























6





## 7



















































































































From V<sub>BE</sub> as a function of collector current and temperature to   

$$Vout for BG ref. (part 1 of 2)$$

$$V_{BE} = V_{60} \left(1 - \frac{T}{T_{0}}\right) + V_{BE0} \frac{T}{T_{0}} + \frac{mkT}{T} \ln \left(\frac{T}{T_{0}}\right) + \frac{kT}{T} \ln \left(\frac{J}{J_{1}}\right) (\xi_{1}0)$$

$$V_{6E} = V_{60} \left(1 - \frac{T}{T_{0}}\right) + V_{BE0} \frac{T}{T_{0}} + \frac{mkT}{T} \ln \left(\frac{T}{T_{0}}\right) + \frac{kT}{T} \ln \left(\frac{J}{J_{0}}\right) (\xi_{1}0)$$

$$V_{6E} = V_{60} - V_{60} \frac{T}{T_{0}} + V_{BE0} \frac{T}{T_{0}} + \frac{mkT}{T} \ln \left(\frac{T}{T_{0}}\right) + \frac{kT}{T} \ln \left(\frac{T}{T_{0}}\right) + \frac{kT}{T} \ln \left(\frac{T}{T_{0}}\right)$$

$$V_{6E} = V_{60} + \frac{T}{T_{0}} (V_{6E0} - V_{60}) + \frac{mkT}{T} \ln \tau_{0} - \frac{mkT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} - \frac{kT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} - \frac{kT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} - \frac{kT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} + \frac{kT}{T} \ln \tau_{0} - \frac{kT}{T} \ln \tau_{0} + \frac{kT$$








































































Laplace transform 
$$\overline{X}_{sn}(s)$$
  
for  $x_{sn}(t)$ :  
 $\overline{X}_{sn}(s) = \frac{1}{T} \left( \frac{1-e^{-s_T}}{s} \right) x_c(n_T) e^{-s_n T}$   
Since  $x_s(t)$  is a linear  
combinetion of  $x_{sn}(t)$ , we also  
have  
 $\overline{X}_s(s) = \frac{1}{T} \left( \frac{1-e^{-s_T}}{s} \right) \sum_{n=\infty}^{\infty} x_c(n_T) e^{-s_n T}$   
When  $T \to 0$  the term before the  
summetion goes to unity, so in  
this case:  
 $(eq 9.7)$ :  $\overline{X}(s) = \sum_{n=-\infty}^{\infty} x_c(n_T) e^{-s_n T}$ 

PP. 34L  
SPECTRA OF DISCRETE - 
$$x_{(m)}$$
 ( $x_{(m)}$ )  
 $y_{(m)}$  ( $x_{(m)}$ ) =  $\sum_{n=-\infty}^{n} x_{(n)}$  ( $n = \sum_{n=-\infty}^{n} x_{(n)}$ )  
The spectrum of the sampled  
 $y_{(m)}$  replacing  $x_{(m)}$  ( $n = f_{(m)}$ )  
A more intuitive approach is to  
recall that if  $y_{(n)} = h(n) \otimes x(n)$ ,  
 $(x_{(m)}) = \frac{2\pi}{1} \sum_{n=-\infty}^{\infty} \delta(w - k - \frac{2\pi}{1})$   
Using this fact, for  $x \to 0$ ,  $x_{5}(k)$   
( $a_{(m)}$  be unitten as the product  
 $x_{5}(k) = x_{c}(k) s(k)$  ( $q_{(m)}$ )  
 $(q_{(m)}) = \frac{1}{2\pi} x_{c}(jw) \otimes S(jw)$   
where  $c(k)$  is a periodic pulm  
 $b_{(m)}$  ( $q_{(m)} = \frac{1}{2\pi} x_{c}(jw) \otimes S(jw)$   
 $(q_{(m)}) = \sum_{n=-\infty}^{\infty} \delta(k - nT)$   
 $(q_{(m)}) = \sum_{n=-\infty}^{\infty} \delta(k - nT)$ 

 $X_{s}(jw) = \frac{1}{2\pi} \times_{c} (jw) \otimes S(jw)$ By performing this convolution either mathemetically or graphically, the spectrum of  $X_{s}(jw) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \times_{c} (jw - \frac{jk2\pi}{T}) (q,u)$ Figur 210: Grafisk fremstilling av sampling, i ids- og frekvensdomenet.  $\begin{cases} (q,13) \text{ con firms the example} \\ Spectrum for X_{s}(f), shown \\ in Fig. 9.2. \end{cases}$ Note that, for a discretetime signal,  $X_{s}(f) = X_{s}(f) \times C(j2\pi f - jk2\pi f_{s}) (q,u)$   $q_{12} \text{ and } q_{13} \text{ show that the greetrum for the sampled signal, <math>x_{s}(k)$ , equals a sum of shifted spectra of  $x_{c}(k)$ . No aliasing occurs if  $X_{c}(jw)$  is bandlimited to  $\frac{f_{2}}{2}$ 

93 Z - TRANSFORM PD 377 in UdM<sup>4</sup>  
(97): 
$$X(s) = \sum_{n=-\infty}^{\infty} x_{c}(nT) e^{-snT} \wedge zz e^{sT}$$
  
(915)  $X(z) = \sum_{n=-\infty}^{\infty} x_{c}(nT) e^{-n}$ ; the z-transform of the samples  $x_{c}(nT)$   
Two PROPERTIES, deduced from Laplace -tr. properties:  
1) If  $x(n) = X(z)$  then  $x(n-k) \leftrightarrow z^{-k} \cdot X(z)$   
2) Conv. in the time domain equals mult. in the freq domain  
Mult. — II — (onv. — II)  
If  $y(n) = h(n) \otimes x(n)$  then  $Y(z) = H(z) \cdot X(z)$   
Note that  $\overline{X}(z)$  is not a function of the sampting rate  
but only to the numbers  $x_{c}(nT)$ .  
The signed  $x(n)$  is simply a price of numbers  
that may (or may not) have been obtained by  
sampting

"x(n) is simply a (FF. 377) series of numbers ... One way of thinking about this series of numbers is that the original sample time T, has been effectively normalized to 1. scaling justifies the spectral relation between The X(s) (f) and X(w) shown in Fig. 9.2 From fig. 9.2: A A X(f) Relationship between X (f) and X (w) :  $\mathbb{E}^{(t)} \times \mathbb{X}$ X(w) (9.16) 4 Alternatively :  $w = \frac{2\pi f}{2}$ ZTTF. 211 fs w : radians/sample At Nyquist rate:  $\omega = \frac{2\pi f}{f_s} = \frac{2\pi f}{2f} = \pi \left[ \frac{radians}{sample} \right]$ 

continuous - time 1KHZ cycles (second (H2) f : ?t 귀끈 W: radians/sample Normally discrete-time signals are defined to fig. 9.4 , fs = 4kH2  $f = 1 k H_2$ The signal changes II. have frequency components only botween IT and IT red. radians between each sample 2: Such a discrete-time signal is defined to have x(n) frequency of II rad. a Note: Discrete-time 0 rad/sample = 0 cycles/sample  $_{\pi/8}$  rad/sample 1/16 cycles/sample Signals are not unique since the addition of 277 results in the same signal. For example, a discrete-time signal having a freq of  $\frac{1}{4}$  and  $\frac{1}{5}$  is identiced to that of  $\frac{9}{7}$  real surple  $\pi/4$  rad/sample = 1/8 cycles/sample  $\pi/2$  rad/sample = 1/4 cycles/sample



















| In many cases it is desirable to<br>convert a continuous-time filter<br>into a discrete-time filter or<br>vice versa.<br>Assuming that $H_c(p)$ is a continuous<br>time transfer function (where p is the<br>complex variable equal to $S_p + jSl$ ),<br>the bilinear transform is defined<br>to be given by<br>$\frac{P = \frac{2-1}{2+1}}{Finaling the inverse transformation:}$ $p(2+1) = 2-1  z = \frac{-(p+1)}{p-1}$ $\frac{2}{p^2-2} = \frac{-1}{2} - \frac{2}{p^{-(1-p)}}$ | 2-plane dicensions of 1 and -1<br>(i.e. de and $4z/2$ ) are mapped<br>to p-plane docations of 6 and<br>respectively.<br>The bilinear transform also maps th<br>unit circle, $z = e^{jT}$ in the z-plane<br>to the entire $jR$ -axis in the<br>p-plane. To see the mapping:<br>$p = \frac{e^{jT}-1}{e^{jT}+1} = \frac{e^{jT}(e^{jT}-e^{-jT})}{e^{jT}(e^{jT}+e^{-jT})}$<br>$= \frac{z_j \sin(\frac{\pi}{2})}{2 \cos(\frac{\pi}{2})} = j \tan(\frac{\pi}{2}) \begin{bmatrix} \cos \frac{e^{jT}+e^{-jT}}{2} \\ \sin p = \frac{e^{jT}-e^{jT}}{2j} \end{bmatrix}$<br>Founds on the unit circle<br>in the z-plane are mapped to location<br>on the jR-axis in the p-plane,<br>and we have $L = \tan(m/r)$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|















Basic building blocks in SC circuits; Opamps, capacitors, switches, clock generators (chapter 10.1)

- DC gain typically in the order of 40 to 80 dB (100 10000 x)
- Unity gain frequency should be > 5 x clock speed (rule of thumb)
- Phase margin > 70 degrees (according to Johns & Martin)
- Unity-gain and phase margin highly dependent on the load capacitance, in SC-circuits. In single stage opamps a doubling of the load capacitance halves the unity gain frequency and improve the phase margin
- The finite slew rate may limit the upper clock speed.
- Nonzero DC offset can result in a high output dc offset, depending on the topology chosen, especially if correlated double sampling is not used

ίfi

UNIVERSITETET I OSLO




























21



























POLES ? The case of Cz=0 :  $2p = \frac{C_{A}}{C_{A}+C_{3}} = \frac{C_{A}}{C_{A}} = 1$ Equating the denominator to 2000, in H(2): ZERUS?  $\left(1-\frac{C_3}{C_A}\right) 2 - 1 = 0$ Numerator in H(2) = 0  $\left(\frac{C_1 + C_2}{C_A}\right)^2 - \frac{C_1}{C_A} = 0$ Zp= CA+ C3  $\left(\frac{C_1 + C_2}{C_A}\right)_2 = \frac{C_1}{C_A} = \frac{C_1}{C_1 + C_2}$ For positive capacitance values this pole is retricted to the between zero and one red axis For positive capacitances the zero is located to the real z-plane axis between 0 and 1. DC-gain (2=1):  $H(i) = -\frac{\binom{c_1 + c_2}{C_A}}{\binom{1 + \frac{c_3}{C_A}}{C_A} \frac{z}{z} - \frac{c_1}{c_2}}{1 + \frac{c_3}{C_A} - \frac{c_4}{C_A} - \frac{c_4}{C_A}}$ In this can the circuit is always stable  $= -\frac{C_2}{C_3} = -\frac{C_2}{C_3}$ UNIVERSITETET



























| CHARGE INJ. C2 ( 40, 42a (<br>Ch. 10.5 Aspl as Slightly de | $R_{ch} = -VULC_{on}(V_{OS} - V_{E})$ (10, 82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vi(2) 41 C2 are s additioned with respect to remaining     | vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 42 - Ca2 43 - A2a - TINJECTING<br>CONSTANT                 | then as and ay are on Vac = Von                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VIRTUAL GROUMIS Q3, Q4 an                                  | a since their source remain at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| az and ay connect to ground az, as ve                      | sits, their Ve's remain constant (inequality)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| on virtual ground, respectively," >:                       | THE CHARGE INJECTED BY 43, 44 IS THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| meaning that when they are                                 | THE NEXT AND CAN BE CONSIDERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| turned on (dza=Vad or ana=Vad) , f                         | A DC OFFSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| they need only pass a signal in                            | tortunately this is not the case for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| near the ground node (vss=ov)                              | the contraction of the contract |
| These two systemes can ch                                  | are is linearly related to V:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| be realized write since n-channel Th                       | e Vin changes in a nonlinear relation-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| transieture A 2nd important H                              | ip (bulk effect). Rom has a lin. and nimin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| clansistors, i and importance or                           | for and distortion if as were turned off early.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Flassin for this is that the                               | TO MINIMIZE DISTORTION GAIN ERE AND DE OFFS :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| charge injections due to do and dy                         | TO REDUCE THE ERECTS OF CHARGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| are not signal dependent (as                               | INJECTION IN SC-CIRCUITS REALIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| will be seen)                                              | ALL SWITCHES CONNECTED TO GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Channel charge of an NMOS intriode,                        | OR VIRTUAL GROUND AS A-CHANNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (cheptur +): QCH = -WL Cox Veff                            | NEAR THE VIRTUAL GROUND OF THE GRAMPS FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                            | 10310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Ex. 10.6 (2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When Q1a turns off, half the $\frac{1}{2}Q_{CH4} + \frac{1}{2}Q_{CH3} = 77.5 \cdot 10^{-3} pC$<br>charge, $Q_{CH4}$ , goes to virtual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ground, while half of actig the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 38,75 au 32,35pc au<br>rc au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| When the come high the 2nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| charge escopes to ground:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 42a 43<br>38.75p ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 channel ch. 3835pc bit between his the previously mentioned charge package is 4<br>and ay: 1235pc bit between his the previously mentioned charge package is 4<br>brand ay: 1235pc bit between his the previously mentioned charge package is 4<br>brand ay: 1235pc bit between his the previously mentioned charge package is 4<br>brand ay: 1235pc bit between his the previously mentioned charge package is 4<br>brand ay: 1235pc bit between his the previously mentioned charge package is 4<br>brand ay: 1245pc bit between his the previously mentioned charge package is 4<br>brand ay: 1245pc bit between his the previously mentioned charge package is 4<br>bit the previously mentioned charge package is 4 |

CHARGE INJECTION AND felk = + HIGHER FREQUENCIES RON = -(1.108) Phlox . W. Vett The smaller the Ron and smaller the C, the higher Using (10.83) the charge the frequency of switching change due to the chand (possible) ()=CV  $H(s) = \frac{1}{1+\tau s}$ charge caused by turning A 2 =RC V= a an n- channel switch off an n-commented by TS approximated by To decrean Row the size of the switch  $|\Delta V| = \frac{1}{2} Q_{CH} \cdot \frac{1}{c} = \frac{W L C_{out}}{2c}$ increases, and thus the charge injection. For a specified DV/max Will derive a simple formula that gives C = WL Cox Veff the upper bound on the frequency of 2/AV/max operation of an SC circ. for a max. Substituting in (10.89) ; voltage change due to charge inj .: felk < 1 10. 1 willing will bett 2/AV/max (ignore overlap capacitance) MOST SC CIRC. HAVE 2 SERIES SWITCHES PER felk & Ma lavimax CAPACITOR . AS A RULE OF THUMB FOR 6000 SETTLING, THE SAMPLING CLOCK HALF PERIOD MUST BE GREATER THAN S TIME CONST. 5 L2 D: UPPER FREA. LIMIT  $\frac{T}{2} > 5 R_{oN} \cdot C \iff f_{clk} < \frac{1}{10 R_{oN} C} (0.84)$ INVERSELY PROPORTIONAL TO L2. IT IGNORES OVERLAP CAP.





































| 11.4 Signed codes                                                                                                            |                                                                                                                                                    |                                                                                     |                                                                                                             |                                                                                                                                  |                                                                                                                   | <ul> <li>Unipolar / bipolar</li> <li>Common signed digital repr.:<br/>sign magnitude, 1's</li> <li>complement, 2's compl.</li> </ul>                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number<br>+7<br>+6<br>+5<br>+4<br>+3<br>+2<br>+1<br>+0<br>(-0)<br>(-1)<br>-1<br>-2<br>-3<br>-4<br>-5<br>-6<br>-7<br>-7<br>-8 | Normalized<br>number<br>+7/8<br>+6/8<br>+5/8<br>+3/8<br>+3/8<br>+1/8<br>+0<br>(-0)<br>-1/8<br>-2/8<br>-3/8<br>-6/8<br>-6/8<br>-6/8<br>-7/8<br>-8/8 | Sign<br>magnitude<br>0111<br>0100<br>0101<br>0001<br>0000<br>(1000)<br>1001<br>1001 | 1's<br>complement<br>0111<br>0100<br>0011<br>0010<br>0001<br>0000<br>(1111)<br>1110<br>1100<br>1001<br>1000 | Offset<br>binary<br>1111<br>1110<br>1101<br>1001<br>1001<br>1000<br>0101<br>0100<br>0101<br>0100<br>0101<br>0010<br>0001<br>0000 | 2's<br>complement<br>0111<br>0110<br>0100<br>0001<br>0000<br>0000<br>1111<br>1110<br>1101<br>1001<br>1000<br>1000 | <ul> <li>two repr. Of 0, 2<sup>N</sup>-1 numb.</li> <li>1's compl.: Neg. Numbers are complement of all bits for equiv. Pos. Number: 5:0101, - 5:1010</li> <li>Offset bin: 0000 to the most neg., and then counting up</li> </ul> |
| ifi                                                                                                                          | j                                                                                                                                                  |                                                                                     |                                                                                                             |                                                                                                                                  |                                                                                                                   | +: closely related to unipolar<br>through simple offset                                                                                                                                                                          |



























## D/A (DAC) settling time and sampling rate In a DAC the settling time is defined as the time it takes for the converter to settle within

- some specified amount of the final value (usually 0.5 LSB).
  The sampling rate is the rate at which samples can be continously converted and is typically the inverse of the settling time.
- Different combinations of input vectors give different settling

times. Picture from "High-speed data converters fully integrated in CMOS" dissertation for the dr. scient. degree by Leif Hanssen, Ifi, UiO, 1990.

ifi



Fig 3.9 Risetime 6 bit DAC, input 0 to 128. (Xdivision = 50ns)

UNIVERSITETET














7



































| Thermometer-Code Converters (Char<br>represents the decimal value | apter 12.3)- | number of 1   | s                                  |  |  |
|-------------------------------------------------------------------|--------------|---------------|------------------------------------|--|--|
| <ul> <li>+ compared to binary</li> </ul>                          |              |               |                                    |  |  |
| counterpart:                                                      | decimal      | Binary b1b2b3 | Thermometer code<br>d1d2d3d4d5d6d7 |  |  |
| Lower DNL errors                                                  | 0            | 000           | 000000                             |  |  |
| Reduced alitching noise                                           | 1            | 001           | 0000001                            |  |  |
| Guaranteed monotonicity                                           | 2            | 010           | 0000011                            |  |  |
| Cuaranteed monotonioity                                           | 3            | 011           | 0000111                            |  |  |
| <ul> <li>compared to binary</li> </ul>                            | 4            | 100           | 0001111                            |  |  |
| counterp.:                                                        | 5            | 101           | 0011111                            |  |  |
| • Need 2 <sup>N</sup> – 1 digital inputs                          | 6            | 110           | 0111111                            |  |  |
| to represent 2 <sup>N</sup> input                                 | 7            | 111           | 1111111                            |  |  |
| values                                                            |              |               |                                    |  |  |
|                                                                   |              |               |                                    |  |  |
|                                                                   |              |               |                                    |  |  |
|                                                                   |              |               |                                    |  |  |























| A few published DACs |                          |                   |                                   |                            |               |                          |                    |                       |                                 |  |
|----------------------|--------------------------|-------------------|-----------------------------------|----------------------------|---------------|--------------------------|--------------------|-----------------------|---------------------------------|--|
| Publication<br>year  | SFDR<br>@Nyquist<br>[dB] | ENOB @<br>Nyquist | Nyquist<br>update rate,<br>[Ms/s] | Power<br>consumpt.<br>[mW] | Area<br>[mm²] | Supply<br>voltage<br>[V] | Technology<br>[nm] | other                 | Reference                       |  |
| 2009                 | >60dB                    | 9.7               | 1000                              | 188                        |               |                          | 65                 | Current<br>steering   | Lin et al., ISSCC<br>'09        |  |
| 2008                 | 80                       | 12.9              | 11                                | 119                        | 0.8           | 1.8                      | 180                | "current<br>steering" | Radulov,<br>APPCAS '08          |  |
| 2007                 | 59                       | 9.5               | 200<br>@3.3 V                     | 56                         | 2.25          | 3.3                      | 180                | "current<br>steering" | Mercer, JSCC,<br>Aug.'07        |  |
| 2004                 | 40                       | 6                 | 250                               | 23                         | 0.14          | 1.8                      | 180                | "binary<br>weighted"  | Deveugele,<br>JSCC, July '04    |  |
| 2001                 | 61                       | 9.84              | 1000                              | 110                        | 0.35          | 3.0                      | 350                | "current<br>steering" | Van den Bosch,<br>JSCC, Mar.'01 |  |
| 1988                 | 95                       | 15.45             | 0.044                             | 15                         | 5             | 2.5-5                    | 2000               |                       | Schouwenaars,<br>JSCC, Dec. '88 |  |
|                      |                          |                   |                                   |                            | 0             |                          |                    | 0.                    |                                 |  |
|                      |                          |                   |                                   |                            |               |                          |                    |                       |                                 |  |





## 5/22/2010





| Diffe | rent A/D C                              | onverter A                      | rchitecture                             | es                    |
|-------|-----------------------------------------|---------------------------------|-----------------------------------------|-----------------------|
|       | Low-to-Medium<br>Speed<br>High Accuracy | Medium Speed<br>Medium Accuracy | High Speed<br>Low-to-Medium<br>Accuracy |                       |
|       | Integrating                             | Successive approximation        | Flash                                   |                       |
|       | Oversampling                            | Algorithmic                     | Two-Step                                |                       |
|       |                                         |                                 | Interpolating                           |                       |
|       |                                         |                                 | Folding                                 |                       |
|       |                                         |                                 | Pipelined                               |                       |
|       |                                         |                                 | Time-interleaved                        |                       |
| ίfi   |                                         |                                 |                                         | UNIVERSITETET<br>OSLO |































9

5/22/2010





10

## 5/22/2010












































| Publication<br>year | SFDR<br>@Nyquist<br>[dB] | ENOB @<br>Nyquist | Nyquist<br>update<br>rate,<br>[Ms/s] | Power<br>consumpt.<br>[mW] | Area<br>[mm²] | Supply<br>voltage<br>[V] | Technology<br>[nm] | other                               | Reference                                  |   |
|---------------------|--------------------------|-------------------|--------------------------------------|----------------------------|---------------|--------------------------|--------------------|-------------------------------------|--------------------------------------------|---|
| 2006                | 55                       | 8.5               | 1000                                 | 250                        | 3.5           | 1.2                      | 130                | Time<br>interleaved                 | Gupta et al<br>IEEE JSSC '06               |   |
| 2007                |                          | 4                 | 2500                                 | 24                         | 0.057         | 1.2                      | 130                | "Pipelined flash"                   | Wang et al,<br>IEEE Trans.<br>Instr. Meas. |   |
| 2007                |                          | 5                 | 500                                  | 6                          | 0.9           | 1.2                      | 65                 | Time<br>interleaved<br>succ. approx | Ginsburg et al<br>IEEE JSSC '07            |   |
| 2007                |                          | 8                 | 100                                  | 30                         | 2.04          | 1.0                      | 180                | Switched<br>opamp<br>pipelined      | Wu et al, IEEE<br>JSSC '07                 |   |
| 2008                |                          | 10                | 30                                   | 22                         | 0.7           | 1.8                      | 180                | pipelined                           | Li et al, IEEE<br>JSSC '08                 |   |
| 2009                | 81                       | 13                |                                      | 0.073                      |               | 0.7                      | 180                | Delta-sigma                         | Chae, JSSCC<br>Feb.09                      |   |
| 2009                | 27.5                     | 4.3               | 1750                                 | 2.2                        | 0.02          | 1.0                      | 90                 | "folding flash"                     | Verbruggen,<br>JSSCC, Mar. '09             |   |
| 2009                | 10                       |                   | 1.2                                  | 12.2                       | 0.354         | 3.3                      | 350                | Continous time<br>sigma delta       | TCAS-II, Jan.<br>'09                       |   |
|                     |                          |                   |                                      |                            |               |                          |                    |                                     |                                            |   |
| 2. mai 2010         |                          |                   |                                      |                            |               |                          |                    | •                                   |                                            |   |
| :fj                 |                          |                   |                                      |                            |               |                          |                    | () YN                               | IVERSITI<br>ISLO                           | 3 |

















1









3













| Interpolating and folding and interpolating ADCs |                  |                           |                  |                   |                           |                                                   |
|--------------------------------------------------|------------------|---------------------------|------------------|-------------------|---------------------------|---------------------------------------------------|
| Resolution                                       | Sampling<br>rate | ENOB                      | Power<br>dissip. | Supply<br>voltage | architecture              | reference                                         |
| 8 bit                                            | 100 MHz          | 6.5 bit@5V,<br>7.1 bit@8V | 1.2W@5V          | 5 or 8 V          | interpolating             | Steyaert ,<br>Roovers,<br>Craninckx,<br>CICC 1993 |
| 5 bit                                            | 5 GHz            | 4 bit at 5GHz             | 113<br>mW@1V     | 1 V               | interpolating             | Wang, Liu,<br>VLSI-DAT<br>'2007                   |
| 6 bit                                            | 200 MHz          | 5.35 bit                  | 35<br>mW@3.3V    | 3.3V              | folding and interpolating | Yin, Wang,<br>Liu, ICSICT,<br>2008                |
| 6 bit                                            | 200 MHz          | 5.5 bit                   | 78.8<br>mW@2.5V  | 2.5V              | folding and interpolating | Silva,<br>Fernandes,<br>ISCAS, 2003               |
| 16. mars 2010                                    |                  |                           |                  |                   | -                         | 13                                                |
| £جا                                              |                  |                           |                  |                   | ۲ (D)                     | NIVERSITETET<br>OSLO                              |









































| Sigma Delt                                                                                     | a converters,ISSCC 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 800                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>ISSCC-<br/>Foremost<br/>global<br/>forum</li> <li>"CT":<br/>continous time</li> </ul> | <section-header>         A. DATA CONVENTERA         Brissipher Chang, Dir Fehnolop, Binghal, China Stassich Chini. Timson Munchi Unterling 14 Teilurg, Toilbarg, China Stassich Chini. Timson Munchi Unterling 14 Teilurg, Toilbarg, Stansich Chini. Timson Munchi Unterling 14 Teilurg, Toilbarg, Stansich Chini. Timson Munchi Unterling 14 China. The Stassich Chini. The Stassich</section-header> | <section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header> |
|                                                                                                | ISSOC VISION STATEMENT<br>Contractor in the terment pickel forum for principal<br>divide circuits and explores over-bits. The Contenence affers a<br>model divide circuits and explores and application is<br>increased to extensive with inable operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UNIVERSITETET                                                                                                                                                                                                                                                  |







| <text><text><text><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></text></text></text>                                       | Why do you refere previous word?"<br>What is we contributions to the field of Mitty Catagent?<br><b>J Cheoretical Dackground</b><br>What is the requere background knowledge?<br><b>J Artison approaches to Nithy Cadgent</b><br><b>J Artison approaches to Nithy Cadgent</b><br>What is the referem prev work?<br>What is the referem prevent prevention?<br><b>J Artific Cadgers</b><br><b>J Martific Cadgers</b><br><b>J Martific Cadgers</b><br><b>J Martific Cadgers</b><br><b>J Martific Cadgers</b><br>What is the scalar of your way?<br>Reference in the scalar of your way?<br>Martific Scalar of the prev rise to way the scalar of the file<br>What did you argetter and shart supplicitences have your mote<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you cargetter and shart supplicitences have your mote?<br>What did you carget and your and |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| What is the problem?<br>How can be able to approaches?<br>What is your approach<br>Why do at this way?<br>What are your results?<br>What are your results?<br>Is this a see approach?<br>Why have all supposed door at before? | Are the results statisticatory?<br>Why should you (and) yes at a more?<br>Why should you (and) yes at a more?<br>Why day you sumcored flatt?<br>5 Discussion<br>Are your results.<br>Can dray be superved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 |
| Interchanne ide bit selected advertise bank bank                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |







1















Quantization noise power for linearized model of a general 
$$\Delta\Sigma$$
 modulator  

$$P_{e} = \int_{-t_{0}}^{t_{0}} S_{e}^{2}(t) |w_{TF}(t)|^{2} dt = \int_{-t_{0}}^{t_{0}} \left(\frac{\Delta^{2}}{12}\right) \frac{1}{t_{5}} \left[2 \sin\left(\frac{T_{0}t}{t_{5}}\right)\right]^{2} dt - (14.23)$$
Using the approximation that  $t_{0} < < t_{5}$  (i.e.  $OSR > 1$ )  
so that we may approximate  $\sin \frac{\pi}{4s}$  to be  $\frac{\pi}{4s}$ :  
 $P_{e} = \int_{-t_{0}}^{t_{0}} \frac{\Delta^{2}}{12} \frac{1}{t_{5}} \left[2 \frac{\pi}{4s}\right]^{2} dt = \int_{-t_{0}}^{t_{0}} \frac{\Delta^{2}}{2t} \frac{1}{t_{5}} \frac{4\pi^{2}}{4s^{2}} dt^{2} dt$   
 $L_{e}Hins K = \frac{\Delta^{2}}{12} \frac{1}{t_{5}} \left[2 \frac{\pi}{4s}\right]^{2} dt = \int_{-t_{0}}^{t_{0}} \frac{\Delta^{2}}{2t} \frac{1}{t_{5}} \frac{4\pi^{2}}{4s^{2}} dt^{2} dt$   
 $= \int_{-t_{0}}^{t_{0}} t^{2} dt = \frac{K}{3} \left(t_{0}^{3} - (-t_{0})^{3}\right) = \frac{K}{3} + 2t_{0}^{3}$   
 $= \frac{\Delta^{2}}{12} \frac{1}{t_{5}} \frac{4\pi^{2}}{4s^{2}} dt^{2} + \frac{K}{3} = \frac{\Delta^{2}}{12} \frac{\pi}{3} + \frac{2\cdot 2\cdot 2}{4s^{3}} ds^{2} = \frac{\Delta^{2}}{12} \frac{\pi}{3} \left(\frac{1}{0SR}\right)^{3} (42.4)$   
Using  $OSR = \frac{K}{2t_{0}} \Rightarrow \frac{2t_{0}}{4s} = \frac{1}{0SR}$   $P_{e} = \frac{\Delta^{2}}{3} \frac{\pi^{2}}{6} \left(\frac{1}{0SR}\right)^{3} (42.4)$ 






































































| EXOR phase comp                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| EXOR phase comparators                                                                                                                                                                                | $V_{ii} = V_{ij}$<br>$V_{ii} = V_{ij}$<br>$V_{ij} = V_$ |  |  |  |
| V <sub>104</sub>                                                                                                                                                                                      | Po" clagress out of Amerge votes provided to class difference Ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| V <sub>10</sub> + V <sub>051</sub>                                                                                                                                                                    | $5 \in \mathcal{V}_{V}$ , $clusly cycles - P(p, 16.1)$ The basic orthogeneral is phonoiscial loop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Vi.,                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Vesc                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| V <sub>ix</sub> @V <sub>01c</sub>                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| • When the waveforms become more out of phase, the average value of the output signal is <b>positive</b> ; whereas when they become more in phase, the average value of the output signal is negative |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| ifi                                                                                                                                                                                                   | UNIVERSITETET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |





































## 4/12/2010

| Guide to Writing a Thesis Page 1 of                                                                                                                 | 4 Guide to Writing a Thesis                                                                                                                                                                                                                                         | Page 2 of 4 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                     |                                                                                                                                                                                                                                                                     |             |
| Guide to Writing a Thesis                                                                                                                           | 2 Theoretical background                                                                                                                                                                                                                                            |             |
| Degramment of Applied Electronics<br>Least appliented 1997-01-12                                                                                    | What is the required background knowledge?<br>Where can I find it?                                                                                                                                                                                                  |             |
| Original monuceript written by Sven Matticson                                                                                                       | 2.1 Various approaches to Nifty Gadgets                                                                                                                                                                                                                             |             |
| The Design and Implementation of a Nifty<br>Gadget                                                                                                  | <ul> <li>What is the relevant poice work?</li> <li>Where cost if find if?</li> <li>Why should it be done differently?</li> <li>Has acynes interupted your approach previously?</li> <li>Where is that work reported?</li> </ul>                                     |             |
| Tekla-Liz Book                                                                                                                                      | 2.2 Nifty Gadgets my way                                                                                                                                                                                                                                            |             |
| Agnil 32, 1992                                                                                                                                      | What is the outline of your way?<br>Have you published it before?                                                                                                                                                                                                   |             |
| Abstract<br>What is it this is been?<br>Why should read this thesis?<br>Is it any poor?<br>What's serv?                                             | 3 My implementation of a Nifty Gadget<br>Can you describe your implementation in detail?<br>Why day you we this technology?                                                                                                                                         |             |
| Preface<br>Have you done anything that doesn't have to do with your research?                                                                       | What are your underlying assumptions?<br>What did you neglect and what simplifications have you made?<br>What tools and methods did you use?                                                                                                                        |             |
| Have you published parts of this work before?                                                                                                       | 4 Nifty Gadget results                                                                                                                                                                                                                                              |             |
| Detais is you a division"<br>Dia syoona help you?<br>What she assure of your forceste per?<br>1 Introduction<br>Division deta was of Nuble Contant? | Del you actually build d?<br>Beer was you was it?<br>Beer do you tent at?<br>Way ded you tent at to war?<br>Way ded you tent at been?<br>Way actually out (order ent more?<br>Wat compensations) had to be made to interport the results?<br>Way do you second dat? |             |
| What is the problem?<br>How can it be solved?                                                                                                       | 5 Discussion                                                                                                                                                                                                                                                        |             |
| What is your approach?<br>Why do it faits way?<br>What are your exclusion?<br>Why it has better?<br>5 faits a set exclusion?                        | Are your results satisfactory?<br>Class they be supproved?<br>Is these a need for improvement?<br>Are other approaches worth arying out?<br>Will some restriction be lifted?                                                                                        |             |
| Why haven't anyone done it before?                                                                                                                  | Will you save the world with your Nifty Gadget?                                                                                                                                                                                                                     |             |









