

INF4420 - V2010:

- sa@luke $\sim \$$ ng $\sin f 4420$
- fridtjha
- rise
- majacs
- hansoei
- haraldsf
- ragulant
- eivinsam
- natalkov
- nikolahl
- kritr
- sindrso
- mshaugla
- geiraby
- anderhf
- toreivib
- mortenhr
- moradi
- anhtv
- michaol
- kklee

3. februar 2010

- Lærere:
- Amir Hasanbegovic
- Snorre Aunet

Outline - Tuesday 20th of January

- Practical issues
- Learning goals
- Design project, tools and methods
- Syllabus
- Very brief introduction to various circuit building blocks
(sample-and-holds, bandgap references, switched capacitor circuits, Nyquist- and oversampling data converters, phase-locked loops)

CMOS Integrated Circuits?

- Digital circuits exploit mainly transistors and interconnect
- Mixed-Signal (Digital AND Analog) also use resistors, capacitors and inductors
- Work-horse of modern Information Technology

http://www.uio.no/studier/emner/matnat/ifi/INF4420/

Why ASICs (Application Specific Integrated Circuits) ??

- Advantages:
- Reduced size
- Improved performance and functionality
- Easier to hide "company secrets"
- Reduced cost
- Reduced power consumption
- Less radiated noise
- Disadvantages:
- Increased start-up cost
- High power density - Heat
- Hard to find top competence

- Time consuming development and production
- Time-to-market

iff

What is an integrated circuit?

- Transistors
- Several options
- Capacitors
- How to implement
- Linearity
- Resistors
- How to implement
- Area
- Inductors
- How to implement
- Quality factor
- Parasitic components
- Calculate
- Minimize

Mandatory design project

- Design and implement mixed-mode circuit:
- Example: ADC, SC-filter, PLL, DAC (2008)
- System for automatic removal of mismatch (2009)
- Milestones during the process
- Teaching assistant, Amir Hasanbegovic, will follow up
- Write a project report
- LaTeX or similar
- Submission: Early/Mid May
- Counts 40 \% in the final grading (exam 60\%)

Cadence (http://mww.cadence.com/)

- Widely used IC design tool worldwide, both in companies and academia
- Very large system
- PCB-design
- IC-design
- Synthesis
- Schematic entry

- Simulator (Analog Environment / Spectre)
- Layout (Virtouso)
- DRC and LVS performed by Calibre (Mentor)

Full-custom ("handmade") design flow

- Design and calculation
- Design equations
- Dimensioning for matching
- Schematic entry
- Simulations on cells and top level
- Several interactions

- Layout
- Module interface
- Symmetry/hierarchy
- Post Layout Simulations on critical modules
- Next module....

Cadence forts.

- Start-up:
- Web manual
- Standard libraries:
- tsmcN90rf
- analogLib
- Design views:
- Symbol
- Schematic
- Layout

Schematic entry and simulations in Cadence

Symbol, schematic and layout (cadence)

(6) UNIVERSITETET I OSLO

Process

- TSMC 90 nm low power CMOS:
- Minimum gate length: 90nm
- 1 Poly-layer
- 9 Metal-layers
- True triple well
- Three different threshold voltages
- Supply voltage: 1.2 V typ.
- Very advanced process

AND-gate

Challenges regarding the project

- Project administration
- Theoretical analysis and circuit design
- Design errors
- LVS
- Parasitic components
- Extraction and Post Layout Simulation (PLS)
- Process variations
- Simulations (Corner + Monte-Carlo)
- Noise
- Component and crosstalk
- Good layout practice / Symmetry

Practical information

- Lectures:
- Tuesdays . $9.15-11.00$ (should not collide with FYS3240).
- From. 26/2: Tuesday . 9.15-12.00 (Might be 9:15-11:00 in most cases)
- Syllabus:
- Johns and Martin: Analog Integrated Circuit design (Kap. 2, 8-14, 16. Not bipolar)
- Selected additional material and lecture notes
- LTH: Cadence 4.4
- IFI: Lokal guide til Cadence
- Exercises
- 2 hours per week - Time will be set next week. Amir Hasanbegovic, amirh@ifi.uio.no
- Projectsupervision/design lab
- 2/4 hours each week - Time may be adjusted. Amir H., amirh@ifi.uio.no
- Room 3217 (?)
- Software:
- Cadence 5.00 or 6.00 ((?))
- TSMC 90 nm design kit
- Where to run the software:
- Win PC running X-Win connected to Linux server /remote desktop and Linux
- Linux computer
- Student reference group
- 1-2 students

What do we expect from you?

- The course is demanding
- Theoretical background
- INF3410 analog microelectronics, or similar
- FYS3220 linear circuit theory, or similar
- INF3440 signal processing, or similar
- Prepare for the lectures
- Exercises
- Use the reference group and course evaluations to provide feedback

Final exam - a few words

- Thursday 3rd of June, starting 14:30 (3 hours)
- Problems usually related to every single of the relevant chapters in the book ($2,8,9, \ldots, 14,16$), and material from the lectures

Syllabus; chapters 2,8,9,10,11,12,13,14,16

- Chapter 2 Processing and layout
- Chapter 8 Sample and Holds, Voltage references, and translinear circuits
- Chapter 9 Discrete-Time Signals
- Chapter 10 Switched-capacitor circuits

- Chapter 11 Data converter fundamentals
- Chapter 12 Nyquist-rate D/A converters
- Chapter 13 Nyquist-rate A/D converters
- Chapter 14 Oversampling converters
- Chapter 16 Phase-locked loops

Cfinemesmesas

Syllabus; chapter 2

- CMOS processing
- Relative matching far better than absolute accuracy in CMOS
- CMOS layout and design rules
- "Matching is the Achilles heel of analog" C. Diorio, Impinj / Washington State University
- A bad layout can ruin about any analog circuit.

Chapter 8 Sample and Holds, Voltage References

- Performance of S/H
- S/H basics

- Bandgap voltage reference basics
- Circuits for bandgap references

Chapter 9 Discrete-Time Signals

- Signal spectra
- Laplace transform of discrete-time signals
- Z-transform
- Downsampling and upsampling
- Discrete-time filters
- S/H response

Chapter 10 Switched-Capacitor Circuits

- Building blocks
- Operation and analysis
- First-order filters
- Biquad filters

Chapter 12 Nyquist-Rate D/A Converters

- Decoder-based converters
- Binary-scaled converters
- Thermometer-code converters
- Hybrid conv.

Chapter 13 Nyquist-Rate A/D Converters

- Integrating converters
- Successive approx. converters
- Algorithmic converters
- Flash (parallell) conv.
- Two-step, interpolating,
- Folding, pipelined conv.

Two consequences of the Nyquisttheorem and anti-aliasing filters (wikedeai):

- If the highest frequency B in the original signal is known, the theorem gives the lower bound on the sampling frequency for which perfect reconstruction can be assured. This lower bound to the sampling frequency, $2 B$, is called the Nyquist rate.
- If instead the sampling frequency is known, the theorem gives us an upper bound for frequency components, $B<f s / 2$, of the signal to allow for perfect reconstruction. This upper bound is the Nyquist frequency, denoted $f N$.
- An anti-aliasing filter is a filter used before a signal sampler, to restrict the bandwidth of a signal to approximately satisfy the sampling theorem. Since the theorem states that unambiguous interpretation of the signal from its samples is possible only when the power of frequencies outside the Nyquist bandwidth is zero, the anti-aliasing filter would have to have perfect stopband rejection to completely satisfy the theorem. Every realizable antialiasing filter will permit some aliasing to occur; the amount of aliasing that does occur depends on how good the filter is.

Chapter 14 Oversampling Converters

- Oversampling (>> 2 Nyquist bandwidth) relaxes requirements for matching
- High resolution, low to medium speed
- Noise shaping \& oversampling
- N+1 order modulator gives a certain SNR for lower OSR than N -order mod.
- 24 bit Audio conv.

Chapter 16 Phase-locked loops

- Application examples:
- clock multiplication,
- Freq. generation: The PLL output is a signal with frequency N times the input frequency where N may be a fractional number
- FM demodulation (The input is a FM signal (IF) The output is the demodulated baseband signal
- Products: TV and wireless

Next week:

- Sample and Hold circuits (chapter 8)
- Questions: sa@ifi.uio.no

eff
(ive UNIVERSITETET
IV OSLO

Last time - Tuesday 26th of January

- Practical issues
- Learning goals
- Design project, tools and methods
- Syllabus
- Very brief introduction to various circuit building blocks
(sample-and-holds, bandgap references, switched capacitor circuits, nyquist- and oversampling data converters, phase-locked loops)

Sample and Holds (S/H) - What are the purposes?

- Mainly used in Analog-to-Digital Converters (ADC)
- Samples analog input signal and holds value between clock cycles
- Stable input value is required in many ADC-topologies
- Reduces ADC-error caused by internal ADC delay variations
- Sometimes referred to as Track and Hold (T/H)
- Important parameters for S/H's
- Hold step: Voltage error during S/H-transition
- Signal isolation in hold mode
- Input signal tracking speed in sample mode
- Droop rate in hold mode: Small change in output voltage
- Aperture jitter: Sampling time uncertainty

eff

Overview of signal spectra - conceptual and physical realizations

- An anti-aliasing filter (not shown) is assumed to band limit the continous time signal, $\mathrm{x}_{\mathrm{c}}(\mathrm{t})$.
- DSP ("discrete-time signal processing") may be accomplished using fully digital processing or discrete-time analog circuits (ex.: SC-circ.)

Basic S/H-topology

- Hold step:
- Switch charge injection causes signal dependent hold step
- Aperture jitter:
- Sampling-time variations causes signal dependent errors

㮫 Universitetet I OSLO

Charge injection due to channel capacitance

When $\phi_{\text {clk }}$ goes low, the channel charge of Q_{1} is equally distributed between source and drain, leaving 50\% of the charge across Chld:

$$
\begin{aligned}
& \Delta \mathrm{Q}_{\mathrm{C}_{\text {hd }}}=\frac{\mathrm{Q}_{\mathrm{CH}}}{2}=\frac{\mathrm{C}_{\text {ox }} \mathrm{WLV}_{\text {eff }-1}}{2} \\
& \mathrm{~V}_{\mathrm{eff}-1}=\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{tn}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}-\mathrm{V}_{\mathrm{in}}
\end{aligned}
$$

- $\Delta \mathrm{V}^{\prime}$ is linearly related to $\mathrm{V}_{\text {in }}$, resulting in a gain error for the S / H. There is also a linear relationship to V tn, which is nonlinearly related to Vin (through Vsb) resulting in distortion for the overall S/H.

Charge injection due to the gate overlap capacitance:

$$
\Delta \mathrm{V}^{\prime} \cong-\frac{\mathrm{C}_{\mathrm{ox}} \mathrm{WL}_{\mathrm{ov}}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)}{\mathrm{C}_{\mathrm{hld}}}
$$

- (See eq. 7.8) This component is usually smaller than that due to the channel charge, and appears as an offset, since it's signal independent. Thus it may be removed in most systems.
- The clock signal should be relatively noise free, as the power-supply rejection of this S/H might be poor. (if for example clock signal comes from an inverter with common Vdd and Vss)

解 UNIVERSITETET I OSLO

Hold step reduction

CMOS transmission gate

Dummy switch

- Transmission gate reduces charge injection since the charge carriers in the NMOS and PMOS have inversed polarity -> The negative charge from the NMOS cancels the positive charge from the PMOS
- PMOS and NMOS are however hard to match in size, reducing the benefit.
- A NMOS dummy switch (S and D short-circuited) of half channel area clocked on inverted clock may be used to absorb charge
- Hold step reduced by approximately 80%
- The dummy switch clock must be slightly delayed to ensure that no charge leaks through Q1 while it is still open

ef

Aperture jitter

- If the input voltage is lower than the capacitor voltage, $\mathrm{V}_{\text {in }}$ is the source of the transistor used as a switch
- V gs is then depending on V_{in}. For high values of $\mathrm{V}_{\text {in }}$, the switch turns off too fast while for low values of $\mathrm{V}_{\text {in }}$ it turns off too late causing distortion
universitetet I osLo

S/H (fig. 8.7)

- High input impedance
- Buffer offset voltage is divided by the gain of the input opamp, due to negative feedback. Simple voltage follower may be used at the output.
- Disadvantages:
- Errors due to finite clock rise- and fall-times (PMOS and NMOS are not switched off at the same time)
- Signal dependent charge injection -> Distortion
- Feedback loop and need for stability limit maximum speed
- In Hold mode, the first opamp output goes to either rail. Must slew back
iff

Sample-and-Hold from fig. 8.7

Increased speed (fig. 8.8)

- During hold mode the opamp output is tracking the input
- Leads to increased speed
- Disadvantages in common with the previous circuit

敌 UNIVERSITETET I OSLO

Sample-and-Hold from fig. 8.8

Sample (track) mode to Hold mode (the S/H in fig. 8.9) signals, from top: $\mathrm{V}_{\text {outopamp1 }}, \mathrm{V}_{(\mathrm{Q} 2),}, \mathrm{V}_{(\mathrm{Q} 1)}, \mathrm{V}_{\text {out }}, \mathrm{V}_{\text {in }}$

S/H with hold step independent of input signal (fig. 8-9)

+ : Both sides of Q_{1} are nearly signal independent, so that the charge injection is (nearly) signal independent, provided a sufficient gain in the $2^{\text {nd }}$ Opamp. The charge injection on $\mathrm{C}_{\text {hld }}$ causes the output of the $2^{\text {nd }}$ Opamp to have a positive hold step, which is just a dc offset, with no signal distortion, and signal independent.
+ : Sampling time will not change due to finite slopes of the sampling clock \rightarrow less aperture jitter / aperture uncertainty \rightarrow sample value closer to the ideal one.

S/H with hold step independent of input signal

(fig. 8-9)

$+: Q_{2}$ ground the outpūt of OPAMP1 in hold mode, meaning that it's close to (and quickly getting to) the voltage it should have in S. mode, which improves speed.

- Preventing instability reduces speed
- Worsened due to two opamps in the feedback loop
- More relevant information: K. R. Stafford, P. R. Gray, R. A. Blanchard: "A Complete Monolithic Sample/Hold Amplifier", IEEE Journal of Solid-State Circuits, Dec. 1974. (available from http://ieeexplore.ieee.org , when on UiO IP-address)

Continous efforts to improve S/H circuits..

A Sample/Hold Circuit for 80MSPS 14-bit A/D

Converter

Digital Calibration of a Nonlinear S/H
Patrick Satarzadeh, Sudent Member, IEEE, Bernard C. Levy. Fellow, IEEE, and Paul J. Hurst, Fellow, IEEE

- IEEEXplore may provide State-of-the-Art 3. eepusabolutions

- Improved version of previous circuit (in fig. 8.9)
- By placing a copy of Q1 and Chld in parallel between ground and the positive input of the second opamp, the voltage change due to charge injection will be equal on both inputs. Error is cancelled by opamp CMRR.
The common-mode rejection ratio (CMRR) of a differential amplifier (or other device) measures the tendency of the device to reject input signals common to both input leads.

敌等 UNIVERSITETET

Additional Background Litterature, S/H circuits

- A. S. Sedra, K. C. Smith: "Microelectronic Circuits", Saunders College Publishing, 1991
- R. Gregorian, G. C. Temes: "Analog MOS Integrated Circuits for signal processing", Wiley, 1986.
- K. R. Stafford, P. R. Gray, R. A. Blanchard: "A Complete Monolithic Sample/Hold Amplifier", IEEE Journal of Solid-State Circuits, Dec. 1974.
- F. F. Kuo:"Network Analysis and Synthesis", Wiley, 1966.
- S. Soma: "Grunnbok i elektronikk", Universitetsforlaget, 1979.
- National Semiconductor: "Specifcations and Architectures of Sample-and-Hold Architectures", App. Note 775, July 1992.
- S. Aunet: "BiCMOS Sample-and-Hold for Satelittkommunikasjon", hovedfagsoppgave, UiO, 1993.

Last time - Tuesday 2nd of February, and today, February the 9th:

- 8.1 performance of Sample-and-Hold Circuits
- 8.2 MOS Sample-and-Hold circuits
- 8.3 Examples of CMOS S/H circuits
- 8.5 Bandgap Voltage Reference Basics
- 8.6 Circuits for Bandgap References
- Chapter 9 Discrete-Time Signals
- 9.1 Overview of some signal spectra
- 9.2 Laplace Transforms of Discrete-Time Signals
- 9.3 Z-transform

Voltage references (chapter 8.5)

- Purpose:
- Generate a constant on-chip voltage which is independent of temperature, supply voltage, aging etc.
- Different approaches:
- 1) Breakdown voltage of a reverse-biased zener diode
- Too high voltage for CMOS
- 2) Threshold voltage difference between CMOS enhancement and depletion transistors
- Depletion-mode transistors unavailable in most CMOS processes
- 3) Bandgap references: Canceling the negative temperature dependence of a forward-biased pn-junction (CTAT) with a positive temperature dependence (PTAT) (proportional-to-absolute-temperature) circuit
- Most commonly used
- CTAT: Conversely proportional to temperature
- PTAT: Proportional to temperature

More about todays Bandgap Reference agenda (including, but not limited to):

- About the fundamental equations giving the relationship between the output voltage of a bandgap reference and temperature.
- How to design a bandgap reference for a "most stable" reference voltage at a particular temperature.
- How to estimate temperature dependence at another temperature that the BG reference was designed for.
- Practical implementations

- The voltage V_{BE} is CTAT
- The voltage $\Delta \mathrm{V}_{\mathrm{BE}}$ is PTAT
- $\Delta \mathrm{V}_{\text {BE }}$ is scaled by K to get the same slope as V_{BE}
- By adding V_{BE} and $\mathrm{K} \quad \Delta \mathrm{V}_{\mathrm{BE}}$, the output $\mathrm{V}_{\text {ref }}$ becomes independent of temperature

Theory

- Collector current

$$
\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{s}} \mathrm{e}^{\mathrm{V}_{\mathrm{BE}} /((\mathrm{kT}) / \mathrm{q})}
$$

- Solved with respect to V_{BE} :

$$
V_{B E}=V_{G O}\left(1-\frac{T}{T_{0}}\right)+V_{B E O} \frac{T}{T_{0}}+\frac{m k T}{q} \ln \left(\frac{T_{0}}{T}\right)+\frac{k T}{q} \ln \left(\frac{J_{C}}{J_{C 0}}\right)
$$

- The junction current equals the effective area of the baseemitter junction times the junction current density, Jc:

$$
\mathrm{I}_{\mathrm{C}}=\mathrm{A}_{\mathrm{E}} \mathrm{~J}_{\mathrm{C}}
$$

The difference between two base-emitter junctions biased at different densities (proportional to temperature):

$$
\Delta V_{B E}=V_{2}-V_{1}=\frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{~J}_{2}}{\mathrm{~J}_{1}}\right)
$$

敞 UNIVERSITETET I OSLO

Example 8.3

Theory

- Assuming that:

$$
\frac{J_{i}}{\mathrm{~J}_{\mathrm{i}}}=\frac{\mathrm{T}}{\mathrm{~T}_{0}}
$$

- $\mathrm{V}_{\text {ref }}$ can then be written as:

$$
\begin{aligned}
& \mathrm{V}_{\text {ref }}=\mathrm{V}_{\text {BE }}+\mathrm{K} \Delta \mathrm{~V}_{\text {BE }} \\
& \left.=V_{G 0}+\frac{T}{T_{0}} V_{\text {BE } 0.2}-V_{G 0}\right)+(m-1) \frac{k T}{q} \ln \left(\frac{T_{0}}{T}\right)+\mathrm{k} \frac{k T}{q} \ln \left(\frac{J_{1}}{J_{1}}\right)
\end{aligned}
$$

- For a given temperature $\mathrm{V}_{\text {ref }}$ may be independent of changes in the temperature if a proper vaule of K is assigned
- This (equation 8.16) is the fundamental equation giving the relationship between the output voltage of a bandgap voltage reference and temperature.

From V_{BE} as a function of collector current and temperature to Vout for BG ref. (part 1 of 2)

From V_{BE} as a function of collector current and temperature to Vout for BG ref. (part 2 (of 2))
$8.16 \quad V_{\text {ref }}=V_{B E 2}+K \Delta V_{B E}$
$=V_{60}+\frac{T}{T_{0}}\left(V_{B E 0-2}-V_{60}\right)+(m-1) \frac{k T}{7} \ln \left(\frac{T_{0}}{T}\right)$ (8.16)
$+K\left[\frac{K-1}{q} \ln \left(\frac{J_{2}}{J_{1}}\right)\right] \quad$ (using 8.12)
This equation (8.16) is the funclamental equation giving the relationship between the output voltage of a bandgup reference
and temperature.

Setting equation $8.17=0$, and $T=T_{0}$ getting eq. 8.18, giving the needs for zero temperature dependence at the reference temp.

$$
\begin{aligned}
& \text { Siter } \frac{\partial V_{\mathrm{rt}}}{\partial T}=0 \wedge T=T_{0} \quad \text { ln } 1=0 \\
& 0=\frac{1}{7}\left(v_{\text {sero- }}-v_{60}\right)+k \frac{k}{\frac{k}{7}} \ln \left(\frac{\lambda_{2}}{T_{1}}\right)+(\operatorname{m-1}) \frac{k}{4}\left[\ln \left(\frac{\tau_{0}}{\tau_{0}}\right)-1\right] \\
& 0=\frac{1}{\tau_{0}}\left(v_{\text {rean }}-v_{\text {Lu }}\right)+k \frac{k}{\frac{k}{q}} \ln \left(\frac{\sqrt{2}}{5}\right)+(m-1) \frac{k}{q}(-1) \\
& 0=\left(v_{\text {oco }-2}-v_{\infty}\right)+k \frac{k T_{0}}{7} \ln \left(\frac{J_{2}}{5}\right)+(m-1) \frac{k T_{0}}{7}(-1) \\
& \text { 1) } \\
& v_{\text {coco. } 2}+K \frac{k T_{0}}{q} \ln \left(\frac{J_{2}}{\jmath_{1}}\right)=v_{c_{0}}-(m-1) \frac{k T_{0}}{q}(-1) \\
& \left.V_{80.2}+K \frac{k}{q} T_{0} \ln \left(\frac{J_{2}}{J_{1}}\right)=V_{60}+(m-1) \frac{k T_{0}}{q} \quad \text { (} 818\right)
\end{aligned}
$$

Setting $T=T_{0}$ in eq. 8.16 gives the left side of eq. 8.18

For zero temperature dependence at $\mathrm{T}=\mathrm{TO}$. At $300 \mathrm{~K}(8.18,8.19,8.20)$:
The left side of eq 8.18 is the $\quad 27^{\circ} \mathrm{C}$
output voltage $V_{\text {ret at }} T=T_{0}$ (as we have shown).
For zero temperature dependence at $T=T_{0}$, we need
$v_{\text {kt-0 }}=v_{60}+(m-1) \frac{k T_{0}}{q} \quad$ (819)
For the special case of $T_{0}=300 \mathrm{~K}$ and $m=2.3$
(8.17) implies that, for zero temperature dependena
$V_{\text {ret-0 }}=V_{00}=1,206 \mathrm{~V}+(2.3-1) \cdot \frac{1.38 \times 10^{-23}(300)}{1.602 \times 10^{-19}}$
$=1.206 \mathrm{~V}+1.3 \times 25.8 \mathrm{mV}$
$=1.24 \mathrm{~V} \quad$ Note that this value is
independent of the current
densities chosen
chasities chosen

Required value for K at 300 K (eq. 8.21):

```
From eq (8.20) we gut }\mp@subsup{V}{\mathrm{ ret-o }}{\mathrm{ F }
dependence at 300"k. This value is inclependent of
the current densities chosen
K}\mathrm{ from equation 818
    K=}\frac{\mp@subsup{V}{60}{}+(m-1)\frac{k\mp@subsup{T}{0}{}}{q}-\mp@subsup{V}{8<0-2}{}}{\frac{k\mp@subsup{T}{0}{}}{q}\operatorname{ln}(\frac{\mp@subsup{J}{2}{}}{\mp@subsup{J}{1}{}})}=\frac{1.24\textrm{V}-\mp@subsup{V}{8<0-2}{}}{25.8\textrm{mV}\cdot\operatorname{ln}(\frac{\mp@subsup{J}{2}{}}{\mp@subsup{J}{1}{}})
The output of a baindgap reterence is given by the
banugap voltage, }\mp@subsup{V}{60}{}\overline{F}\mathrm{ plus a small correction to
gccount for Iud-order effects
```

Output voltage for temperatures different from the reference; get (8.22) and then differentiate ...

UNIVERSITETET rosto
(8.22) differentiated with respect to T, getting (8.23):

CMOS Bandgap References

- Vertical CMOS well transistors in an n-well and p-well process (pnp in -well, npn in p-well)

CMOS BGR Circuits

- CMOS bandgap references implemented with well transistors

eff

(2v UNIVERSITETET
of I OSLO

Design Equations

$$
\begin{gathered}
v_{\text {ref }}=v_{E B 1}+v_{\mathrm{R} 1} \\
v_{\mathrm{R} 2}=v_{\mathrm{EB} 1}-\mathrm{V}_{\mathrm{EB} 2}=\Delta v_{\mathrm{EB}} \\
\mathrm{~V}_{\mathrm{R} 3}=\frac{\mathrm{R}_{3}}{R_{2}} \mathrm{~V}_{\mathrm{R} 2}=\frac{\mathrm{R}_{3}}{R_{2}} \Delta \mathrm{~V}_{\mathrm{EB}} \\
\mathrm{~V}_{\text {ref }}=\mathrm{V}_{\mathrm{EB} 1}+\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}} \Delta \mathrm{~V}_{\mathrm{EB}}
\end{gathered}
$$

n-well

Design Equations

$$
\begin{aligned}
& \frac{J_{1}}{J_{2}}=\frac{R_{3}}{R_{1}} \\
& \Delta V_{E B}=V_{E B 1}-V_{E B 2}=\frac{k T}{q} \ln \left(\frac{J_{1}}{J_{2}}\right) \\
& V_{\text {ref }}=V_{E B 1}+\frac{R_{3} k T}{R_{2} q} \ln \left(\frac{R_{3}}{R_{1}}\right) \\
& K=\frac{R_{3}}{R_{2}}
\end{aligned}
$$

n-well

ExAMPLE $\quad 8.5$
Find the resistances of a band gap reference bared on

Assuming that the sizer of Q_{1} and Q_{2}
ate the sane
$\Delta V_{E B}=\frac{k T_{0}}{q} \ln \frac{I_{1}}{I_{2}}=\frac{k T_{0}}{q} \cdot 2.30259=59.4 \mathrm{mV}$
$R_{2}=\frac{V_{R 2}}{I_{2}}=7.44 \mathrm{k} \Omega=\frac{59.9 \mathrm{mv}}{8 \mu \mathrm{~A}}$
From (8.20) we throw that $v_{\text {ref-o }}=1.24 \mathrm{~V}$ at $T_{0}=300^{\circ} \mathrm{K}$
From (8.35) we get $V_{R 1}=V_{\text {ret oo }}-V_{\text {EBRO }}=1.24 \mathrm{~V}-0.65 \mathrm{~V}$ $V_{R 1}=0.59 \mathrm{~V} \quad R_{1}=\frac{0.59 \mathrm{~V}}{80, \mathrm{NA}}=7.38 \mathrm{k} \Omega, R_{3}=\frac{0.59 \mathrm{~V}}{8 \mathrm{NA}}=73.8 \mathrm{k} \Omega$
if j
(10) universitetet

Example 8.5 (2)

Chapetr 9; Discrete-time signals

- Discrete-time signal processing is heavily used in the design and analysis of oversampling A/D and D/A converters as well as switched capacitor filtering ;"SC-circuits".
- Switched Capacitor filters are classified as analog, since they use continous time analog values.

Overview of signal spectra - conceptual and physical realizations

- An anti-aliasing filter (not shown) is assumed to band limit the continous time signal, $\mathrm{x}_{\mathrm{c}}(\mathrm{t})$.
- DSP ("discrete-time signal processing") may be accomplished using fully digital processing or discrete-time analog circuits (ex.: SC-circ.).

Laplace Transform of Discrete-Time Signals ${ }_{(13)}$

- The signal must be defined for all time
- For $\mathrm{t}=\mathrm{nT}$:

$$
\mathrm{x}_{\mathrm{s}}(\mathrm{nT})=\frac{\mathrm{x}_{\mathrm{c}}(\mathrm{nT})}{\tau}
$$

- τ is chosen such that the area under $x_{s}(n T)$ equals the value of $x_{c}(n T)$
- As τ approaches 0 , the height of $x_{s}(n T)$ goes to ∞

Laplace Transform of Discrete-Time Signals (2/3)

- A single pulse at $\mathrm{t}=\mathrm{nT}$ may be defined as:
$Q(t)$ is the step function: $\quad \vartheta(t) \equiv \begin{cases}1 & (t \geq 0) \\ 0 & (t<0)\end{cases}$
- $\mathrm{x}_{\mathrm{s}}(\mathrm{t})$ may then be rewritten as a linear combination of a series of pulses, $\mathrm{xfs}(\mathrm{t})$, where $\mathrm{xsn}(\mathrm{t})$ is zero everywhere except for a single pulse at nT :

$$
x_{\mathrm{sn}}(\mathrm{t})=\frac{\mathrm{x}_{\mathrm{c}}(\mathrm{nT})}{\tau}[\vartheta(\mathrm{t}-\mathrm{nT})-\vartheta(\mathrm{t}-\mathrm{nT}-\tau)]
$$

$x_{s}(t)$ is now defined for all time: $\quad x_{s}(t)=\sum_{n=-\infty}^{\infty} x_{s n}(t)$

Laplace Transform of Discrete-Time Signals (3/3)

- The Laplace transform for $\mathrm{x}_{\mathrm{sn}}(\mathrm{t})$ is:

$$
\mathrm{X}_{\mathrm{sn}}(\mathrm{~s})=\frac{1}{\tau}\left(\frac{1-\mathrm{e}^{-\mathrm{s} \tau}}{\mathrm{~s}}\right) \mathrm{x}_{\mathrm{c}}(\mathrm{nT}) \mathrm{e}^{-\mathrm{snT}}
$$

- Since there is a linear relationship between $x_{s}(t)$ and $\mathrm{x}_{\mathrm{sn}}(\mathrm{t})$, the Laplace transform of $\mathrm{x}_{\mathrm{s}}(\mathrm{t})$ is:

$$
X_{s}(s)=\frac{1}{\tau}\left(\frac{1-e^{-s}}{s}\right) \sum_{n=-\infty}^{\infty} x_{c}(n T) e^{-s n T}
$$

- When τ approaches 0 , the term before the sum equals 1 (eq. 9.7):

$$
X_{s}(s)=\sum_{n=-\infty}^{\infty} x_{c}(n T) e^{-s n T}
$$

Spectra of Discrete-Time Signals

- The frequency spectrum of $x_{s}(t)$ may be found by replacing s by $\mathrm{j} \omega$ in the Laplace transform (eq. 9.7).
- Another more intuitive approach is to use the property that multiplication in the time domain equals convolution in the frequency domain. Using this and $\tau \rightarrow 0, \mathrm{Xs}(\mathrm{t})$ can be rewritten
- Define a pulse-train:

$$
x_{s}(t)=x_{c}(t) s(t)
$$

- The sampled signal is now: $s(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T)$
- The Fourier-transform of $\mathrm{s}(\mathrm{t})$ is: $\mathrm{S}(\omega)=\frac{2 \pi}{T_{\mathrm{k}}} \sum_{=-\infty}^{\infty} d\left(\omega-k \frac{2 \pi}{T}\right)$

Spectra of Discrete-Time Signals

(2/2)

- Writing (9.8) in the frequency domain:

$$
\mathrm{X}_{\mathrm{s}}(\mathrm{j} \omega)=\frac{1}{2 \pi} \mathrm{X}_{\mathrm{c}}(\mathrm{j} \omega) \otimes \mathrm{S}(\mathrm{j} \omega)
$$

- The frequency spectrum of $x_{s}(t)$ is then (eq. 9.12):

$$
X_{s}(j \omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j \omega-\frac{j k 2 \pi}{T}\right)
$$

which is periodic with period f_{s} (9.13:).
No aliasing occurs if $\mathrm{f}<\mathrm{fs} / 2$

$$
X_{s}(f)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j 2 \pi f-j k 2 \pi f_{s}\right)
$$

Sampling at different frequencies

2.2 Signaler i tids- og frekvensdomenet, for ulike samplingsfrekvenser

Figur 2.4: Sampling ved ulike frekvenser, sett i tidsdomenet. f_{s} er samplingsfrekvensen, også kalt samplingsraten, mens f_{a} er frekvensen for det analoge signalet som samples.[Kest91].
fivit universitetet

Z-Transform

- Discrete-time systems are most often analyzed using the z-transform which is equivalent to the Laplace-transform with the following substitution:
- Then the z-transform is defined as :

$$
\begin{gathered}
\mathrm{z} \equiv \mathrm{e}^{\mathrm{sT}} \\
\mathrm{X}(\mathrm{z}) \equiv \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}_{\mathrm{c}}(\mathrm{nT}) \mathrm{z}^{-\mathrm{n}}
\end{gathered}
$$

Z-Transform

- Two important properties of the z-transform:
- 1) If $x(n) \leftrightarrow X(z) \quad$, then $x(n-k) \leftrightarrow z^{-k} X(z)$
- 2) Convolution in the time-domain is equal to multiplication in the freq. domain (If $\mathrm{y}(\mathrm{n})=\mathrm{h}(\mathrm{n}) \otimes \mathrm{x}(\mathrm{n})$, then $Y(z)=H(z) X(z)$. Similarly, multiplication in the timedomain equals convolution in the frequency domain
- $X(z)$ is only related to the sampled sequence of numbers, while $X_{s}(s)$ is the Laplace transform of $X_{s}(t)$ when $\tau->0$
- The frequency response of $X_{s}(f)$ is related to $X(\omega)$ the following way: $\quad X_{s}(f)=X\left(\frac{2 \pi f}{f_{s}}\right)$
- Thus, the following scaling has been applied:

$$
\omega=\frac{2 \pi f}{\mathrm{f}_{\mathrm{s}}}
$$

Z-Transform

- Important observation:
- Discrete-time signals have ω in units of radians/sample
- The original continuous-time signal have frequency units of cycles/second (Hertz) or radians / second. (2π Radians ~ 360 degrees)
- Example:
- A continuous-time sinusoidal signal of 1 kHz when sampled at 4 kHz will change by $\pi / 2$ radians between each sample. In such case the discrete time signal is defined to have a frequency of $\pi / 2$ radians per sample

Next time, Tuesday 16th of February

- Chapter 9; 9.4-9.6
- Chapter 10; Switched Capacitor Circuits

$$
\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{T}}{\mathrm{C}_{1}}
$$

Last time - Tuesday 9th of February, and today, February the 16th:

- 8.5 Bandgap Voltage Reference Basics
- 8.6 Circuits for Bandgap References
- Chapter 9 Discrete-Time Signals
- 9.1 Overview of some signal spectra
- 9.2 Laplace Transforms of Discrete-Time Signals
- 9.2-9.6
- 10.1-10.2 (10.3((?)))

Laplace transform $\bar{X}_{s n}(s)$
for $x_{s n}(t)$
$X_{s n}(s)=\frac{1}{\tau}\left(\frac{1-e^{-s \tau}}{s}\right) x_{c}(n T) e^{-s n T}$
Since $x_{s}(t)$ is a linear
combination of $x_{s n}(t)$, we abs
have
$X_{s}(s)=\frac{1}{\tau}\left(\frac{1-e^{-s \tau}}{s}\right) \sum_{n=-\infty}^{\infty} x_{c}(n T) e^{-s n T}$
When $\tau \rightarrow 0$ the term before the
summation goes to unity, so in
$(e q 9.7): \quad X(s)=\sum_{n=-\infty}^{\infty} x_{2}(n T) e^{-s n T}$

By performing this convolution ", AT
either mathematically or
either mathematically or
graphically, the spectrum of
$X_{s}(j \omega)$ can be seen to be
given by
$x_{s}(j \omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} x_{c}\left(j \omega-\frac{j k 2 \pi}{T}\right)(9,12)$
or equivalently
$X_{s}(f)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j 2 \cap f-j k 2 \cap f_{s}\right)(9,13)$
9.12 and 9.13 show that the spectrum
for the sampled signal, $x_{s}(t)$, equals
a sum of shifted section of $x_{c}(t)$
No aliasing occurs if $X_{c}(j \omega)$ is bandlimited to $\frac{f s}{2}$

$$
\begin{aligned}
& \text { (9.13) confirms the example } \\
& \text { spectrum for } X_{s}(-1) \text {, shown } \\
& \text { in Fig. } 9.2 \text {. } \\
& \text { Note that, for a discrde- } \\
& \text { time signal, } X_{s}(f)=X_{s}\left(f \pm k f_{s}\right) \text {, } \\
& \text { where } k \text { is an arbitrary } \\
& \text { integer as seen by substation } \\
& \text { in }(9.13) \text {. }
\end{aligned}
$$

Figur 2.10: Grafisk fremstilling av sampling, i ids- of frekvensdomenet.

- An input series of numbers is applied to a filter to create a modified output series of numbers
- Discrete-time filters are most often analyzed and visualized in terms of the z-transform
- In this figure (Fig. 9.9) the output signal is defined to be the impulse response, $h(n)$, when the input, $u(n)$, is an impulse (i.e. 1 for $\mathrm{n}=0$ and 0 otherwise. Transfer function; $\mathrm{H}(\mathrm{z})$ being the z -transform of the impulse response, $\mathrm{h}(\mathrm{n})$

Continuous time LP-filter

pp 382 "Johns \& Martin"
The transfor function for discrepe-time
filters appear simitar to those for
continnous-time fitters, except that, instead of
polynomiabs in s, polynomials in z are -btained
For example, the transfur function of a Lou -pan
, continuous time fiter, H_{c} (s) might appear as
Im

$H_{c}(s)=\frac{4}{s^{2}+2 s+4}$
$a x^{2}+b x+c$
$x=\frac{-b \pm \sqrt{b^{2}-4-a c}}{2 a}$
$s=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot 4}}{2 \cdot 1}$
$=\frac{-2 \pm \sqrt{\frac{2 \cdot 1}{-3 \cdot 4}}}{2}=\frac{-2 \pm 2 \sqrt{-3}}{2}$
$s=-1 \pm j \sqrt{3}$, roots of the denominator.
filter is also defined to have to zeros.
This LP-filter is also defined to have to zeros
14
at ∞ since the clenominator polynomial is
two orders higher than the numerator polywomial
To find the frequency reponse of $H_{c}(s)$ the poles and ploted (frs. 9.10 as)

Discrete-Time Transfer Function

- Assume the following (LP-) transfer function:

$$
H(z)=\frac{0,05}{z^{2}-1,6 z+0,65}
$$

- Poles: Complex conjugated at $0.8+/-0.1 \mathrm{j}$

- Zeros: Two zeros at infinity (Defined). The number of zeros at infinity reflects the difference in order between denominator and nominator
- In the discrete time somain $\mathrm{z}=1$ corresponds to the freq. response at both dc $(\omega=0)$ and $\omega=2 \pi$.
- The frequency respons need only be plotted for $0 \leq \omega \leq \pi$ (frequency response repeats every 2π.
- The unit circle, $\mathrm{e}^{\mathrm{j} \omega}$, is used to determine the frequency response of a system that has it's input and output as a series of numbers.
- (The magnitude is represented by the product of the lengths of the zero-vectors divided by the product of the lengths of the pole-vectors.
- The phase is calculated using addition and subtraction)

Frequency response

- The frequency response of discrete-time filters are similar to the response of continuous-time filters. The poles and zeroes are located in the z-plane instead of the s-plane
- $D C / 2 \pi$ equals $z=1, f s / 2$ equals $z=-1$
- The response is periodic with period 2π

Stability of Discrete-Time Filters

- The filters are described by finite difference equations

$$
\begin{gathered}
y(n+1)=b x(n)+a y(n) \\
z Y(z)=b X(z)+a Y(z) \\
H(z) \equiv \frac{Y(z)}{X(z)}=\frac{b}{z-a}
\end{gathered}
$$

- $\mathrm{H}(\mathrm{z})$ has a pole in $\mathrm{z}=\mathrm{a}$. $\mathrm{a}<=1$ to ensure stability
- In general a LTI system is stable if all the poles are located inside or on the unit circle

Test for stability

- Let the input, $x(n)$ be an impulse signal (i.e. 1 for $n=0$, and otherwise), which gives the following output signal, according to $9.25, y(0)=k$, where k is some arbitrary initial state for y.
- $y(n+1)=b x(n)+a y(n)$
- $y(0+1)=b x(0)+a y(0)=b 1+a k=b+a k$,
- $y(2)=b x(1)+a y(1)=b+a(b+a k)=a b+a^{2} k$
- $Y(3)=b x(2)+a y(2)=b 0+a y(2)=a\left(a b+a^{2} k\right)=a^{2} b+a^{3} k$
- $Y(4)=a^{3} b+a^{4} k$
- Response, $h(n)=0$ for $(\mathrm{n}<0)$,
- $\quad k$ for ($n=0$)
- $\quad\left(a^{n-1} b+a^{n} k\right)$ for $n>=1$
- This response remains bounded only when $|\mathrm{a}|<=1$ for this 1 st order filter, and unbounded otherwise.
- In general, an arbitrary, time invariant, discrete time filter, $\mathrm{H}(\mathrm{z})$, is stable if, and only if, all its poles are located within the unit circle.
(6) UNIVERSITETET I OSLO

IIR and FIR Filters

- Infinite Impulse Response (IIR) filters are discretetime filters whose outputs remain non-zero when excited by an impulse:
- Can be more efficient
- Finite precision arithmetic may cause limit-cycle oscillations
- Finite Impulse Response (FIR) filters are discretetime filters whose outputs goes precisely to zero after a finite delay:
- Poles only in $z=0$
- Always stable
- Exact linear phase filters may be designed
- High order often required

Bilinear Transform

- In many cases it is desirable to convert a continuous-time filter into a discrete-time filter or vice-versa.
- $H_{c}(p)$ is a CT transfer function with $p=\sigma_{p}+j \Omega$.Then

$$
\mathrm{p}=\frac{\mathrm{z}-1}{\mathrm{z}+1} \quad \mathrm{z}=\frac{1+\mathrm{p}}{1-\mathrm{p}}
$$

- The bilinear transforms map the z-plane locations of $1(\mathrm{DC})$ and $-1(\mathrm{fs} / 2)$ to the p-plane locations 0 and ∞.

Bilinear Transform

- The unit-circle $z=e^{j^{j}}$ in the z-plane is mapped to the entire $j \Omega$-axis in the p-plane:

$$
\begin{aligned}
\mathrm{p} & =\frac{\mathrm{e}^{\mathrm{j} \omega}-1}{\mathrm{e}^{\mathrm{j} \omega}+1}=\frac{\mathrm{e}^{\mathrm{j}(\omega / 2)}\left(\mathrm{e}^{\mathrm{j}(\omega / 2)}-\mathrm{e}^{-\mathrm{j}(\omega / 2)}\right)}{\mathrm{e}^{\mathrm{j}(\omega / 2)}\left(\mathrm{e}^{\mathrm{j}(\omega / 2)}+\mathrm{e}^{-\mathrm{j}(\omega / 2)}\right)} \\
& =\frac{2 \mathrm{j} \sin (\omega / 2)}{2 \cos (\omega / 2)}=\mathrm{j} \tan (\omega / 2)
\end{aligned}
$$

- The following frequency mapping occurs:

$$
\Omega=\tan (\omega / 2)
$$

- Then $\mathrm{H}(\mathrm{z}) \equiv \mathrm{H}_{\mathrm{c}}((\mathrm{z}-1) /(\mathrm{z}+1))$ and $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{H}_{\mathrm{c}}(\mathrm{j} \tan (\omega / 2))$

Sample-and-Hold Response

- A sampled and held signal is related to the sampled continuous-time signal as follows:

$$
x_{s h}(t)=\sum_{n=-\infty}^{\infty} x_{c}(n T)[9(t-n T)-\vartheta(t-n T-T)]
$$

- Taking the Laplace-transform:

$$
\mathrm{X}_{\mathrm{sh}}(\mathrm{~s})=\frac{1-\mathrm{e}^{-\mathrm{sT}}}{\mathrm{~s}} \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}_{\mathrm{c}}(\mathrm{nT}) \mathrm{e}^{-\mathrm{snT}}
$$

$$
=\frac{1-\mathrm{e}^{\mathrm{sT}}}{\mathrm{~s}} \mathrm{X}_{\mathrm{s}}(\mathrm{~s})
$$

Sample-and-Hold Response
 (2/3)

- The hold transfer function $\mathrm{H}_{\mathrm{sh}}(\mathrm{s})$ is due to the previous result equal to:

$$
\mathrm{H}_{\mathrm{sh}}(\mathrm{~s})=\frac{1-\mathrm{e}^{-\mathrm{sT}}}{\mathrm{~s}}
$$

- The spectrum is found by setting $\mathrm{s}=\mathrm{j} \omega$:

$$
H_{s h}(j \omega)=\frac{1-e^{-j_{\omega} T}}{j_{\omega}}=T \times e^{-\frac{j_{\omega} T}{2}} \times \frac{\sin \left(\frac{\omega T}{2}\right)}{\left(\frac{\omega T}{2}\right)}
$$

- Finally the magnitude is given by:

$$
\begin{aligned}
& \left|H_{n}(0)=T\right|=\mid
\end{aligned}
$$

- This response $\sin (x) / x$ is usually referred to as the sincresponse.

Sample-and-Hold Response
 (3/3)

- Shaping only occurs for continuous-time signals, since a sampled signal will not be affected by the hold function.
- A S/H before an A/D converter does not reduce the demand of an anti-aliasing
 filter preceeding the A/D-converter, but simply allow the A/D to have a constant input value during the conversion.

Tuesday 16th of February:

- Discrete Time Signals (from chapter 9)

Today: as far as we get with:
10.1 Basic building blocks (Opamps,

Capacitors, Switches,
Nonoverlappingg clocks)
10.2 Basic operation and analysis
(Resistor equivalence of a Switched
Capacitor, Parasitic Insensitive Integrators)

Properties of SC circuits

- Popular due to accurate frequency response, good linearity and dynamic range
- Easily analyzed with z-transform
- Typically require aliasing and smoothing filters
- Accuracy is obtained since filter coefficients are determined from capacitance ratios, and relative matching is good in CMOS
- The overall frequency response remains a function of the clock, and the frequency may be set very precisely through the use of a crystal oscillator
- SC-techniques may be used to realize other signal processing blocks like for example gain stages, voltage-controlled oscillators and modulators

Basic building blocks in SC circuits; Opamps, capacitors, switches, clock generators (chapter 10.1)

- DC gain typically in the order of 40 to 80 dB (100 - 10000 x)
- Unity gain frequency should be > 5 x clock speed (rule of thumb)
- Phase margin > 70 degrees (according to Johns \& Martin)
- Unity-gain and phase margin highly dependent on the load capacitance, in SC-circuits. In single stage opamps a doubling of the load capacitance halves the unity gain frequency and improve the phase margin
- The finite slew rate may limit the upper clock speed.
- Nonzero DC offset can result in a high output dc offset, depending on the topology chosen, especially if correlated double sampling is not used

- Typically constructed between two polysilicon layers
- Parasitics; Cp1, Cp2.
- Parasitic Cp2 may be as large as 20% of the desired, C1
- Cp1 typically 1-5 \% of C1. Therefore, the equivalent model contain 3 capacitors

- Desired: very high off-resistance (to avoid leakage), relatively low on-resistance (for fast settling), no offset
- Phi, the clock signal, switches between the power supply levels
- Convention: Phi is high means that the switch is on (shorted)
- Transmission gate switches may increase the signal range
- Some nonideal effects: nonlinear capacitance on each side of the switch, charge injection, capacitive coupling to each side

Basic building blocks in SC circuits;

 Opamps, capacitors, switches, clock generators

- Must be nonoverlapping; at no time both signals can be high
- Convention in "Johns \& Martin"; sampling numbers are integer values
- Location of clock edges need only be moderately controlled (assuming low-jitter sample-and-holds on input and output of the overall circuit)
- Delay elements above can be an even number of inverters or an RC network

C 1 is first charged to V 1 and then charged to V 2 during one clock cycle

$$
\Delta \mathrm{Q}_{1}=\mathrm{C}_{1}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)
$$

The average current is then given by the change in charge during one cycle

$$
I_{\text {avg }}=\frac{C_{1}\left(V_{1}-V_{2}\right)}{T}
$$

Where T is the clock period (1/fs)

SC Resistor Equivalent ${ }_{(22)}$

The current through an equivalent resistor is given by:

Combining the previous equation with lavg

$$
I_{e q}=\frac{V_{1}-V_{2}}{R_{e q}}
$$

The resistor equivalence is valid when fs is much larger than the signal frequency. In the case of higher signal frequencies, z-domain analysis is required:

$$
\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{T}}{\mathrm{C}_{1}}=\frac{1}{\mathrm{C}_{1} \mathrm{f}_{\mathrm{s}}}
$$

(6) UNIVERSITETET I OSLO

Example of resistor implementation

- What is the resistance of a 5 pF capacitance sampled at a clock frequency of 100 kHz ?
- Note the large resistance that can be implemented. Implemented in CMOS it would take a large area for a resistor of the same resistance

$$
\mathrm{R}_{\mathrm{eq}}=\frac{1}{\left(5 \times 10^{-12}\right)\left(100 \times 10^{3}\right)}=2 \mathrm{M} \Omega
$$

An inverting integrator

$\left.\mathrm{i}_{\mathrm{i}} \mathrm{n}\right)=\mathrm{v}_{\mathrm{ci}}(\mathrm{nT})$

Example waveforms. $\mathrm{H}(\mathrm{z})$ rewritten to eliminate terms of z having negative powers. Equation representative just before end of phi1 only

ifj
UnIVERSITETET I OSLO

Frequency response (Low frequency)

$$
\begin{gathered}
H(z)=-\left(\frac{C_{1}}{C_{2}}\right) \frac{z^{-1 / 2}}{z^{1 / 2}-z^{-1 / 2}} \\
z=e^{j} \omega^{T}=\cos (\omega T)+j \sin (\omega T) \\
z^{1 / 2}=\cos \left(\frac{\omega T}{2}\right)+j \sin \left(\frac{\omega T}{2}\right) \\
z^{-1 / 2}=\cos \left(\frac{\omega T}{2}\right)-j \sin \left(\frac{\omega T}{2}\right) \\
H\left(e^{j_{\omega} T}\right)=-\left(\frac{C_{1}}{C_{2}}\right) \frac{\cos \left(\frac{\omega T}{2}\right)-j \sin \left(\frac{\omega T}{2}\right)}{j 2 \sin \left(\frac{\omega T}{2}\right)}
\end{gathered}
$$

Example 10.2 (2/2)

- Assuming low frequency i.e.

$$
\omega \mathrm{T}<1
$$

- The gain-constant is depending only on the capacitor-ratio and clock frequency:

$$
\begin{gathered}
\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \mathrm{~T} \mathrm{~T}}\right) \cong-\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \frac{1}{\mathrm{j}_{\omega} \mathrm{T}}\right. \\
\mathrm{K}_{\mathrm{I}} \cong \frac{\mathrm{C}_{1}}{} \frac{1}{\mathrm{C}_{2} \mathrm{~T}}
\end{gathered}
$$

Effect of parasitic capacitors

$$
\mathrm{H}(\mathrm{z})=-\left(\frac{\mathrm{C}_{1}+\mathrm{C}_{\mathrm{p} 1}}{\mathrm{C}_{2}}\right) \frac{1}{\mathrm{z}-1}
$$

- The gain coefficient depends on the parasitic and possibly non-linear capacitance I oslo

Parasitic-Insensitive Integrator

- The following parasitics does not influence:
- Cp2 is either connected to virtual ground or physical ground
- Cp3 is connected to virtual ground
- Cp4 is driven by the output
- Cp1 is charged between vi(n) and gnd.

Parasitic-Insensitive Integrator

$\mathrm{v}_{\mathrm{i}}(\mathrm{n})=\mathrm{v}_{\mathrm{ci}}(\mathrm{nT})$

- Two additional switches removes sensitivity to parasitics
- Improved linearity
- More well-defined and accurate transfer-functions

Transfer function not dependent on Cp1:

Parasitic-Insensitive Integrator (fig. 10.9)

- Note that the integrator is now positive
- C_{1} and C_{2} no longer need to be much larger than parasitics
- A remaining limitation is the lateral stray capacitance between the lines leading to the electrodes of C_{1} and C_{2}. This can be reduced by inserting a grounded line between the leads. In any case the minimum permissible C_{1} and C_{2} values are reduced by a factor $10-50$ if the stray-insensitive configuration is used, hence reducing the area required by the capacitors is reduced by the same factor [GrTe86]. Price is proportional to area.
- While parasitics do not affect the discrete time difference equation (or $\mathrm{H}(\mathrm{z})$), they may slow down settling time behaviour.

$\mathrm{H}(\mathrm{z})$ for inverting, delay-free integrator

- Equations similar to previous slide, but with clocking- and timing convention as in fig. 10.3:

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT}-\mathrm{T} / 2)=\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT}-\mathrm{T}) \\
\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT})=\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT}-\mathrm{T} / 2)-\mathrm{C}_{1} \mathrm{v}_{\mathrm{ci}}(\mathrm{nT})
\end{gathered}
$$

- $H(z)$ having z^{-1} removed: $\quad H(z)=\frac{V_{0}(z)}{V_{i}(z)}=-\left(\frac{C_{1}}{C_{2}} \frac{z}{z-1}\right.$

Next time, Tuesday the 23rd

- Rest of chapter 10. (10.3, 10.4, 10.5, 10.7)
- Chapter 11, Data Converter Fundamentals

Last time - and today, Tuesday 23rd of February:
9.2 Laplace Transform of Discrete Time Signals 9.3 z-transform
9.4 downsampling and Upsampling
9.5 Discrete Time Filters
9.6 Sample-and-Hold Response
10.1 Switched Capacitor Circuits
10.2 Basic Operation and Analysis Today:
10.3 First-order filters
10.4 Biquad filters (high-Q)
10.5 Charge injection
10.7 Correlated double sampling techn
11.1 Ideal D/A converter
11.2 Ideal A/D converter
11.3 quantization noise
11.4 signed codes
iff
UNIVERSITETET
I OSIO UNIVER
I OSLO

Signal-flow-graph analysis (p. 407)

\&idy universitetet
I OSLO I osto

Getting the transfer function..

Signal Flow Graph (Fig. 10.13 in "J \& M")
SIGNAL FLOW GRAPH IN FIG 10.13
(10.30)

$$
\begin{aligned}
& V_{\text {out }}(z)=-\frac{c_{1}}{c_{A}} \cdot v_{1}(z)+\frac{c_{2}}{c_{A}} \frac{z^{-1}}{1-z^{-1}} v_{2}(z)-\frac{c_{3}}{c_{A}} \frac{1}{1-z^{-1}} V_{3}(z) \\
&=-\frac{c_{1}}{c_{A}} \frac{\left(1-z^{-1}\right)}{\left(1-z^{-1}\right)} \cdot v_{1}(z)+\frac{c_{2}}{c_{A}} \frac{z^{-1}}{1-z^{-1}} v_{2}(z)-\frac{c_{3}}{c_{A}} \frac{1}{1-z^{-1}} V_{3}(z) \\
& \text { Se that } \frac{1}{C_{A}\left(1-z^{-1}\right)} \text { is a common factor }
\end{aligned}
$$

ef

First-Order Filters

- Select a known Active-RC circuit
- Replace resistors by SC-equivalents
- Analyze using discrete-time methods

Making 1st order SC-filter from active RC equivalent

$$
\begin{aligned}
& V_{\text {out }}(z)=-\frac{c_{2}}{c_{A}} \frac{z^{-1}}{1-z^{-1}} \cdot V_{\text {in }}(z)-\frac{c_{3}}{c_{A}} \frac{1}{1-z^{-1}} \cdot V_{\text {out }}(z)-\frac{c_{1}}{c_{A}} V_{\text {in }}(z) \\
& V_{\text {out }}(z) \cdot C_{n}\left(1-z^{-1}\right)=-C_{2} \cdot V_{\text {in }}(z)-C_{3} \cdot V_{\text {int }}(z)-C_{1}\left(1-z^{-1}\right) \cdot V_{\text {in }}(z) \\
& V_{\text {utt }}(z) \cdot C_{A}\left(1-z^{-1}\right)+C_{3} V_{\text {out }}(z)=-C_{2} \cdot V_{\text {in }}(z)-C_{1}\left(1-z^{-1}\right) V_{\text {in }}(z) \\
& V_{\text {out }}(z)\left[c_{n}\left(1-z^{-1}\right)+c_{3}\right]=-V_{\text {in }}(z)\left[c_{2}+c_{1}\left(1-z^{-1}\right)\right] \\
& H(z)=\frac{V_{\text {out }}(z)}{V_{\text {in }}(z)}=-\frac{\left[c_{2}+c_{1}\left(1-z^{-1}\right)\right]}{\left[c_{A}\left(1-z^{-1}\right)+c_{3}\right]}=\frac{\frac{c_{2}}{c_{A}}+\frac{c_{1}}{c_{A}}\left(1-z^{-1}\right)}{1-z^{-1}+\frac{c_{3}}{c_{A}}}=\frac{\frac{c_{2}}{c_{A}} z+\frac{c_{1}}{c_{A}}(z-1) \frac{c_{2}}{c_{A}} z+\frac{c_{1}}{c_{A}} z-\frac{c_{1}}{c_{A}}}{z-1+\frac{c_{3}}{c_{A}} \cdot z}=\frac{c_{1}}{z+\frac{c_{3}}{c_{A}} z-1}
\end{aligned}
$$

tet

Fully Differential Filters (p. 414 (1/3))

- The signal is represented by the difference of two voltages
- Most SC-designs are fully differential, typically operating around a dc common-mode voltage halfway between the supply voltages
- Reduced common-mode noise
- Cancellation of even-order harmonic distortion, if the nonlinearity is memoryless

SFG based on superposition, similar as in fig 10.13.

First-Order Filter

Differential implementation (fig. 10.18 p. 415)

Example: Fully differential SC-sigma-delta ADC published May 2007

A MICRO POWER SIGMA-DELTA A/D CONVERTER IN $0.35-\mu \mathrm{M}$ CMOS FOR LOW FREQUENCY APPLICATIONS

- Downloaded from IEEEXplore (http://ieeexplore.ieee.org/Xplore/dynhome.jsp)

Properties of Fully Differential Filters, compared to single-ended solutions

- Requires two copies of a single-ended filter except from the Opamp which is shared
- Common-mode feedback circuitry is required
- The input- and output signal amplitude are doubled. The same dynamic range can be achieved with half-sized capacitors:
- Area reduction and less power consumption
- Reduced size of switches (less charge)
- More wires are required
- Improved performance with respect to noise and distortion

Additional litterature

- Adnan Gundel, William N. Carr: A micropower sigma-delta A/D converter in 0.35 um CMOS for low-frequency applications, Proceedings of IEEE Long Island Systems, Applications and Technology Conference, IEEE 2007
- [GrTe86]: Roubik Gregorian, Gabor C. Temes: Analog MOS Integrated Circuits for signal processing, Wiley, 1986.
- [Haah94]: Nils Haaheim: Analog CMOS, Universitetet i Trondheim, Norges Tekniske Høgskole, 1994.
- Adel S. Sedra, Kenneth C. Smith: Microelectronic Circuits, Saunders College Publ., 1989.
- Kenneth R. Laker, Willy M. C. Sansen: Design of analog integrated circuits and systems, McGraw-Hill, 1994.

High-Q Biquad active RC-filter

- Another circuit is required for high Q-values and small capacitor spread
- Q-damping is obtained by adding a capacitor around both integrators instead of a resistive feedback around the last integrator

High-Q Biquad Filter

- General transfer function:

$$
H(z) \equiv \frac{V_{0}(z)}{V_{i}(z)}=-\frac{K_{3} z^{2}+\left(K_{1} K_{5}+K_{2} K_{5}-2 K_{3}\right) z+\left(K_{3}-K_{2} K_{5}\right)}{z^{2}+\left(K_{4} K_{5}+K_{5} K_{6}-2\right) z+\left(1-K_{5} K_{6}\right)}
$$

- The function can be rewritten as:
- The coefficients are then:

$$
\mathrm{H}(\mathrm{z})=-\frac{\mathrm{a}_{2} \mathrm{z}^{2}+\mathrm{a}_{1} \mathrm{z}+\mathrm{a}_{0}}{\mathrm{z}^{2}+\mathrm{b}_{1} \mathrm{z}+\mathrm{b}_{0}}
$$

$$
\begin{aligned}
\mathrm{K}_{1} \mathrm{~K}_{5} & =\mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2} \\
\mathrm{~K}_{2} \mathrm{~K}_{5} & =\mathrm{a}_{2}-\mathrm{a}_{0} \\
\mathrm{~K}_{3} & =\mathrm{a}_{2} \\
\mathrm{~K}_{4} \mathrm{~K}_{5} & =1+\mathrm{b}_{0}+\mathrm{b}_{1} \\
\mathrm{~K}_{5} \mathrm{~K}_{6} & =1-\mathrm{b}_{0}
\end{aligned}
$$

- A signal-flow-graph approach is used to find the transfer function. There is some freedom in chossing the coefficients as there is one less equation than the number of coefficients. $\mathrm{K} 4=\mathrm{K} 5=\mathrm{SQR}(1+\mathrm{b0}+\mathrm{b} 1)$ defines the other ratios.

Ex 10.5 1) BP-filter, peak gain 5 near fs/10 amd Q of about 10

- To reduce the effects of charge injection in SC circuits, realize all switches connected to ground or virtual ground as nchannel switches only, and turn off the switches connected to ground or virtual ground first. Such an approach will minimize distortion and gain error as well as keeping DC offset low.
- In this case $\theta_{1 \mathrm{a}}$ and $\theta_{2 \mathrm{a}}$ are turned off first to prevent other switches affecting the output voltage of the circuit.

¿ß

Ex． 10.6

Assume an idea opamp．Estimate
the amount of $d c$ offset at the
output due to channel－charge
injection when $C_{1}=0$ and $C_{2}=C_{A}$
$=10 \mathrm{C} \mathrm{C}_{3}=10 \mathrm{pF}, V_{t r}=0.8 \mathrm{~V}, \mathrm{~W}=30 \mathrm{\mu m}, L=0.8 \mu \mathrm{~m} . V_{\text {au }}= \pm 2,5 \mathrm{~V}$
Q_{3} Cox $=1,9 \cdot 10^{-7} \mathrm{P}^{\mathrm{P}}$（om mor^{2} advanced，and
contribute with channel charge
$Q_{\mathrm{CH} 3}=\underline{Q_{\mathrm{CH} 4}}=\left(-30 \cdot 10^{-6}\right)\left(0.8 \cdot 10^{-6}\right) 1.9 \cdot 10^{-3} \cdot \frac{10^{-12}}{\left(10^{-6}\right)^{2}}(2.5-0.8) \mathrm{C}$
$=-30 \cdot 0.8,0.0019 \cdot 1.7 \mathrm{pC}=0.07752 \mathrm{pC}$
22．februar 2
eff
The de feedback will keep the virtual input
of the opamp at O volts．All feedback
current is charge transferred through C_{3}

Ex． 10.6
（2／2）
When $\phi_{1 a}$ turns off，half the
 charge，$Q_{\mathrm{CH} 4}$ ，goes to virtual
ground，while half of Q_{CH} is placed on the node between a_{3}

When $Q_{2 a}$ goes high，the 2 nd
charge escapes to ground：
ϕ_{2}

$$
a_{1} \uparrow \Omega \Omega \Omega \Omega
$$ \Longleftarrow NON－

$\alpha_{2} \uparrow$ 几ـ几几几 PP． 398^{\prime}

Correlated Double Sampling ("CDS")

- Used to realize highly accurate gain amplifiers, sample-andhold circuits and integrators to reduce errors due to offset voltages, $1 / f$ noise and finite opamp gain.
- Method: During a calibration phase the input voltage of an opamp is sampled and stored (accross a C) and later subtracted from the signal in the operational phase (when the output is being sampled), by appropriate switching of the capacitors.
- A detailed description is beyond the scope of the text in "J \& M". The interested reader may check: C. G. Themes, C. Enz: "Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization", Proceedings of the IEEE, Nov. 1996.
(1v) UNIVERSITETET I OSLO

SC amplifier (left) and SC integrator with CDS (right)

- For the amplifier: During $\theta 2$ the error is sampled and stored across C1 and C2
- The stored error is then subtracted during $\theta 1$
- For the integrator: During $\theta 1$ the error is sampled and stored across C'2
- The stored error is then subtracted during $\theta 2$

$\because 巳$

料 Universitetet I osto

SC-integrator with CDS ("J \& M" page 434)

- During Phi1 the error is sampled and stored accross C2

Data Converter Fundamentals (chapter 11)

_ Digital Signnal Processing

Main data converter types:

- Nyquist-rate converters:
- Each value has a one-to-one correspondencewith a single input
- The sample-rate must be at least equal to twice the signal frequency (Typically somewhat higher)
- Oversampled converters:
- The sample-rate is much higher than the signal frequency, typically 20 - 512 times.
- The extra samples are used to increase the SNR
- Often combined with noise shaping

Flash ADC from 1926 (Analog Digital Conversion handbook, Analog Devices)

The first documented flash converter was part of Paul M. Raineys electro-mechanical
PCM facsimile system described in a relatively ignored patent filed in 1921 (Reference

- see further discussions in Chapter 1 of this book). In the ADC. a current proportional
which activates one of 32 individual photocells. depending upon the amount of
galvanometer deflection (see Figure 3.49). Each individual photocell output activates part of a relay nerwork which generates the 5 -bit binary code.

11.1 Ideal D/A converter

$$
\begin{gathered}
B_{\text {in }}=b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots+b_{N} 2^{-N} \\
V_{\text {out }}=V_{\text {ref }}\left(b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots+b_{N} 2^{-N}\right)
\end{gathered}
$$

Example 11.1 : 8-bit D/A converter

An ideal D/A converter has

$$
\mathrm{V}_{\mathrm{ref}}=5 \mathrm{~V}
$$

Find Vout when

$$
\mathrm{B}_{\text {in }}=10110100
$$

$$
\mathrm{B}_{\text {in }}=2^{-1}+2^{-3}+2^{-4}+2^{-6}=0,703125
$$

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {re }} \mathrm{B}_{\text {in }}=3,516 \mathrm{~V}
$$

Find
$V_{\text {LSB }}$
$\mathrm{V}_{\mathrm{LSB}}=5 / 256=19,5 \mathrm{mV}$
$\mathrm{V}_{\mathrm{LSB}} \equiv \frac{\mathrm{V}_{\text {ref }}}{2^{\mathrm{N}}}$
$1 \mathrm{LSB}=\frac{1}{2^{\mathrm{N}}}$

ef
UNIVERSITETET iosto

11.2 Ideal A/D converter (Fig. 11.3)

$$
\mathrm{V}_{\mathrm{ref}}\left(\mathrm{~b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{-2}+\ldots+\mathrm{b}_{\mathrm{N}} 2^{-\mathrm{N}}\right)=\mathrm{V}_{\mathrm{in}} \pm \mathrm{V}_{\mathrm{x}}
$$

where

$$
-\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}} \leq \mathrm{V}_{\mathrm{x}}<\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}}
$$

Ideal transfer curve for a 2-bit A/D converter (Fig. 11.4)

-A range of input values produce the same output value (QA range of input values produce the same output value (Quantization error)
-Different from the D/A case

解 UNIVERSITETET iosto

Quantization noise model

-TThe model is exact as long as Vq is properly defined

- Vq is most often assumed to be white and uniformely distributed between +/VIsb/2

eff

Quantization noise

-The rms-value of the quantization noise can be shown to be:

$$
\mathrm{V}_{\mathrm{Q}(\mathrm{rms})}=\frac{\mathrm{V}_{\mathrm{LSB}}}{\sqrt{12}}
$$

-Total noise power is independent of sampling frequency
-In the case of a sinusoidal input signal with p-p amplitude of $\quad \mathrm{V}_{\text {ref }} / 2$

$$
\begin{aligned}
& \mathrm{SNR}=20 \log \left(\frac{\mathrm{~V}_{\text {incrms }}}{\mathrm{V}_{\mathrm{Q}(\mathrm{rms})}}\right)=20 \log \left(\frac{\mathrm{~V}_{\text {ref }} /(2 \sqrt{2})}{\mathrm{V}_{\mathrm{LSB}} /(\sqrt{12})}\right) \\
& \mathrm{SNR}=6,02 \mathrm{~N}+1,76 \mathrm{~dB}
\end{aligned}
$$

Quantization noise

-Signal-to Noise ratio is highest for maximum input signal amplitude

ef

2's complement

A3a2a1a0	Sign magnitude	2s complement
0111	+7	+7
0110	+6	+6
0101	+5	+5
0100	+4	+4
0011	+3	+3
0010	+2	+2
0001	+1	+1
0000	+0	+0
1000	-0	-8
1001	-1	-7
1010	-2	-6
1011	-3	-5
1100	-4	-4
1101	-5	-3
1110	-6	-2
1111	-7	-1

- Addition of positive and negative numbers is straightforward, using addition, and requires little hardware
- 2's complement is most popular representation for signed numbers when arithmetic operations have to be performed

ifj

[^0]
11.5 performance limitations

- Resolution
- Offset and gain error
- Accuracy
- Integral nonlinearity (INL) error
- Differential nonlinearity (DNL) error
- Monotonicity
- Missing codes
- A/D conversion time and sampling rate
- D/A settling time and sampling rate
- Sampling time uncertainty
- Dynamic range
- NB!! Different meanings and definitions of performance parameters sometimes exist. \rightarrow Be sure what's meant in a particular specification or scientific paper.. There are also more than those mentioned here.
(fity universitetet

Resolution

- Resolution usually refers to the number of bits in the input (D/A) or output (ADC) word, and is often different from the accuracy.
- Analog-Digital Conversion Handbook, Analog Devices, 3rd Edition, 1986: An n-bit binary converter should be able to provide $2 n$ distinct and different analog output values corresponding to the set of n binary words. A converter that satisfies this criterion is said to have a resolution of n bits.

Next Tuesday (2/3-10):

- Chapter 12 Nyquist DACs

Last time - and today, Tuesday 2nd of March:
Last time:
10.3 First-order filters
10.4 Biquad filters (high-Q)
10.5 Charge injection
10.7 Correlated double sampling techniques
11.1 Ideal D/A converter
11.2 Ideal A/D converter
11.3 quantization noise
11.4 signed codes

Today:
11.5 Performance Limitations
12.1 Decoder-based converters
12.2 Binary-scaled converters
12.3 Thermometer-code converters
12.4 Hybrid converters

10:55 : 5 minute survey by "Micro"

Offset and gain error

- In a D/A converter ("DAC") the offset error is defined to be the output that occurs for the input code that should provide zero output. For an A/D converter ("ADC") the offset error is the deviation of V0... 01 from $1 / 2$ LSB.
- The gain error is the the difference at the full scale value between ideal and actual curves offset error when the offset has been
 reduced to zero. For a DAC it is given in units of LSBs.

Integral nonlinearity error (INL)

- After both offset and gain errors have been removed, the integral nonlinearity (INL) error is defined to be the deviation from a straight line. Possible straight lines: endpoints of the converters transfer respons, best-fit straight line such that the difference (or mean squared error) is minimized.

Universitetet I OSLO

Differential nonlinearity error (DNL)

step size between 00 and 01 is 1.5 LSB step size between 10 and 11 is 0.7 LSB
-Ideally, each analog step size is equal to 1 LSB. DNL is variation in step size from $\mathrm{V}_{\text {LSB }}$ (after removal of gain and offset errors). Ideally DNL is 0 for all digital values. DNL is in " J \& M " defined for each digital word, whereas other sometimes refer to DNL as the maximum magnitude of DNL values.

Monotonicity in DACs

- A monotonic DAC is one in which the output always increases as the input increases (slope of the transfer response is of only one sign.)
- If the maximum DNL error is less than 1 LSB , the DAC is guaranteed to be monotonic.
- A converter is guaranteed to be monotonic if maximum DNL is < 1 LSB (or if INL is less than $1 / 2$ LSB).
- 3-bit nonmonotonic example in the figure is from Analog-Digital conversion handbook by Analog Devices

D/A (DAC) settling time and sampling rate

- In a DAC the settling time is defined as the time it takes for the converter to settle within some specified amount of the final value (usually 0.5 LSB).
- The sampling rate is the rate at which samples can be continously converted and is

Fig 3.9 Risetime 6 bit DAC, input 0 to 128. (Xdivision $=50 \mathrm{~ns}$) typically the inverse of the settling time.

- Different combinations of input vectors give different settling times.
dissertation for the dr. scient. degree by Leif Hanssen, Ifi, Uio, 1990.

ef

Nyquist Rate D/A Converters

- 12.1 Decoder-based converters
resistor string conv.
folded resistor string conv.
multiple R-string converters
- 12.2 Binary-Scaled converters
binary-weighted resistor converters
reduced resistance-ratio ladders
R-2R-based converters
charge-redistribution switched-capacitor conv. current-mode conv.
- 12.3 Thermometer-code converters
thermometer-code current-mode D/A converters single-supply positive-output converters dynamically matched current sources
- 12.4 Hybrid converters
resistor-capacitor hybrid converters
segmented converters

Ideal D/A converter

$$
\begin{gathered}
\mathrm{B}_{\text {in }}=\mathrm{b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{-2}+\ldots+b_{N} 2^{N} \\
\mathrm{~V}_{\text {out }}=\mathrm{V}_{\text {ref }}\left(\mathrm{b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{-2}+\ldots+\mathrm{b}_{\mathrm{N}} 2^{-N}\right)
\end{gathered}
$$

12.1 Decoder-Based Converters

- Creates 2^{N} reference signals and passes the appropriate signal to the output, depending on the digital input word.
- The switching network produces one, and only one, low impedance path between the resistor string and the input of the buffer
- Relatively compact switches if n-channel devices are used instead of transmission gates.

Resistor String Converters (12.1)

- Only one path between resistor string and D/A-output
- Guaranteed monotonicity, provided that the voltage follower does not have too large offset
- Compact design when using only n-transistors (no contacts)
- Polysilicon resistors may give resolution up to 10 bit
- Delay through switch network is the major speed limitation of the circuit
- 2^{N} resistors are required (when only one resistor string is included)

Resistor String Converters (12.1)

- High-speed implementation (when compared to the previous one), due to maximum of one switch in series \rightarrow
- Less resistance through switches
- The switches are controlled by digital logic
- More area for the decoder compared to the previous DAC
- Larger capacitance on the buffer input, due to the 2^{N} transistors connected to it
- Pipelining may be applied for "moderate speed"
- 2^{N} resistors are required

Estimating the time constant for n resistors and capacitors in series (ex. 12.2)

Multiple R-String Converters (12.1)

- A second tapped resistor string is connected between buffers whose inputs are two adjacent nodes of the first resistor string, as shown.
- In this 6-bit case the 3 MSBs determine the two adjacent nodes. The $2^{\text {nd }}$ ("fine") string linearly interpolates between the two adjacent voltages from the first ("coarse") resistor string
- Additional logic needed to handle polarity switching, related to which intermediate buffer has the highest voltage on the input
- Guaranteed monotonicity assuming matched opamps and voltage insensitive offset voltages
- $2 \times 2^{\mathrm{N} / 2}$ resistors are required
- Relaxed matching requirements for the $2^{\text {nd }}$ resistor string.
- Ex.: 10 bit, 4 bits for the $1^{\text {st }}$ string, matched to 0.1%. Requirements for $2^{\text {nd }}$ string? $2^{4} \times 0.1 \%$ $=1.6 \%$

ef

12.2 Binary-Scaled Converters

- Combining a set of signals that are related in a binary fashion
- Typically currents (resistors or plain current) or binary weighted arrays of charges
- Example: 4-bit binary-weighted resistor DAC:

Binary-Weighted Resistor Converters (12.2)

- Few switches and resistors
- Large resistor and current ratios $\left(2^{N}\right)$
- Monotonicity not guaranteed
- Prone to glitches for high-speed operation

Glitches -from Analog Digital Conversion Handbook

Glitch Impulse Area

Ideally, when a DAC output changes it should move from one value to its new one
deeally, when a DAC output changes it should move from one value to its new one
monotonically. In practice, the output is likely to overshoot, undershoot, or both (sed
Figure 2.94). This micontrolled movement of the DAC output during a transition is
known as a glitch. It can arise from two mechanisms: capacitive coupling of digital transitions to the analog output, and the effects of some switches in the DAC operating more quickly than others and producing temporary spurious outputs.

Figure 2.94: DAC Transitions (Showing Glitch)
Capacitive coupling frequently produces roughly equal positive and negative spikes Capacitive coupling frequently produces roughly equal positive and negative spikes
(sometimes called a doublet glitch) which more or less cancel in the longer term. The glitch produced by switch timing differences is generally unipolar, much larger and of greater concem. I OSLO

Glitches waste energy and produce noise

- Glitches can be seen as unwanted transitions on the output, instead of a monotonous move from one output value to the next
- Mainly the result of different delays occuring when switching different signals

22. mai 2010	decimal	nimay mish	$\begin{aligned} & \text { Thempometer inde } \\ & \text { diazdidadided? } \end{aligned}$
	0	000	0000000
	1	001	0000001
	2	010	0000011
	3	011	0000111
	4	100	0001111
	5	101	0011111
\square	6	110	0111111
	7	111	1111111

- Potential cures:
- Exact matching in time (difficult)
- Reducing the bandwidth by placing C accross Rf in a circuit similar to the one in fig. 12.13
- Add S/H to the output
- Modify some or all of the digital word from binary to thermometer code (most popular)

Reduced-Resistance-Ratio Ladders (12.2)

- Reducing the large resistor ratios (compared to Fig. 12.7, left) in a binary weighted array by introducing a series resistor (right).
- Same relationship to the digital binary signals as in the previous case, but with one-fourth the resistance ratio
(4/2 - not 16/2)
Somewhat similar to the R-2R ladder structure..

R-2R-Based Converters (12.2)

- Only two resistor values
- Improved matching
- \rightarrow smaller size and better

$$
\mathrm{R}_{4}^{\prime}=2 \mathrm{R}
$$

$$
\mathrm{R}_{4}=2 \mathrm{R} \| 2 \mathrm{R}=\mathrm{R}
$$

accuracy
$\mathrm{R}_{3}{ }^{\prime}=\mathrm{R}+\mathrm{R}_{4}=2 \mathrm{R}$
$\mathrm{R}_{3}=2 \mathrm{R} \| \mathrm{R}_{3}=\mathrm{R}$

解 Universitetet

4-bit R-2R Resistor Ladder (12.2)

- The current is scaled by controlling the switches
- Important to scale the switches accordingly
- Ensuring equal voltage drop across the switches
- Suited for fast operation
- $\mathrm{V}_{\text {out }}$ is the only changing voltage

ef

R-2R Resistor Ladder with equal current through all switches (12.2)

- Not necessary to scale switch sizes (Equal current)
- Slower due to changing node voltages

Binary weighted current mode DAC (12.2)(fig. 12.13)

- Current-mode DACs are very similar to resistorbased converters, but intended for higher speed applications
- The output current is converted to a voltage through the use of R_{E}

Parallel charge sharing DAC principle

Capacitance ratios defining voltage gain

Charge-Redistribution Switched Capacitor Converter (12.2) (fig. 12.12)

- By replacing the input capacitor of an SC gain amplifier by a programmable capacitor array (PCA) a charge based converter is obtained
- Employs correlated double sampling (CDS) - insensitive to 1/f noise, input-offset voltage and finite amplifier gain.
- An additional sign bit may be realized by interchanging the clock phases
- Carefully generated clock waveforms and a deglitching capacitor are required
- Digital codes must change only when the input-side of the capacitors are connected to ground

Thermometer-Code Converters (Chapter 12.3)- number of 1s represents the decimal value

- + compared to binary counterpart:
- Lower DNL errors
- Reduced glitching noise
- Guaranteed monotonicity
- - compared to binary counterp.:
- Need $2^{\mathrm{N}}-1$ digital inputs to represent 2^{N} input

decimal	Binary b16263	Thermometer rode didd2d3ddadsddd7
0	000	0000000
1	001	0000001
2	010	0000011
3	011	0000111
4	100	0001111
5	101	0011111
6	110	0111111
7	111	1111111

Thermometer Based 3-bit DAC

(12.3)

- Equal resistor sizes
- Equal switch sizes
- 2^{N} resistors required

ef

Thermometer-code Current-Mode D/A-Converter (12.3)

- Thermometer-code decoder in both row and column, for inherent monotonicity and good DNL
- Current is switched to the output when both row and column lines for a cell are high

- Cascode current source used for improved current matching
- Suited for high speed, with output fed directly into a resistor (50 or 75 Ohms), instead of an output opamp.
- The delay to all switches must be equal (suppress glitching)
- Important that the edges of d_{i} and d_{i} ' are synchronized

Single-Supply Positive-Output Converters

- For fast single-supply positive-output
- One side of each current-steering pair connected to $V_{\text {bias, }}$, rather than the inversion of the bit signal, to maintain current matching. When the current is steered to the output through Q2, the drain-source voltage across the current source, Q3, remains mostly constant if $\mathrm{V}_{\text {out }}$ stays close to zero, such that Q2 remains in the active region.
- Thus, Q2 and Q3 effectively form a cascode current source when driving current to the output.
- Does not need d_{i} and d_{i}; reduces complexity and removes the need for precisely timed edges to avoid glitches.

Dynamically Matched Current Sources

 (12.3)- for high resolution

A Low-Power Stereo 16-bit CMOS D/A Converter for Digital Audio

HANSI. SCHOUWENAMRS snoo vemarz me. D. WOUTER L. GROENEVELD
No HENK AM. TERMER

- Current sources are periodically being regulated to ideally the same value (matched) during normal operation, to ensure proper resolution.
- A "once and for all" matching of each current source is not enough due to mechanisms including temperature drift and gate leakage.

UNiversitetet I OSLO

Dynamically Matched Current Sources

(12.3)

- 6 MSB realized using a thermometer code. (binary array for the remaining bits)

- All currents are matched against $I_{\text {ref, }}$ one after one, to get the same precise value on all Idi.
- One extra current source is included to provide continous operation, even when one of the sources is being calibrated.

ef

12.4 Hybrid Converters

- Combination of different techniques, like for example decoder based, binary scaled, and thermometer-code converters
- Hybrid converters combine the advantages of different approaches for better performance
- Example: Thermometer code used for MSBs, while using a binary-scaled technique for the lower LSBs to reduce glitching. Using binary scaled for the LSBs, where glitching requirements are reduced, may save valuable chip area.

Next Tuesday (9/3-08):

- Chapter 13 Nyquist Analog-to-Digital Converters

Additional litterature

- Phillip E. Allen, Douglas R. Holberg: CMOS Analog Circuit Design, Holt Rinehart Winston, 1987.
- R. Gregorian, G. Temes: Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986
- Leif Hanssen: High Speed Data Converters Fully Integrated in CMOS, dissertation for the dr. scient. Degree, University Of Oslo, 1990.
- A/D , D/A Conversion Handbook, Analog Devices.
- Lecture Notes, University of California, Berkeley, EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/

Different A/D Converter Architectures

Low-to-Medium Speed High Accuracy	Medium Speed Medium Accuracy	High Speed Low-to-Medium Accuracy
Integrating	Successive approximation	Flash
Oversampling	Algorithmic	Two-Step
		Interpolating
		Folding
		Pipelined
		Time-interleaved

Different ADCs depending on needs

Figure 1. ADC architectures, applications, resolution, and sampling rates.

Fig. 2. ADC sample rate vs. ENOB from 1987 to 2005.

Which ADC Architecture Is Right for Your Application?
By Walt Kester [walt.kester@analog.com]

A/D-conversion - Basic Principle

- The analog input value is mapped to discrete digital output value
- Quantization error is introduced

解 UNIVERSITETET I oslo

Integrating Converters (13.1)

- $\mathrm{V}_{\mathrm{x}}(\mathrm{t})=\mathrm{V}_{\text {in }} \mathrm{t} / \mathrm{RC}\left(\mathrm{V}_{\mathrm{x}}\right.$ ramp derivative depending on $\left.\mathrm{V}_{\text {in }}\right)$
- High linearity and low offset/gain error
- Small amount of circuitry
- Low conversion speed
- $2^{\mathrm{N}+1}$ * $1 / \mathrm{T}_{\text {clk }}$ (Worst case)

- The digital output is given by the count at the end of T_{2}
- The digital output value is independent of the time-constant RC

Integrating Converters - careful choice of T1 can attenuate frequency components superimposed on the input signal

- In the above case, 60 Hz and harmonics are attenuated when T1 is an integer multiple of $1 / 60 \mathrm{~Hz}$.
- Sinc-response with rejection of frequencies multiples of $1 / T_{1}$

Successive-Approximation Converters

- Uses binary-search algorithm
- Accuracy of 2^{N} requires N steps
- The digital signal accuracy is within +/- 0.5 $\mathrm{V}_{\text {ref }}$
- Medium speed
- Medium resolution
- Relatively moderate complexity

DAC-Based Successive Approximation

- $\mathrm{V}_{\mathrm{D} / \mathrm{A}}$ is adjusted until the value is within 1 LSB of $\mathrm{V}_{\text {in }}$
- Starts with MSB and continues until LSB is found
- Requires DAC, S/H, Comparator and digital logic
- The DAC is typically limiting the resolution

Succ. Approx ADC, example 13.2

$V_{\text {ret }}=8 \mathrm{~V}$
$V_{\text {in }}=2.831 \mathrm{~V}$
3-bit conversion
cyele 1: $B_{\text {out }}=100$, so that $V_{D A}=4.0 \mathrm{~V}$. Since $V_{\text {in }}<V_{D / A}, b_{l} \rightarrow 0$
cycle $2: B_{\text {out }}=010$, so that $V_{\text {oiA }}=2.0 \mathrm{~V}$. Since $V_{\text {in }}>v_{0 / A}, b_{2} \rightarrow 1$
cycle 3: $B_{\text {out }}=011,-11$ - 3.0 V . Since $v_{i n}<V_{\text {oin }}, b_{3} \rightarrow 0$
010

ef

Charge-Redistribution A/D-Converter (unipolar)

- Instead of using a separate DAC and setting it equal to the input voltage (within 1 LSB) as for the DAC based converter from figure 13.5, one can use the error signal equaling the difference between the input signal, $\mathrm{V}_{\text {in }}$, and the DAC output, $\mathrm{V}_{\mathrm{D} / \mathrm{A}}$

Unipolar Charge-Redistribution A/D-Converter

Charge-Redistribution A/D-Converter

- Sample mode:
- All capacitors charged to Vin while the comparator is reset to its threshold voltage through S_{2}. The capacitor array is performing S / H operation.
- Hold mode:
- The comparator is taken out of reset by opening S_{2}, then all capacitors are switched to ground. V_{x} is now equal to $-\mathrm{V}_{\text {in }}$. Finally S_{1} is switched so that $\mathrm{V}_{\text {ref }}$ can be applied to the capacitors during bit-cycling.
- Bit-cycling
- The largest capacitor is switched to $V_{\text {ref }} \cdot V_{x}$ goes to $-V_{\text {in }}+V_{\text {ref }} / 2$. If V_{x} is negative, then $\mathrm{V}_{\text {in }}$ is greater than $\mathrm{V}_{\text {ref }} / 2$ and the MSB capacitor is left connected to $\mathrm{V}_{\text {ref }}$. Otherwise the MSB capacitor is disconnected and the same procedure is repeated N times

Signed Charge redistribution A/D

(Fig. 13.8)

- Resembling the unipolar version (Fig. 13.7)
- Assming $\mathrm{V}_{\text {in }}$ is between $+/-\mathrm{V}_{\text {ref }} / 2$
- Disadvantage: $\mathrm{V}_{\text {in }}$ attenuated by a factor 2, making noise more of a problem for high resolution ADCs
- Any error in the MSB capacitor causes both offset and a signdependent gain error, leading to INL errors

ef

Speed estimate for charge-redistribution converters

- RC time constants often limit speed
- Individual time constant due to the 2C cap.: $\left(R_{s 1}+R+R_{s 2}\right) 2 C$
- (R ; bit line)
- $\operatorname{Tau}_{\mathrm{eq}}=\left(\mathrm{R}_{\mathrm{s} 1}+\mathrm{R}+\mathrm{R}_{\mathrm{s} 2}\right) 2^{\mathrm{N}} \mathrm{C}$, for the circuit in fig. 13.12
- For better tha 0.5 LSB accuracy: e^{-} T/Taueq $<1 /\left(2^{\mathrm{N}}+1\right), \mathrm{T}=$ charging time
- $\mathrm{T}>\operatorname{Tau}_{\text {eq }}(\mathrm{N}+1) \ln 2$
$=0.69(\mathrm{~N}+1) \mathrm{Tau}_{\mathrm{eq}}$
- 30 \% higher than from Spice simulations ("J \& M")

Ratio-Independent Algorithmic Converter

- Simple circuitry

- Due to the cyclic operation the circuitry are reused in time
- Fully differential circuits normally used

$\because \because$

UNisersitetet

- The basic idea is to sample the input signal twice using the same capacitor. During the $2^{\text {nd }}$ sampling the charge from the $1^{\text {st }}$ capacitor is stored on a $2^{\text {nd }}$ capacitor whose size is unimportant. After the $2^{\text {nd }}$ sampling both charges are recombined into the $1^{\text {st }}$ capacitor which is then connected between the opamp input and output.
- Does not rely on capacitor matching, is insensitive to amplifier offset.

UNIVERSITETET I OSLO

Clocked CMOS comparator

- When the clock ("phi") is high, the inverter is set to its bistable point, Vin = Vout (= Vdd/2). The other (left) side of C is charged to $\mathrm{V}_{\text {ri }}$.
- When the clock ("phi") goes low, the inverter switches, depending on the voltage difference between $V_{r i}$ and $V_{i n} .\left(V_{i n}>V_{\mathrm{in}} ; 1\right.$ output, $\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\mathrm{in}} ; 0$ output from inv.)
- Differential inverters helps poor PSRR with this simple comparator solution.

Issues in Designing Flash A/D Converters

- Input Capacitive Loading: The large number of comparators connected to Vin results in a large capacitive load on at the input node which increases power and reduces speed
- Comparator Latch-to-Track Delay: The internal delay in the comparator when going from latch to track mode
- Signal and/or Clock Delay: Differences in signal/clock delay between the comparators may cause errors. Example: A250-MHz, 1-V peak inputsinusoid converted with 8 -bit resolution requires a precision of 5 ps. Can be reduced by matching the delays and capacitive loads on the signal/clock.
- Substrate and Power-Supply Noise: For a 8-bit converter with Vref=2V only 7.8 mV of noise injection is required to introduce an error of 1LSB. The problem can be reduced by proper layout (Shielding, Differential clocks, Separate power supplies, and symmetrical layout)
- Bubble Error Removal: Comparator metastability may introduce wrong thermometer code (a single 1 or 0 in between opposite values)
- Flashback: Caused by latched comparators. When the comparator is switched from track to latch mode a charge glitch is introduced at the input. The problem is reduced by using a preamplifier and input impedance matching

Two-Step (Subranging) A/D Converters (13.5)

- Popular choice for high-speed medium accuracy converters (8-10 b)
- Less area and power consumption than a Flash ADC
- The MSB's are converted during the first step. In the next step the remaining error is converted into the LSB's
- Speed is limited by the Gain Amplifier
- Requires N -bit accuracy for all components (May be relaxed by using Digital Error Correction)

Digital Error Correction for two-step A/D

- The accuracy requirements on the input ADC is relaxed due to the error corr.. 4-bit for MSb converter

Pipelined ADCs (13.5) Once the first stage has completed it's work it immediately starts working on the next sample

- Small area

The pipelined ADC has its origins in the subranging architecture, first used in the 1950 s. A block diagram of a simple 6 -bit, two-stage subranging ADC is shown in Figure 11.

-

Figure 11.6 -bit, two-stage subranging $A D C$.
The output of the SHA is digitized by the first-stage 3-bit sub-ADC (SADC) - usually a flash converter. The coarse 3-bit MSB conversion is converted back to an analog signal using a 3 -bit sub-DAC (SDAC). Then the SDAC output is subtracted from the SHA output, the difference is amplified, and this "residue signal" is digitized by a second-stage 3-bit SADC to generate the three LSBs of the total 6 -bit output word.

Pipelined ADC -example

A Cost-Efficient High-Speed 12-bit Pipeline ADC in $0.18-\mu \mathrm{m}$ Digital CMOS

- Very high speed (figure to the right from "Allen \& Holberg")
- f_{0} is four timer higher than $f_{1}-f_{4}$, which in addition is slightly delayed
- Only the S/H and the MUX must run on the highest frequency
- Tones are introduced at multiples of $\mathrm{f}_{0} / \mathrm{N}$

\because

(f) $\begin{aligned} & \text { universitetet } \\ & \text { Ioslo }\end{aligned}$ I osto

Time-Interleaved - best compromise between complexity and sampling rate - may be used for different architectures [Elbjornsson '05]

Dynamic range

- Dynamic range is defined as the power of the maximum input signal range divided by the total power of the quantization noise and distortion
- Often referred to as Signal-to-Noise-andDistortion range
- $\mathrm{S} /(\mathrm{N}+\mathrm{D})$
- SINAD

Analog and digital supply voltages are reduced as technology scales

Some ADC trends:

Fig. 1. Scaling of supply and threshold voltages.
22. mai 2010

IEEE 2005 CUSTOM INTEGRATED CIRCUTTS CONFERENCE
Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS

Electrical and Computer Enginecring. University of Illinois at Urbana-Champaign
Limited dynamic range at low supply voltages remains the utmost challenge for highresolution Nyquist converters.

- Oversampling converters will dominate this arena in the future
- Linearity correction with digital correction is becoming prevalent

Sampling-time uncertainty

-Variation in output voltage caused by variations in the time of sampling

Consider the following input signal: $\quad V_{\text {in }}=\frac{V_{\text {ref }}}{2} \sin \left(2 \pi f_{i n} t\right)$

If the variation in sampling time is $\Delta \mathrm{t}$, following equation must be satisfied to keep $\Delta \mathrm{V}$ less than 1LSB

$$
\Delta \mathrm{t}<\frac{\mathrm{V}_{\mathrm{LSB}}}{\pi \mathrm{f}_{\text {in }} \mathrm{V}_{\text {ref }}}=\frac{1}{2^{\mathrm{N}} \pi \mathrm{f}_{\text {in }}}
$$

Additional litterature

- Phillip E. Allen, Douglas Holberg: CMOS Analog Circuit Design, Holt Rinehart Winston, 1987.
- Jonas Elbornsson: White paper on parallel successive approximation ADC, Mathcore Engineering AB, 2005.
- R. Gregorian, G. Temes: Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986
- D. M.Gingrich Lecture Notes, University of Alberta, Canada http://www.piclist.com/images/ca/ualberta/phys/www/http/~gingrich/phys395/notes/phys395.html
- Walt Kester: Which ADC is right for your application?
- Y. Chiu, B. Nicolic, P. R. Gray: Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS, Proceedings of Custom Integrated Circuits Conference, 2005.
- Lecture Notes, University of California, Berkeley,

EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/

- Lanny L. Lewyn, Trond Ytterdal, Carsten Wulff, Kenneth Martin: "Analog Circuit Design in Nanoscale CMOS Technologies", Proceedings of the IEEE, October 2009.
- James L. McCreary, Paul R. Gray: "All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques - part 1", IEEE Journal of Solid-State circuits, December 1975.

A Cost-Efficient High-Speed 12-bit Pipeline ADC

$$
\text { in } 0.18-\mu \mathrm{m} \text { Digital CMOS }
$$

Terje Nortvedt Andersen, Bjornar Hernes, Member, ILEE, Atle Briskenyr, Frode Telstø,
Johnny Bjornsen, Member, IEEE, Thomas E. Bonnerud, and Øystein Moldsva

Next Tuesday (10/3-08):

Rest of chapter 13.

- Chapter 14 Oversampling Converters

Figure 1. ADC architectures, applications, resolution. and sampling rates.

eff

Figure 6. Noise-spectrum effects of the fundamental concepts used in $\Sigma-\Delta$: oversampling, digital filtering, noise shaping, and decimation.

- "... The ratio between two similar components on the same integrated circuit can be controlled to better than +/- 1 \%, and in many cases, to better than +/- 0.1 \%. Devices specifically constructed to obtain a known, constant ratio are called matched devices."
- "Matching - the Achilles Heel of Analog" (Chris Diorio)

22. mai 2010

Some companies located in Norway, doing (or that have done) full custom data converter designs:

- Analog Concepts (Trondheim)
- Arctic Silicon Devices (Trondheim)
- Atmel Norway (Trondheim)
- Energy Micro (Oslo)
- GE Vingmed Ultrasound (Horten)
- Nordic Semiconductors (Trondheim, Oslo)
- Novelda (Oslo)
- Micrel (Oslo)
- Sintef (Trondheim, Oslo)
- Texas Instruments (Oslo)

Interpolating ADCs. Rightmost interpol.=4 (1/4)

- Redučed complexity compared to Flash ADCs \rightarrow reduced input capacitance and slightly reduced power.
- In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of ${ }^{16} \mathrm{kPFogRA月}{ }^{\circ}$ data points.

Folding A/D Converters (13.7)

- The number of latches is reduced compared to the interpolating ADC, and even more from FLASH
- The figure shows a 4 bit converter with folding rate of 4
- A group of LSBs are found separately from a group of MSBs.
- The MSB converter determines whether the input signal, V_{in}, is in one of four voltage regions (between 0 and $1 / 4,1 / 4$ and $1 / 2$, $1 / 2$ and $3 / 4$, or $3 / 4$ and 1) V_{1} to V_{4} produce a thermometer code for each of the four MSB regions

Folding block with a folding rate of four

 - Input-output response for the cross-coupled differential pair is shown lowermost

- Vout is low if, and only if, both V_{a} and V_{b} are low, otherwise high
- The output from a folding block is at a much higher frequency than the input signal, limiting the practical folding rate.
- Differential solutions in practice

Interpolating and folding and interpolating ADCs

ef

Oversampling converters (chapter 14 in "J \& M")

- For high resolution, low-to-medium-speed applications like for example digital audio

- Relaxes requirements placed on analog circuitry, including matching tolerances and amplifier gains
- Simplify requirements placed on the analog antialiasing filters for A/D converters and smoothing filters for D/A converters.
- Sample-and-Hold is usually not required on the input
- Extra bits of resolution can be extracted from converters that samples much faster than the Nyquist-rate. Extra resolution can be obtained with lower oversampling rates by exploiting noise shaping
iff
RSITETET

Dependence of achievable resolution and required clock cycles per sample for various ADC systems.

A Gigasample/Second 5-b ADC with On-Chip Track

ef

 and Hold Based on an Industrial $1-\mu \mathrm{m} \mathrm{GaAs}$ MESFET E/D Process

Oversampled converters; High resolution and relatively low speed

Figure 1. $A D C$ architectures, applications, resolution. and sampling rates.

Fig. 2. ADC sample rate vs. ENOB from 1987 to 2005.

Which ADC Architecture Is Right

 for Your Application?By Walt Kester [walt.kester@analog.com]

eff

Oversampling (without noise shaping)

- Doubling of the sampling frequency increases the dynamic range by $3 \mathrm{~dB}=0.5$ bit.
- To get a high SNR a very high fs is needed \rightarrow high power consumption.
- Oversampling usually combined with noise shaping and higher order modulators, for higher increase in dynamic range per octave ("OSR")

Advantages of 1-bit A/D converters (p. 537 in "J\&M")

- Oversampling improves signal-to-noise ratio, but not linearity
- Ex.: 12-bit converter with oversampling needs component accuracy to match better than 16-bit accuracy if a 16-bit linear converter is desired
- Advantage of 1-bit D/A is that it is inherently linear. Two points define a straight line, so no laser trimming or calibration is required
- Many audio converters presently use 1-bit converters for realizing 16- to 18-bit linear converters (with noise shaping).

Problems with some 1-bit converters ((?))
Why 1-Bit Sigma-Delta Conversion is Unsuitable for High-Quality Applications

by

Stanley P. Lipshitz and John Vanderkooy Audio Research Group, University of Waterloo Waterloo, Ontario N2L 3G1, Canada

ABSTRACT

Single-stage. 1-bit sigma-delta converters are in principle imperfectible. We prove this fact. The reason. simply stated, is that, when properly dithered, they are in constant overload. Prevention of overload allows only partial dithering to be performed. The consequence is that distortion, limit cycles, instability, and noise modulation can never be totally avoided. We demonstrate these effects, and using coherent averaging techniques, are able to display the consequent profusion of nonlinear artefacts which are usually hidden in the noise floor. Recording, editing. storage, or conversion systems using single-stage, 1-bit sigma-delta modulators, are thus inimical to audio of the highest quality. In contrast, multi-bit sigma-delta converters, which output linear PCM code, are in principle as to guarantee the absence of all distortion. lo at least two bits in the converter.) They can be properly dithered so it adopts 1 -bit sigma-delta conversion as the basis for any high-quality processing. archiving. or distribution format to replace multi-bit, linear PCM.

Audio Engineering Society
Convention Paper 5395
Presented at the 110 th Convention
2001 May 12-15 Amsterdam. The Netherlands

Oversampling with noise shaping (14.2)

- Oversampling combined with noise shaping can give much more dramatic improvement in dynamic range each time the sampling frequency is doubled.
- The sigma delta modulator converts the analog signal into a noise-shaped low-resolution digital signal.
- The decimator converts to a high resolution digital signal

universitetet Ios.o

Multi-order sigma delta noise shapers (sangil Park, Motorola)

Note: Higher order Noise Shaper has less baseband noise

Ex. 14.5

- Given that a 1-bit A/D converter has a 6 dB SNR, which sample rate is required to obtain a 96-dB SNR (or 16 bits) if $\mathrm{f}_{0}=25 \mathrm{kHz}$ for straight oversampling as well as first-and second-order noise shaping?
- Oversampling with no noise shaping: From ex. 14.3 we know that straight oversampling requires a sampling rate of 54 THz .
- $(6.02 \mathrm{~N}+1.76+10 \mathrm{log}$ $(\mathrm{OSR})=96$
<->
$6+10 \log \mathrm{OSR}=96)$
<-> $10 \log \mathrm{OSR}=90$

解 universitetet

Ex. 14.5

$\mathrm{SNR}_{\text {max }}=6.02 \mathrm{~N}+1.76-5.17+30 \log (\mathrm{OSR}$ We see here that doubling the OSR gives an SNR improvement for a first-order mod 9 dB . pared to the 0.5 r, equivalently, a gain of 1.5 bits/octave. This result should be compared to the 0.5 bits/octave when oversampling with no noise shaping.

- Oversampling with 1st order noise shaping:
- 6-5.17 + $30 \log ($ OSR $)=96$ $O S R=f_{s} / 2 f_{0}$
- 30log (OSR) $=96-6+5.17=95.17$

A doubling of the OSR gives an SNR improvement of $9 \mathrm{~dB} /$ octave for a 1st order modulator;
$95.17 / 9=10.57 \quad 2^{10.56} \times 2^{*} 25 \mathrm{kHz}=75.48 \mathrm{MHz}$ OR: $\log (O S R)=95.17 / 30=3.17 \rightarrow$ OSR $=1509.6$ 1509.6 * $(2 * 25 \mathrm{kHz})=75.48 \mathrm{MHz}$

ef

Ex. 14.5

$\mathrm{SNR}_{\max }=6.02 \mathrm{~N}+1.76-12.9+50 \log (\mathrm{OSR})$
We see here that doubling the OSR improves the SNR for a second-order mow lator by 15 dB or, equivalently, a gain of 2.5 bitsoctave.

The realization of the second-order modulator using switched-capacitor te
niques is straightforward and is left as an exercise for the interested reader.

- Oversampling with 2 nd order noise shaping:
- $6-12.9+50 \log (O S R)=96 \quad$ OSR $=\mathrm{fs} / 2 f_{0}$
- $50 \log (\mathrm{OSR})=96-6+12.9=102.9$

A doubling of the OSR gives an SNR improvement of 15 dB / octave for a 2nd order modulator;
$102.9 / 15=6.86 \quad 2^{6.86} \times 2 * 25 \mathrm{kHz}=5.81 \mathrm{MHz}$

	Ex. 14.5 "point":	- 2 X increase in $\mathrm{M} \rightarrow$ (6L+3)dB or (L+0.5) bit increase in DR.
SvR [did]		- L: sigma-delta order - 6 db Quantizer, for 96 dB SNR.
(140		
	\%	SNR: - Plain oversampling: $\mathrm{f}_{\mathrm{s}}=54$
	-	GHz
		- 1st order : $\mathrm{f}_{\mathrm{s}}=75.48 \mathrm{M}$ - 2 nd order: $\mathrm{f}_{\mathrm{s}}=5.81 \mathrm{MH}$
		- Exam problem (INF4420) below
	C.	A

Sigma Delta converters,ISSCC 2008

- ISSCC- Foremost global forum - "CT": continous time		
¿	$5=2$	(6) Msymgstiteret

Additional litterature

- Stanley P. Lipshitz, John Vanderkooy: Why 1-bit Sigma Delta Conversion is Unsuitable for High Quality Applications, Journal of the audio engineering society, 2001.
- Y. Chiu, B. Nicolic, P. R. Gray: Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS, Proceedings of Custom Integrated Circuits Conference, 2005.
- Richard Hagelauer, Frank Oehler, Gunther Rohmer, Josef Sauerer, Dieter Seitzer: A GigaSample/Second 5-b ADC with On-Chip Track-And-Hold Based on an Industrial 1 um GaAs MESFET E/D Process, IEEE Journal of Solid-State Circuits ("JSSC"), October 1992.
- Walt Kester: Which ADC Architecture is right for your application?, Analog Dialogue, Analog Devices, 2005.
- Richard Lyons, Randy Yates: "Reducing ADC Quantization Noise", MicroWaves \& RF, 2005
- Sangil Park: "Principles of sigma-delta modulators for analog to digital converters", Motorola
- B. E. Boser, B. A. Wooley: "The design of sigma delta modulation analog to digital converters, IEEE JSSC, 1988.
- John P. Bentley: Principles of Measurement Systems, 2nd ed., Bentley, 1989
- Lecture Notes, University of California, Berkeley,

EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/

UNIVERSITETET I OSLO

Next Time, 23/3-10:

- More from Chapter 14; Oversampling Converters (14.2, 14.3, 14.4, 14.5, 14.7)
- Beginning of chapter 16; Phase-Locked Loops (16.1)

ef

"Nifty Gadget" page 3 and 4	
Are odher apreaches worth trying our? Will some restriction be tiffed? Whil yoo suve the world with your Nifty Gadget?	
6 References	
What is the backpround reading lest? Where is the related work' Where as the prior modl	
Where com I find important muteral?	Common errors An inapprogriate method is used, for example due to lack of knowledge about defferent methods: erroneous use of chosen method.
Can you ourline fatilary calculas or afusever complicated theory or results yoe are suing thar mill obscure the text?	- Result
Appendix B	Answers to the forwarded questions by meams of the achieved results.
A beein showid divaus de folloming wepicx - Iatroduction	Common errons The results are not properly connected to the problem; blurry presentation; the results are intermuxed with discussion.
Presumasics of the problem or phencemence no be addresied, the sifuation where the probleme or phesomeson occurk. and references to earlier relevant research.	- Discussion
Commen ertors Problem es not properly specified er formulated, invofficiest sefermoes to ember work.	Disussion of the accurscy and relevance of the resuls: comparison with other researchers results.
- Purpose	Too far reaching conclusions: guesswork not supported by the data; introdaction of a new problem and a discussion around this.
Comines errars The purpone as sot mextioced, sot connected to earlier reseach. of not in line with what dhe achat contents of the thesis.	- Conclusion Consequences of the achieved results. for example for new research. theory and applications.
- Problem/Hypothects Qurstions that need to be anwered to reach the goal and or hypothess formulated be mrans of uederlying theories	Common errors The conclussons are too far reaching with respect to the achaeved results; the conclasions do not correspond with the purpore.
Commese errors Mavel problem deicrigtion: deficiencies in He conaectases berween queitioni, badly formalated bypotheni.	
- Method	39
	UNIVERSITETET I OSLO

Last time - and today, Tuesday 16th of March:

Last time:

13.6 Interpolating A/D Converters
13.7 Folding A/D Converters
14.1 Oversampled converters

Today:
14.2 Oversampling with noise shaping
14.3 System Architectures
14.4 Digital Decimation Filters
14.5 Higher-Order Modulators
(14.6 Bandpass Oversampling Converters)
14.7 Practical Considerations
14.8 Multi-bit oversampling converters

2nd order sigma delta design example
16.1 Basic Phase Locked Loop Architecture

Fig. 16. 3

14.2 Oversampling with noise shaping

- The anti aliasing filter bandlimits the input signals less than $\mathrm{f}_{\mathrm{s}} / 2$.
- The continous time signal $\mathrm{x}_{\mathrm{c}}(\mathrm{t})$ is sampled by a S/H (not necessary with separate S/H in Switched Capacitor impl.)
- The Delta Sigma modulator converts the analog signal to a noise shaped low resolution digital signal
- The decimator converts the oversampled low resolution digital signal into a high resolution digital signal at a lower sampling rate usually equal to twice the desired bandwidth of the desired input signal (conceptually a low-pass filter followed by a downsampler).

First-Order Noise Shaping (Figures from Schreier \& Temes '05)

Figure 1.5: Noise-shaping function for the $\Delta \Sigma$ modulator shown in Fig. 1.4.

- $\mathrm{S}_{\mathrm{TF}}(\mathrm{z})=[\mathrm{H}(\mathrm{z}) / 1+\mathrm{H}(\mathrm{z})] \quad$ (eq. 14.15) $\mathrm{N}_{\mathrm{TF}}(\mathrm{z})=[1 / 1+\mathrm{H}(\mathrm{z})]$
- $Y(z)=S_{T F}(z) U(z)+N_{T F}(z) E(z)$
- $H(z)=1 / z-1$ (discrete time integrator) gives 1st order noise shaping
- $S_{T F}(z)=[H(z) / 1+H(z)]=1 /(z-1) /[1+1 /(z-1)]=z^{-1}$
- $N_{T F}(z)=[1 / 1+H(z)]=1 /[1+1 /(z-1)]=\left(1-z^{-1}\right)$
- The signal transfer function is simply a delay, while the noise transfer function is a discrete-time differentiator (i.e. a high-pass filter)

14.2 Oversampling with noise shaping

```
\(N_{T F}(f)=1-e^{-j 2 n f / f s}=\left(e^{j n f / f s}-e^{-j n f / f_{s}}\right) \cdot e^{-j n f / f_{s}}\)
    \(=\sin \left(\frac{\pi f}{f_{s}}\right) \cdot 2 j \cdot e^{-j n f / f_{s}}\)
\(\left|N_{T_{F}}(f)\right|=2 \sin \left(\frac{\pi_{f}}{f_{s}}\right) \quad\) (hish-pass \(\left.{ }^{\prime \prime}\right)\)
Quantization noise power over the frequancy band 0 to \(f_{0}\) is now given by
\(P_{e}=\int_{-f_{0}}^{f_{0}} S^{2} e(f) \cdot\left|N_{T F}\right|^{2} d f=\int_{-t_{0}}^{f_{0}}\left(\frac{\Delta^{2}}{12}\right) \frac{1}{f_{s}}\left[2 \sin \left(\frac{\pi f}{f_{s}}\right)\right]^{2} d f \quad(14.23)\)
Making the approximation that \(f_{0} \ll f_{S} \quad(O S R \gg 1)\) sc that \(\sin \left(\frac{n f}{f_{f}}\right) \approx \frac{n f}{f_{s}}\)
    \(P_{e} \cong\left(\frac{\Delta^{2}}{12}\right)\left(\frac{n^{2}}{3}\right)\left(\frac{2 f_{0}}{f_{s}}\right)^{3}=\frac{\Delta^{2} n^{2}}{36}\left(\frac{1}{\Delta S i 2}\right)^{3} \quad O S R=\frac{t_{s}}{2 f_{1}}\)
It is assumed that the maximum signd powe is the same as ebtained
betore, in equation \(14.11\left(P_{5}=\Delta^{2} 2^{2 N} / 8\right)\), making maximum SNR
\(S N R_{\text {max }}=6.02 N+1.76-5.17+30 \log (O S R) \quad \begin{aligned} & \text { Doubling the oSR gives an SNR } \\ & \text { improvement tor a ist urder modulaton } \\ & \text { of } 9 \text { a } \mathrm{B} / 0 \mathrm{ctave} \text { or equiv. i. } 5 \text { bits /octave. }\end{aligned}\)
```

Quantization noise power for linearized model of a general $\Delta \Sigma$ modulator

	$P_{e}=\int_{-f_{0}}^{f_{0}} S_{e}^{2}(f)\left\|N_{T F}(f)\right\|^{2} d f=\int_{-f_{0}}^{f_{0}}\left(\frac{\Delta^{2}}{12}\right) \frac{1}{f_{s}}\left[2 \sin \left(\frac{\pi f}{f_{s}}\right)\right]^{2} d f(14.2\}$
	Using the approximation thet $f_{0} \ll f_{s}$ (i.e $O S_{R} \gg 1$) So that we may approximate $\sin \frac{\pi f}{f_{s}}$ to be $\frac{\pi f}{f_{s}}$: $P_{e}=\int_{-t_{0}}^{f_{0}} \frac{\Delta^{2}}{12} \frac{1}{f_{s}}\left[2 \frac{\pi f}{f_{s}}\right]^{2} d f=\int_{-f_{0}}^{f_{0}} \frac{\Delta^{2}}{12} \frac{1}{f_{s}} \frac{4 \pi^{2}}{f_{s}^{2}} \cdot f^{2} d f$ Letling $K=\frac{\Delta^{2}}{12} \frac{1}{f_{s}} \frac{4 \pi^{2}}{f_{s}^{2}}$ $P_{e}=k \int_{-f_{0}}^{f_{0}} f^{2} d f=\frac{k}{3}\left(f_{0}^{3}-\left(-f_{0}\right)^{3}\right)=\frac{k}{3} \cdot 2 f_{0}^{3}$
23. mars 2010	$\begin{aligned} & =\frac{\Delta^{2}}{12} \frac{1}{f_{s}} \frac{4 \Pi^{2}}{f_{s}^{2} \cdot 3} \cdot f_{0}^{3}=\frac{\Delta^{2}}{12} \frac{\Pi^{2}}{3} \cdot \frac{2 \cdot 2 \cdot 2}{f_{s}^{3}} \cdot f_{0}^{3}=\frac{\Delta^{2}}{12} \frac{\Pi^{2}}{3}\left(\frac{2 f_{0}}{f_{s}}\right)^{3} \\ & \text { Usins } O S R=\frac{f_{s}}{2 f_{0}} \Leftrightarrow \frac{2 f_{0}}{f_{s}}=\frac{1}{O S R} \quad P_{e}=\frac{\Delta^{2} \Pi^{2}}{36}\left(\frac{1}{0 S R}\right)^{3} \quad(14.24 \end{aligned}$

Second-order noise shaping

14.3 System Architectures $\left(A / D_{0}\right)_{c}(t)$ is sampled and held,

Fig. 14.14 Block diogram of an oversampling A / D converter.
 resulting in $\mathrm{x}_{\text {sh }}(\mathrm{t})$.

- $x_{\text {sh }}(t)$ is applied to an A/D Sigma Delta modulator which has a 1-bit output, $\mathrm{x}_{\mathrm{dsm}}(\mathrm{n})$. The 1-bit signal is assumed to be linearly related to the input $X_{c}(t)$ (accurate to many orders of resolution), although it includes a large amount of out-of-band quantization noise (seen to the right).
- A digital LP filter removes any high frequency content, including out of band quantization noise, resulting in $X_{\text {lp }}(n)$
- Next, $X_{\text {Ip }}(n)$ is resampled at $2 f_{0}$ to obtain $X_{s}(n)$ by keeping samples at a submultiple of the OSR

UNIVERSITETET Iosto

14.5 Higher-Order Modulators Interpolative structure

 Fig. 14.20 A block diagram of a fifth-order modulator.

- Lth order noise shaping modulators improve SNR by 6L+3dB/octave.
- Typically a single high-order structure with feedback from the quantized signal.
- In figure 14.20 a single-bit D/A is used for feedback, providing excellent linearity.
- Unfortunately, modulators of order two or more can go unstable, especially when large input signals are present (and may not return to stability)
Guaranteed stability for an interpolative modulator is nontrivial.

Multi-Stage Noise Shaping architecture ("MASH")

Fig. 14.21 A secondorder MASH modulator using two firstorder modulators
Note that the output, $\mathrm{y}(\mathrm{n})$, is a fourtevel signal.

- Overall higher order modulators are constructed using lower-order, more stable, ones \rightarrow more stable overall system.
- Fig. 14.21: 2nd order using two first-order modulators.
- Higher order noise filtering can be achieved using lower-order modulators.
- Unfortunately sensitive to finite opamp gain and mismatch

14.7 Practical considerations

- Stability

-Linearity of two-level converters

- Idle tones

- Dithering
- Opamp gain

Fig. 14.26 Adding dithering to a delto-sigma modulator. Note that
the dithered signal is also noise shoped.
eff
For this case, the output sequence becomes $(24)=3 / 8$ to the same modula.
The period of this output patem (14,47)
The period of this output pattern is now 16 cycles long and has some power at $f_{s}, 16$.
With an oversampling ratio of eight
With an oversampling ratio of eight (i.e., $\left.f_{0}=f_{S} / 16\right)$, the post low-pass at filter will not attenuate the signal power at $f_{J} / 16$ since that fersuency is just within the fre produce the correcterest. In other words, a de level of $3 / 8$ into this modulater fre

Design example, 14b 2nd order Sigma-Delta mod
Second-Order Sigmas Delta Modalator

BOSER AND WOOLEY: SIGMA-DELTA MODULATION ANALOG-TO-DIGITAL. CONVERTERS

Fig. 1. Block diagram of second-order $\Sigma \Delta$ modulator with decimator.

Fig. 2. Modified architecture of second-order $\Sigma \Delta$ modulator.

- 16 bit, 24 kHz , OSR as powers of two, and allowing for increased baseband noise due to nonidealities: OSR 512 was chosen
(6)

UNIVERSITETET I OSLO

Design example, 14b 2nd order Sigma-Delta mod

- Among most relevant nonidealities:
- Finite DC gain
- Bandwidth,
- Slew rate
- Swing limitation
- Offset voltage
- Gain nonlinearity
- Flicker noise
- Sampling jitter
- Voltage dependent capacitors

Fig. 15. Dynamic range as a function of the oversampling ratio for a

- Switch on-resistance
- Offset voltage and settling time for comparators

2nd order modulator; top level schematics

- Two-phase clock generator, switches, chopper stabilized OTA (1st int.), OTA (2nd int.- fully differential folded cascode), comparator, latch, two-level DAC. Biasing circuit. Functional after test.

eff

Phase-locked loops (chapter 16)

- Phase-locked loop

- From Wikipedia, the free encyclopedia
- A phase-locked loop or phase lock loop (PLL) is a control system that generates a signal that has a fixed relation to the phase of a "reference" signal. A phase-locked loop circuit responds to both the frequency and the phase of the input signals, automatically raising or lowering the frequency of a controlled oscillator until it is matched to the reference in both frequency and phase. A phase-locked loop is an example of a control system using negative feedback.
- Phase-locked loops are widely used in radio, telecommunications, computers and other electronic applications. They may generate stable frequencies, recover a signal from a noisy communication channel, or distribute clock timing pulses in digital logic designs such as microprocessors. Since a single integrated circuit can provide a complete phase-locked-loop building block, the technique is widely used in modern electronic devices, with output frequencies from a fraction of a cycle per second up to many gigahertz.

Phase-Locked Loop, typical architecture

- The phase detector ("PD") normally has an output voltage with an average value proportional to the phase difference between the input signal and the output of the VCO ("Voltage Controlled Oscillator").
- The low-pass filter is used to extract the average value from the output of the PD.
- The average value is amplified by the Gain block and used to drive the VCO.
- The negative feedback of the loop results in the output of the VCO being 23. ngyypreqpronized with the input signal.

$$
V_{\text {in }} \text { and } V_{\text {osc }} \text { exactly in phase when } \Phi_{\mathrm{d}}=90^{\circ}
$$

- $\mathrm{V}_{\text {in }}=\mathrm{E}_{\text {in }} \sin (\omega \mathrm{t})$,
- $\operatorname{Vosc}=\mathrm{E}_{\text {osc }} \sin \left(\omega \mathrm{t}-\Phi_{\mathrm{d}}+90^{\circ}\right)=\mathrm{E}_{\text {osc }} \sin \left(\omega \mathrm{t}-90^{\circ}+90^{\circ}\right)=\mathrm{E}_{\text {osc }} \sin (\omega \mathrm{t})$
- The input signal and the output of the oscillator will be exactly in phase, and the output from the phase detector ("PD") is found to be the amplitudes of the two sinusoids multiplied together and divided by 2, resulting in

$$
\mathrm{V}_{\mathrm{cntl}}=\mathrm{K}_{\mathrm{lp}} \mathrm{~K}_{\mathrm{M}} \mathrm{E}_{\mathrm{in}} \mathrm{E}_{\mathrm{osc}} / 2 \quad \text { (Eq. 16.5, p } 650 \text { in J\&M) }
$$

Fig. 16.2, below, shows the output from the PD when $V_{\text {in }}$ and $V_{\text {osc }}$ are nearly in phase.

Examples of different waveforms, as a function of different Φ_{d}, (J\&M p 650-651,fig. 16.3)

- $\mathrm{V}_{\mathrm{osc}}=\mathrm{E}_{\mathrm{osc}} \sin \left(\omega \mathrm{t}-\Phi_{\mathrm{d}}+90^{\circ}\right)=\mathrm{E}_{\mathrm{osc}} \cos \left(\omega \mathrm{t}-\Phi_{\mathrm{d}}\right)$
- $\Phi_{\mathrm{d}}>0$ corresponds to waveforms that are more in phase.
- When the input signal and VCO output have a 90° phase diff. $\left(\Phi_{\mathrm{d}}=0\right)$, they are uncorrelated and the output of the LP-filter will be zero.)

e relative phase angles of the input signal and the output of the ascilator
Fig. 16.3

Some relevant mathematical relationships from 16.1, pages 650-652 in "J\&M"

- The output of the phase detector:
- $\mathrm{Vpd}=\mathrm{K}_{\mathrm{M}} \mathrm{V}_{\text {in }} \mathrm{V}_{\text {osc }}=\mathrm{K}_{\mathrm{M}} \mathrm{E}_{\text {in }} \mathrm{E}_{\text {osc }} \sin (\omega \mathrm{t}) \cos \left(\omega \mathrm{t}-\Phi_{\mathrm{d}}\right)$
- Using $\sin (\mathrm{A}) \cos (\mathrm{B})=(1 / 2)[\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})]$ we have $\mathrm{Vpd}=\mathrm{K}_{\mathrm{M}} \mathrm{V}_{\text {in }} \mathrm{V}_{\text {osc }} / 2\left[\sin \left(\Phi_{\mathrm{d}}\right)+2 \sin \left(2 \omega \mathrm{t}-\Phi_{\mathrm{d}}\right)\right]$
- The LP-filter removes the second term at twice the frequency of the input signal, so $\mathrm{V}_{\mathrm{cntl}}$ is therefore given by $\mathrm{V}_{\text {cntl }}=\mathrm{K}_{\mathrm{lp}} \mathrm{K}_{\mathrm{M}}\left(\mathrm{E}_{\text {in }} \mathrm{E}_{\text {osc }} / 2\right) \sin \left(\Phi_{\mathrm{d}}\right)$
- Since $\mathrm{V}_{\mathrm{cntl}}$ is either a dc value or slowly varying, for small Φ_{d} the following approximation for (16.9) may be used:
$\mathrm{V}_{\mathrm{cntl}} \approx \mathrm{K}_{\mathrm{lp}} \mathrm{K}_{\mathrm{M}}\left(\mathrm{E}_{\text {in }} \mathrm{E}_{\text {osc }} / 2\right) \Phi_{\mathrm{d}} \quad=\mathrm{K}_{\mathrm{lp}} \mathrm{K}_{\mathrm{pd}} \Phi_{\mathrm{d}}$
Thus, the output of the LP-filter is approximately proportional to the phase difference between the output of the oscillator and the input signal, assuming the 90 ofset bias is ignored. The approximation is used in analyzing the PLL to obtain a linear model. The constant of proportionality is called $K_{p d}$ and is given by $\mathrm{Kpd}=\mathrm{K}_{\mathrm{M}}\left(\mathrm{E}_{\text {in }} \mathrm{E}_{\text {osc }} / 2\right)$

23. mars 2010

UNIVERSITETET I OSLO

More on PLL operation (p. 652-653)

- Assume that the VCO has a free-running frequency $\omega_{\text {fr }}$ when it's input is zero, and that the input signal is initially equal to ω_{fr}, and the system has $\Phi_{\mathrm{d}}=0$ (in lock).
- NEXT, assume the input frequency slowly increases. Now, with $\Phi_{d}>0$, the two waveforms will become more in phase (See fig. 16.3). After a short time the output of the LP-filter will go positive. Since the two waveforms are at slightly different frequencies, the output of the LP-filter will slowly increase. Since the VCO frequency is proportional to $\mathrm{V}_{\text {cntt }}$, this increase will cause the VCO frequency to increase until it is the same of that of the input signal again, which will keep the two signals in synchronism (i.e. locked). (The opposite would occur for a decrease in 23. mars 2indut signal frequency.)

\bullet •

Fig. 16.3

More on PLL operation (p. 652-653)

- At a new input frequency, ($\neq \omega_{\mathrm{fr}}$) which does not equal the free-running frequency, we can find the new phase difference for the two locked signals by noting that the frequency of the oscillator's output signal is given by
$\omega_{\text {osc }}=\mathrm{K}_{\mathrm{osc}} \mathrm{V}_{\mathrm{cntl}}+\omega_{\mathrm{fr}}$ (16.12).
$\mathrm{K}_{\text {osc }}$ is a constant relating the change in frequency to control voltage ratio. The output voltage of the amplified LP-filter is now given by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{cntl}}=\left(\omega_{\mathrm{in}} \omega_{\mathrm{fr}}\right) / \mathrm{K}_{\mathrm{osc}} \tag{16.13}
\end{equation*}
$$

where $\omega_{\text {in }}$ is the frequency of the input signal, which is equal to the frequency of the oscillator's output. From (16.10): $\Phi_{\mathrm{d}}=\mathrm{V}_{\mathrm{cntl}}\left(\mathrm{K}_{\mathrm{lp}} \mathrm{K}_{\mathrm{pd}}\right)=\left(\omega_{\mathrm{in}}-\omega_{\mathrm{fr}}\right) / \mathrm{K}_{\mathrm{lp}} \mathrm{K}_{\mathrm{pd}} \mathrm{K}_{\mathrm{osc}}$ (16.14)
23. mars 2010

Ex. 16.1

$f_{\text {in }}=11 \mathrm{MHZ}$: The phase difference between the input and oscillator output becomes $90^{\circ}-40.8^{\circ}=49.2^{\circ}$.
$f_{\text {in }}=9$ MHz: $\phi_{a}=-40.8^{\circ} \Rightarrow$ phase difference of $90^{\circ}-\left(-4.88^{\circ}\right)$ $=130.8^{\circ}$

For $K_{L_{p}}=2$, half the phase difference results in the same 23. mars $V C O$ control voltage, $V_{c u t L}$. So, for $\omega_{\text {in }}=11 \mathrm{MHz}, Q_{l l}=\frac{40.8^{\circ}}{2} 32$

PLL transfer functions

- Combining equations from previous slide:

$$
\frac{\mathrm{V}_{\mathrm{cntt}}(\mathrm{~s})}{\phi_{\mathrm{in}}(\mathrm{~s})}=\frac{\mathrm{s} \mathrm{~K}_{\mathrm{pd}} \mathrm{~K}_{\mathrm{lp}} \mathrm{H}_{\mathrm{lp}}(\mathrm{~s})}{\mathrm{s}+\mathrm{K}_{\mathrm{pd}} \mathrm{~K}_{\mathrm{lp}} \mathrm{~K}_{\mathrm{osc}} \mathrm{H}_{\mathrm{lp}}(\mathrm{~s})}
$$

- This is a highpass response from input phase to the control voltage.
- Rewriting gives:

$$
\frac{\phi_{\text {osc }}(\mathrm{s})}{\phi_{\text {in }}(\mathrm{s})}=\frac{\mathrm{K}_{\mathrm{pd}} \mathrm{~K}_{\mathrm{lp}} \mathrm{~K}_{\mathrm{osc}} \mathrm{H}_{\mathrm{lp}}(\mathrm{~s})}{\mathrm{s}+\mathrm{K}_{\mathrm{pd}} \mathrm{~K}_{\mathrm{lp}} \mathrm{~K}_{\mathrm{osc}} \mathrm{H}_{\mathrm{lp}}(\mathrm{~s})}
$$

- This is a lowpass response from the input phase

Additional litterature

- Walt Kester: Which ADC Architecture is right for your application?, Analog Dialogue, Analog Devices, 2005.
- Behzad Razavi: "Design of Analog CMOS Integrated Circuits", McGraw-Hill, reprint 2009.
- Jimmy J. Cathey, Syed A. Nasar: Basic Electrical Engineering, Schaum's Outlines, McGraw Hill 1997.
- Richard Schreier, Gabor C. Temes: Understanding Delta-Sigma Data Converters, IEEE Press / Wiley Interscience, 2005
- Tapio Saramaki et. Al: Multiplier-Free Decimator Algorithms for Super-Resolution Oversampled Converters, IEEE International Symposium on Circuits and Systems, 1990.
- Bernhard A. Boser, Bruce A. Wooley: The Design of Sigma-Delta Modulation Analog-to-Digital Converters, IEEE Journal of Solid-State Circuits, December 1988.
- Sudhir M. Mallya, Joseph H. Nevin: Design Procedures for a Fully Differential Folded-Cascode CMOS Operational Amplifier , IEEE Journal of Solid-State Circuits, December 1989.
- http://www.wikipedia.org (on PLLs)
- Snorre Aunet: Second-Order Sigma Delta Modulator, Nordic VLSI, May 4, 1994.

Next Time, 13/4-10:

- More from Chapter 16; PLLs
- About report writing

23.03 .2010	SA	Lille Aud.	Chapter 14; Oversampling Converters	preliminary.... Slides Slides two per page
30.03 .2010				No teaching in week 13.
06.04 .2010				No teaching in week 14, due to Easter holidays.

4
UNIVERSITETET I OSLO

Last time - and today, Tuesday 13th of April:

March the 23rd:

14.2 Oversampling with noise shaping 14.3 System Architectures
14.4 Digital Decimation Filters
14.5 Higher-Order Modulators
(14.6 Bandpass Oversampling Converters)
14.7 Practical Considerations

4.8 Multi-bit oversampling converters 2nd order sigma delta design example

Fis. 16.1 The bovic architecture of o phaie locied loop
16.1 Basic Phase Locked Loop Architecture

Today:
16.1Linearized small-signal analysis of general PLLs
16.2 PLLs with charge-pump phase comparators
16.3 Voltage controlled oscillators
16.4 Computer Simulations of PLLs

About writing the report
ifj
UNIVERSITETET I OSLO

PLL linear model applying to almost every PLL

- Combining above 2 equations ..

$$
\frac{V_{\text {cntt }}(s)}{\phi_{i n}(s)}=\frac{s K_{p d} K_{l p} H_{l p}(s)}{s+K_{p d} K_{l p} K_{\mathrm{osc}} H_{l p}(s)}
$$

- This is a highpass response from input phase to control voltage
- Can also be written as

$$
\frac{\phi_{\mathrm{osc}}(s)}{\phi_{\mathrm{in}}(s)}=\frac{K_{\mathrm{pd}} K_{\mathrm{lp}} K_{\mathrm{osc}} H_{\mathrm{lp}}(s)}{s+K_{\mathrm{pd}} K_{\mathrm{lp}} K_{\mathrm{osc}} H_{\mathrm{lp}}(s)}
$$

- This is a lowpass response from input phase to outpu phase
$V_{\text {cntl }}(s)=K_{p d} K_{l p} H_{l p}(s)\left[\phi_{\text {in }}(s)-\phi_{\text {osc }}(s)\right]$

$$
\phi_{\text {osc }}(s)=\frac{K_{\text {osc }} V_{\text {cntl }}(s)}{s}
$$

- Differences between PLLs are determined only by what is used for the LP-filter ($\mathrm{H}_{\mathrm{Ip}}(\mathrm{s})$), the Phase Detector $\left(\mathrm{K}_{\mathrm{pd}}\right)$ or the oscillator ($\mathrm{K}_{\text {osc }}$).

$$
H_{l p}(s)=\frac{1+s \tau_{z}}{1+s \tau_{p}}
$$

Capture range, lock range, false lock

- The maximum difference between the input signal's frequency and the oscillator's free-running frequency where lock can eventually be attained is defined as the capture range
- One lock is attained, as long as the input signal's frequency changes only slowly it will remain in lock over a range that is much larger than the capture range
- When a multiplier is used for the phase detector the loop may lock to harmonics (multiple of the frequency) of the input signal. This is called a false lock.

Exclusive-OR Phase comparators

- When the waveforms are 90 degrees out of phase the output is a waveform at twice the frequency of the input signal and has a 50 percent duty cycle.
- If all waveforms are symmetric about 0 volts the average value extracted by the low-pass filter would be zero.
(i) Universitetet UNIVER
I OSLO

EXOR phase comp

- When the waveforms become more out of phase, the average value of the output signal is positive; whereas when they become more in phase, the average value of the output signal is negative

Phase Frequency Detector (PFD)

- Most commonly used sequential phase detector is the Phase Frequency Detector (PFD).
- This circuit handles phase differences up to 2π.
(for universitetet

Phase Frequency Detector (PFD)

- Assume $\mathrm{P}_{\mathrm{u}}, \mathrm{P}_{\mathrm{d}}, \mathrm{P}_{\mathrm{u}-\mathrm{dsb}}, \mathrm{P}_{\mathrm{d}-\mathrm{dsb}}$, Reset, V_{in}, $V_{\text {osc }}$ are low
- $V_{\text {in }}$ goes high; FF1 set/ Pu goes high -> VCO frequency increases
- $V_{\text {osc }}$ goes high; FF2 set temporarily, reset goes high, causing P_{u} and P_{d} go low after some delay. Reset going high causes FF3 and FF4 to be set and $\mathrm{P}_{\mathrm{u} \text {-dsb }}$ and $P_{\text {d-dsbl }}$ go high, which later causes reset to go low. FF1 and FF2 are kept in reset mode and P_{u} and P_{d} low.
- $V_{\text {in }}$ goes back to 0; FF3 reset and $P_{\text {u-dsbl }}$ is turned off.
- Similarly, when $V_{\text {osc }}$ goes low, FF4 is reset goes low, FF4 is reset and $P_{\text {d-dsb }}$ goes low. (back to original state).
(The operation is very similar if $\mathrm{V}_{\text {osc }}$ leads $\mathrm{V}_{\text {in }}$)

PFD waveforms - when $V_{i n}$ has a much higher frequency than Vosc

- Whenever a positive going edge of Vin occurs, Pu goes high causing the VCO frequency to increase, and stays high until both Vin and Vosc go to 1. Then reset goes high, setting both Pu-dsbl and Pd-dsbl, and causing Pu and Pd to go low. The next time Vin goes to o, FF1 is reset, which resets FF3, turning Pu-dsbl off.
- Most of the time (here) Pu is high, causing Vosc to quickly increase in frequency until lock is achieved.
- No false lock
- Only suitable for digital (non-sine) inputs

Voltage controlled oscillators (VCO)

- Sinusoidal output oscillators usually realized some frequency selective or tuned circuit in feedback configuration, while squarewave output oscillators are usually realized using a nonlinear feedback config.
- The tuned oscillators offers better frequency stability, but limited tuning range.

$\because \stackrel{?}{4}$

(6) Universitetet I osto

Bias circuit

Computer simulations of PLLs

- Nontrivial due to often very wide range of time constants present in PLLs.
- SPICE simulations only may be highly impractical and take too long time.
- Possible approach:

Simulate the individual components using SPICE over a few periods of the VCO's output waveform before simulating the complete system using simplified models where continous time components are replaced by approximately equivalent difference-equation models;
Simulink in Matlab (easy, don't need much expertise)
or custom difference equations using for example C. (fast and may be modified for greater accuracy)

Additional litterature

Ulrik Wismar, Dag T. Wisland, Pietro Andreani: Linearity of Bulk-Controlled Inverter Ring VCO in weak and strong inversion, Proceedings of IEEE Norchip Conference, 2005.

- http://www.eecg.toronto.edu/~johns/nobots/Book/book.html
- http://www.iue.tuwien.ac.at/phd/grasser/node83.html (Ring osc.)

Some pointers

- http://www.idi.ntnu.no/~lasse/DM/SkriveTips.php
- Preface
- (Acknowledgement)
- 1 Introduction
- 2 Theoretical background
- (2.1 Various approaches to Nifty Gadgets)
- 2.2 Nifty Gadgets my way
- 3 My implementation of a Nifty Gadget
- 4 Nifty Gadget results

5 Discussion

Nifty Gadget / DAC chapter 3

- 3 My implementation of a Nifty Gadget
- Can you describe your implementation in detail? Why did you use this technology? How does the theory relate to your implementation?
What are your underlying assumptions?
What did you neglect and what simplifications have you made?
What tools and methods did you use?
Why use these tools and methods?

Nifty Gadget / DAC chapter 4

- 4 Nifty Gadget results
- Did you actually build it? How can you test it?
How did you test it?
Why did you test it this way?
Are the results satisfactory?
Why should you (not) test it more?
What compensations had to be made to interpret the results?
Why did you succeed/fail?

Nifty Gadget / DAC chapter 5

- 5 Discussion
- Are your results satisfactory?

Can they be improved?
Is there a need for improvement?
Are other approaches worth trying out?
Will some restriction be lifted?
Will you save the world with your Nifty Gadget?

Ex. 16.2

[^0]: $7_{10}-6_{10}$ via addition using two's complement of -6

 - $0000000000000000000000000000000000111_{2}=7_{10}$
 - $0000000000000000000000000000000000110_{2}=6_{10}$
 - Subtraction uses addition: The appropriate operand is negated before being added
 - Negating a two's complement number: Simply invert every 0 and 1 and add one to the result. Example:
 - $000000000000000000000000000000000110_{2}$ becomes
 - $111111111111111111111111111111111001_{2}$
 $+\quad 1_{2}$
 $=111111111111111111111111111111111010_{2}$ $000000000000000000000000000000000111_{2}=7_{10}$
 $+11111111111111111111111111111111{1010_{2}=-6_{10}}^{2}$
 $=000000000000000000000000000000000001_{2}=1_{10}$

