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e Quantization
e Static performance
e Dynamic performance
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Introduction

Digital processor

|

>Jr I,

Signal processing is usually more efficient, robust,
and convenient in the digital domain (algorithms in
digital circuits and software). Need to convert to
and from analog to interface with the world
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Introduction
Anti-alias filter Reconstruction filter
—{[\ =+ s —><ADC > DSP =DAC>—>D—>
Digital processing
When interacting with the real world, the inputs
and outputs are analog:
Audio, video, motion, light level, ...
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Introduction

Data conversion accuracy limits system
performance

In-depth understanding of data converter
performance is important in many applications

How do we quantify data converter performance?
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Introduction

Important to pay close attention to mixed signal
issues when designing, such as layout.

Data converters combine sensitive high accuracy
circuits for generating reference levels (bandgaps)
with digital switching (current spikes).

For high resolution converters, the external
environment (e.g. PCB) is very important.
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Digital to analog conversion

A digital to analog converter (DAC) converts a
digital word to an analog voltage

bin —Ir‘—> DAC Vout

Vief

Vout = Veep X (01271 4+ 5272 + -4+ b, 27M)
Vyer is typically generated by a bandgap reference
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Digital to analog conversion

We want each bit to represent a fixed (constant)
voltage

V.
Visg = zr;f [Volt]

We relate many performance metrics to the

unitless least significant bit (LSB)

1
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Digital codes

Several possibilities for representing the digital
values

Unipolar

Sign magnitude
e 1’s complement
e 2’s complement
e Offset binary
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Analog to digital conversion
Ideally, the analog input has infinite precision
e Limited by noise
e Distortion sets a practical limit
The output has a finite number of information
carrying units (bits)
The ADC quantizes the input voltage to a finite
number of bits
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Quantization

Data converters must represent continuous values
in a range using a set of discrete values. A binary
code is used to represent the value.

Information is lost!

* Hot or cold

* Freezing, cold, warm, or hot =
e —20°C,—19.5°C,...,20°C
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Quantization
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Quantization

eq(nT)
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The quantization error is restricted to the range

A, A . :
—3 to > The quantization is non-linear.
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Quantization noise

Model the quantization error as noise added to the
original signal. Enables linear analysis.

x(nT) y(nT)

eq(nT)
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Quantization noise
Quantization noise assumptions:

All guantization levels have equal probability
Large number of quantization levels, M
Uniform quantization steps, constant A

Quantization error uncorrelated with input

mmm) Quantization noise is white
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Quantization noise
Probability density function, p
A
1
A
» €
A A I
2 2
A 2
b foo ) €)d fg € q p A2
= €, pleg)dey = —deg=—
16/ 36

Jorgen Andreas Michaelsen (jorgenam@ifi.uio.no)



UiO ¢ Department of Informatics
University of Oslo

Quantization noise

Assuming sine wave input

1 T x2 x2  A292N
Psz—f Bsin@erfdr= -5 =
TJo 4 8 8
SNR due to quantization noise
Py 3.2%N
SNR, = — = ~6.02N +1.76 dB
P, 2
17136
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Sampling jitter

Uncertainty in the timing of the sampling clock due
to circuit electrical noise (white noise and flicker
noise).

Reference edge
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Sampling jitter

Sampling time
uncertainty
translates to an
error in the input
voltage.

Need a low noise

A\

sampling clock to
get high accuracy.
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Sampling jitter
Assume f;, is half the sampling frequency (worst
case). The input is:
st . Tt dx T[st Tt
x(t) =—sin—= = COS —
(©) 2 T dt 2T T
Assume we want the error to be less than half LSB
TL'XfS A
At < ==
2T 2
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Performance specifications

How precise is the data conversion? Different
metrics to quantify the performance. Achieving
high resolution is costly (in terms of power and
complexity). Important to understand the
performance requirements of the application.
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Static specifications

Gain

Offset

INL

DNL

Missing codes
Monotonicity
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Gain and offset

Easily corrected, V_ou_tA
Vref .
does not limit 1 " deal
accuracy. i
* | +—— Gain error
1/2 A
Corrected before 1/4 -
CaICUIatin Offset error i
g 0 00 01 10 11 (100) >Bm

INL and DNL, etc.
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Integral non-linearity error

INL measures deviation from a straight line (best fit
straight line or based on end points), after
correcting for offset and gain error.

. Vout Integral nonlinearity error (best-fit)
Result usually given Vier A
. 1 +
in LSBs.
3/4 + /
St t . L “‘Integral nonlinearity error (endpoint)
atiCc, meaning &
measured A
from DC inputs. %% o1 10 1 (100)" B
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Differential non-linearity error

DNL is a measure of the step size error. Ideally the
distance between two codes are exactly 1 LSB (after
correcting for gain and offset).

Like INL measured at DC.

Both INL and DNL are common measures of data
converter accuracy.
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Monotonicity and missing codes

Monotonicity is applicable to DACs. Increasing the
input code should always increase the output
voltage. Severe non-linearity will cause the output
to decrease when the input increases.

Missing codes in ADCs when an output code does
not occur for any input voltage.

Settling time and finite speed also important to
consider.
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Dynamic specifications

Measure the performance when the input is a sine
wave. Look at the converter output spectrum.

dB

SNR
SINAD (SNDR)
SFDR

THD ™
e DR
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SNR

dB

Input Harmonics

Y
Lo

Spring 2013 Data Converter Fundamentals 29

29/36

UiO ¢ Department of Informatics
University of Oslo

THD
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Input Harmonics

\
Lo 1}
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SINAD

dB

Input Harmonics
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Lo
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Dynamic specifications
Other dynamic specifications
e Intermodulation distortion

e Glitching
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Effective number of bits

Data converter resolution is the number of
“physical” bits in the system. The effective number
of bits (ENOB) tells us how many of these bits
contains useful information. Relate the data
converter performance to a converter limited only
by quantization noise

ENOB SINAD — 1.76 dB
B 6.02 dB
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Figure of merit

Try to come up with an equation that tells us how
good the data converter is. Several possibilities.
Non are perfect. One commonly used figure of
merit (FoM) is

FoM = 2ENOB f,

Not necessarily a fair comparison, but tells us that if
we want one bit improvement, we should expect
the power consumption to double.
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Effective bandwidth

Dynamic performance metrics requires us to test
with a sine wave input. Which frequency should we
use?

The effective bandwidth tells us the frequency
where the SINAD is 3 dB lower than the best case
value.
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Resources

(blog covering many aspects of
data converters)

Kester, , Analog
Devices, 2004.
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