Communication Paradigms

INF 5040 autumn 2011

lecturer: Roman Vitenberg

INF5040, Roman Vitenberg

1

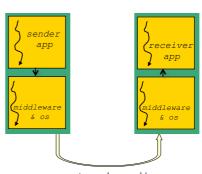
What is a communication paradigm?

- > It is a set of communication primitives
 - Network adapters allow us to send data using MAClayer primitives
 - Transport layer endows us with sockets
 - How could we raise the abstraction further?
- > Study of a communication paradigm:
 - Properties
 - Target applications
 - Underlying implementation concepts

INF5040, Roman Vitenberg

2

Communication properties


- > Addressing scheme and space decoupling
 - Underlying protocol addresses (IP) no decoupling
 - Logical aliases partial decoupling
 - DNS and NAT translation, service names, email aliases
 - Content-based addressing full decoupling
 - Interactions are declarative
- Persistence level
 - Fully persistent
 - Fully transient
 - Intermediate

INF5040, Roman Vitenberg

3

Communication properties

- Synchrony
 - Fully synchronous
 - Fully asynchronous
 - Intermediate
 - middleware-level sync
 - man-in-the-middle
 - others
- >Time decoupling

network media

INF5040, Roman Vitenberg

4

(some) Communication paradigms

- > Remote procedure call
 - Object-based (CORBA, Java RMI, DCOM)
 - Earlier data-based (DCE, Sun RPC)
- Message-oriented communication
- > Stream-oriented communication
- Software-based distributed shared memory (DSM)

INF5040, Roman Vitenberg

5

(some) Message-oriented communication paradigms

- Raw socket programming
- Message-passing interface (MPI)
- Message-oriented middleware (MOM)
- > Publish-subscribe communication

INF5040, Roman Vitenberg

6

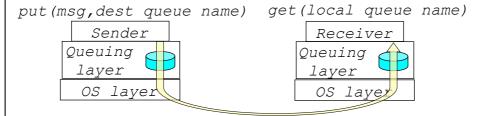
Raw socket programming

- > Addressing scheme: IP addresses
- ➤ No time decoupling
- > Transient
- Mainly used for building higher-level abstractions

INF5040, Roman Vitenberg

7

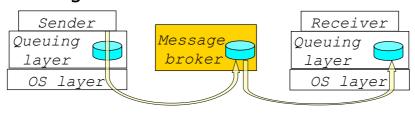
Message-programming interface (MPI)


- Addressing scheme
 - A group of nodes assigned logical addresses
- > Failures are considered fatal
- > Transient without time decoupling
- Data-oriented (advanced data manipulation)
 - Basic API: MPI_send, MPI_recv
 - Data-oriented API: MPI_scatter, MPI_gather
- Use: parallel computation in fast networks

INF5040, Roman Vitenberg

8

- > Addressing scheme: logical queue name
- > Persistent
- > Full time decoupling

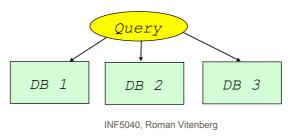


INF5040, Roman Vitenberg

С

Routing in MOM

- > Handles queue name to address translation
 - Hierarchical names: {queue manager, internal id}
- Message brokers perform inter-domain routing with format conversion



INF5040, Roman Vitenberg

10

MOM applications & implementations

- > Implementations: IBM MQ, Oracle AQ
- > The E-mail application
- Workflow and other collaborative apps
- > Federated information systems

Publish-subscribe communication subscribers publishers Pub-sub service "IBM" & v<0 IBM: -3,75 IBM: -3,75 S₁: "IBM" & v<0 "ACME" ACME: +0,15 ACME: +0,15 S₂: "ACME" S₃: "ACME" "ACME" ACME: +0,15 notification subscription > Publishers: objects of interest or observers INF5040, Roman Vitenberg

Pub-sub properties

- > Addressing scheme: through contents
- > Full time decoupling
- > May be persistent or transient
- Architectural trend through the past decade
 - Centralized (one server or a cluster of replicated servers)
 - Statically configured infrastructure of message brokers
 - Autonomous overlay of subscribers

INF5040, Roman Vitenberg

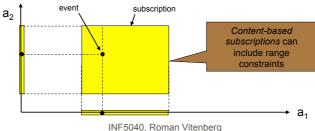
13

Pub-sub applications

- > Event-based business processes
- News distribution
 - The research-originated Gryphon system was part of the Web infrastructure serving the Olympic games in 2000
 - More recently: RSS and RSS aggregators
- > Delivery of financial data
 - Many stock exchanges around the world
- Intrusion detection and other applications of distributed data mining
- Online games
- > Many others ...

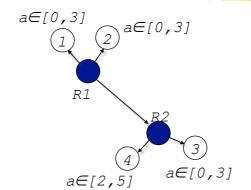
INF5040, Roman Vitenberg

14


Subscription semantics

- Topic-based pub-sub:
 - publish(topic t), subscribe(topic t)
 - The topic namespace may be hierarchical
 - Wildcards: subscribe("nasdaq.stockvalue.a*")
- > Type-based pub-sub
 - Generalization of topic hierarchy
 - Uses the fact that events of the same type have the same structure (fields)

INF5040, Roman Vitenberg


Subscription semantics

- Content-based pub-sub
 - Universally known list of event attributes
 - Event represented as a set of attribute values
 - A point in the multi-dimensional event space
 - Subscription is a cuboid in the event space

16

The routing table of R1

Interface			Filter
То	node	1	a∈[0,3]
То	node	2	a∈[0,3]
Toward R2		a∈[0,5]	

INF5040, Roman Vitenberg

17

Communication paradigms (summary)

Abstraction	Space decoupling	Time decoupling	Persistence
Raw sockets	no	no	no
RPC	no	no	no
МОМ	partial	yes	yes
Pub-sub	full	yes	possible

INF5040, Roman Vitenberg

19

Multicast and its effect on communication abstraction

- > Can appear as an element in many paradigms or be considered as a paradigm by itself
- > Makes complicated communication abstractions even more complicated
 - Addressing scheme becomes even more important
 - Stronger case for space decoupling
 - Reliability issues become more involved

 - Atomicity

 Message orderings Not transparent for apps, Affects the paradigm

INF5040, Roman Vitenberg

The challenges of supporting multicast communication

- > No standardized transport protocols to rely upon
 - What about IP-multicast?
 - Not always available
 - Historical trend: shift of the solutions from the network to application level
- Different approaches
 - Emulate multicast by unicast
 - Overlay-based multicast
 - Epidemic or gossip-based dissemination
 - Result in different paradigms

INF5040, Roman Vitenberg

21

Overlay-based multicast

- Organize the destination nodes in a logical application-level network graph (overlay)
- Disseminate messages using overlay links
- Monitor links and nodes: failures, link quality, communication load
- ➤ Incrementally reconstruct upon joins, leaves, overload, link and node failures

INF5040, Roman Vitenberg

23

Overlay-based multicast (the underlying principles)

- > It is possible to achieve both good scalability and low latency at the same time
 - Logarithmic or better fan-out for scalability
 - Short routing paths (logarithmic # of hops)
- > The small-world phenomenon
 - Overlay topology induced by the physical one
 (e.g., a rectangular grid of sensors)
 - Adding a single link from each node to a random destination node is enough to create short routing paths

INF5040, Roman Vitenberg

24

Multicast overlay types

- Multicast tree
 - The most efficient dissemination
 - Simple routing scheme (flooding)
 - The load is distributed non-evenly
 - Highly vulnerable to failures
- Other overlays (regular hypercube, regular random graph, rectangular grid)
 - Better load distribution & resilience to failures
 - More complicated routing scheme

INF5040, Roman Vitenberg

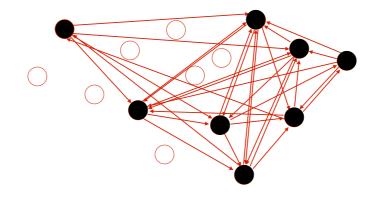
26

Epidemic dissemination

- Observe how fast epidemics propagate in the absence of treatment
- Use the same principles for the positive purpose of message dissemination
- ➤ Infected, susceptible, and removed nodes
- Based on membership: every node maintains a (possibly partial) membership of other nodes it can communicate with

INF5040, Roman Vitenberg

27


Epidemic Dissemination (Push)

- The protocol is parameterized by *infection* period t and fan-out f:
 - When a node becomes infected, it executes t rounds and then becomes removed
 - At each round, it sends the message to f random nodes from its membership list
- Global round k: every node has executed at least k rounds and at least one node has executed exactly k rounds

INF5040, Roman Vitenberg

28

Push Epidemic Dissemination Example (t=2, f=2)

INF5040, Roman Vitenberg

29

Epidemic Dissemination (Pull)

- Each susceptible node executes an unlimited number of rounds until it becomes infected
- At each round, it contacts f random nodes from its membership list, checks if one of them is infected, and pulls the message
- Can be combined with push dissemination to form a push-pull approach

INF5040, Roman Vitenberg

30

Epidemic dissemination (properties)

- Fault-tolerance: no need to detect message losses due to link and node failures, no message retransmissions
- Probabilistic atomicity (bimodal behavior): depending on t and f, the message is likely to be delivered
 - either to almost all nodes
 - or to a negligible portion of nodes
- The propagation is fast: if it reaches almost all nodes, it does so in O(log N) global rounds

INF5040, Roman Vitenberg

31

Push vs pull gossiping

- > Push approach:
 - Fast & efficient when few nodes are infected.
 - When just a few nodes are susceptible
 - Takes a lot of time to reach susceptible nodes
 - A lot of unnecessary messages are sent
- > Pull approach:
 - Fast & efficient when most nodes are infected
 - Wasteful and slow if few nodes are infected

INF5040, Roman Vitenberg

32

Push vs Pull gossiping

- > Push-pull approach:
 - Fast propagation to all nodes
 - Wasteful whatever portion of nodes is infected
- > Rumor spreading:
 - Push-based
 - Non-constant # of rounds: whenever a node pushes to an already infected node, it becomes removed with probability p
 - Communication-efficient but slower dissemination

INF5040, Roman Vitenberg

33

Membership properties

- > Membership list of size L
 - Infeasibility of full membership in large-scale systems
 - Fundamental tradeoff: smaller membership list scales better but may limit dissemination
 - Risk of partitioning the set of nodes
- Uniformity: partial lists are uniform samples
- > Adaptivity: ideally, L should be adapted to N
 - Nodes may have difficulty of estimating N
- > Bootstrapping: membership initialization

INF5040, Roman Vitenberg

34

Applications of gossiping

- > Failure detection
- > Data aggregation
- Resource discovery and monitoring
 - Access to replicated web pages
- Update propagation in replicated databases
- Experimental: content search, file sharing

INF5040, Roman Vitenberg

35

Comparison: overlay- vs gossip-based multicast

- > Overlay-based multicast
 - Efficient propagation
 - 100% delivery guarantee in the absence of churn
 - Costly and complex reconfiguration upon churn
- Gossip-based multicast
 - Many unnecessary messages may be sent
 - May not reach 100% of nodes even in a completely stable environment
 - Very resilient to all kind of churn

INF5040, Roman Vitenberg

37

Reading material

- >TvS Sections 4.1.2, 4.3, 4.5, 13.4.1
- Coulouris et al. Sections 6.1, 6.3 and 6.4
- "The Many Faces of Publish/Subscribe" by Eugster, Felber, Guerraoui, Kermarrec
 - Can be found in the teaching plan on the web
- "Epidemic Information Dissemination in Distributed Systems" by Eugster, Guerraoui, Kermarrec, Massoulie

INF5040, Roman Vitenberg

38