only may be highly impractical and take
too long time.

* Possible approach:

Simulate the individual components using SPICE over a few
periods of the VCO'’s output waveform before simulating the
complete system using simplified models where continous
time components are replaced by approximately equivalent
difference-equation models;

Simulink in Matlab (easy, don’t need much expertise)

or custom difference equations using for example C. (fast
and may be modified for greater accuracy)
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Additional litterature

» Ulrik Wismar, Dag T. Wisland, Pietro Andreani: Linearity of Bulk-Controlled Inverter Ring VCO
in weak and strong inversion, Proceedings of IEEE Norchip Conference, 2005.

* http://www.eecg.toronto.edu/~johns/nobots/Book/book.html
*  http://www.iue.tuwien.ac.at/phd/grasser/node83.html (Ring osc.)
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Some pointers

« http://www.idi.nthu.no/~lasse/DM/SkriveTips.php

* Preface
* (Acknowledgement)
* 1 Introduction
» 2 Theoretical background
* (2.1 Various approaches to Nifty Gadgets)
» 2.2 Nifty Gadgets my way
* 3 My implementation of a Nifty Gadget
* 4 Nifty Gadget results
5 Discussion

£ #8% UNIVERSITETET
“0¥ - 10sLO

Nifty Gadget / DAC chapter 3

* 3 My implementation of a Nifty Gadget

» Can you describe your implementation in detail?
Why did you use this technology?
How does the theory relate to your
implementation?
What are your underlying assumptions?
What did you neglect and what simplifications
have you made?
What tools and methods did you use?
Why use these tools and methods?

,{'j‘:‘ UNIVERSITETET
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Nifty Gadget / DAC chapter 4

* 4 Nifty Gadget results
* Did you actually build it?
How can you test it?
How did you test it?
Why did you test it this way?
Are the results satisfactory?
Why should you (not) test it more?
What compensations had to be made to interpret
the results?
Why did you succeed/fail?

£ #8% UNIVERSITETET
“0¥ - 10sLO

Nifty Gadget / DAC chapter 5

* 5 Discussion
* Are your results satisfactory?
Can they be improved?
Is there a need for improvement?
Are other approaches worth trying out?
Will some restriction be lifted?
Will you save the world with your Nifty Gadget?

£ #8% UNIVERSITETET
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Ex. 16.2
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S Nl ey Wl
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— | | 1]
|
Vi |

= MF..
W | L%\

%lg .

L;\/Q \MJ

o

\%@l \Mzﬂ

w

16



