Software components and
distributed systems

INF 5040/9040 autumn 2011

lecturer: Lucas Provensi

Frank Eliassen, SRL & Ifi/UiIO

Literature

G. T. Heineman, W.T. Councill, "Component-based
Software Engneering" - Putting the Pieces Together,
Addison Wesley 2001, ch 1 and 3

copies available at
http://heim.ifi.uio.no/~frank/inf5040/CBSE/

Coulouris chap 8.4, 8.5 and 8.6

Recommended

Szyperski, C., Gruntz, D., Murer, S., "Component Software —
Beyond Object-Oriented Programming”, Second Edition,
Addison Wesley/ACM Press, 2002

Frank Eliassen, SRL & Ifi/lUiO

INF 5040 autumn 2011

A history of middleware

First generation middleware
Exclusively based on client-server mode/
Examples include Open Group’s DCE

Second generation middleware
Based on diistributed object technology
Examples include CORBA and Java RMI

Third generation middleware
Based on component technology

Frank Eliassen, SRL & Ifi/lUiO 3

Issues with object-oriented
middleware

Implicit dependencies

It is not clear the dependencies that a object
has on other objects

Interaction with the middleware
Many low-level details

Lack of separation of distributed concerns
Security, transactions, coordination, etc.

No support for deployment

Frank Eliassen, SRL & Ifi/lUiO 4

INF 5040 autumn 2011

Background for Java and
CORBA platforms

Known problems with CORBA and Java-RMI
How to deploy the components of my application?
Which services will be available on a given host?

Who activates my objects?
Who manages the life-cycle of my objects?

=> We need a standard development, deployment and
runtime environment for distributed objects (CORBA, Java)

Frank Eliassen, SRL & Ifi/lUiO

Explicit middleware: lack of
“separation of concerns”

Programs directly towards a middleware API

Application logic entangled with logic for life cycle
management, transactions, security, persistence, etc.

Database Agl_ Database
--- driver
. Distr [Security API Security
ien ject [T |
object 0 service
@ - T
: rans.
: v
Transaction AP| L__SErver
)
|
Stub |--- “~* Skeleton

Frank Eliassen, SRL & Ifi/lUiO

INF 5040 autumn 2011

Implicit middleware: better support
for “separation of concerns”

Logic for life cycle management, transactions, security, persistence,
etc. managed by the middleware

Requirements for middleware services declared separately and can
later be changed without changing the application code

Middleware can be changed without changing the application code

Distr Database API
Client j Database
' et o g |
| @ .
| T
Request [_------=="""""" service
: interceptor [~==---.____
'? ® Transaction AP| L_SE€rver
Stub - "% Skeleton

Frank Eliassen, SRL & Ifi/lUiO

~

Component technologies

What is a component [Szyperski]?

*“a unit of composition with contractually specified
interfaces and explicit context dependencies only”

“in this context, a component can be deployed
independently and is subject to third-party
composition”

I
")

Frank Eliassen, SRL & Ifi/lUiO 8

INF 5040 autumn 2011

Rationale for components

Time to marked
Improved productivity/ reduced complexity
Focus on reuse
Programming by assembly rather than by
engineering
Reduced requirements to knowledge
Most important advantage: development of
server side?
(cf. EJB/JEE or CORBA Component Model - later)

Frank Eliassen, SRL & Ifi/lUiO 9

Component platform

A standard development, deployment and runtime
environment can be designed as a set of contractually
specified interfaces

Contracts agreed between components and a component
platform

Component platform defines the rules for deployment
(installation), composition and activation of components.

For delivering and deploying a component is required a
standardized archive format that packages component

code and meta-data

Frank Eliassen, SRL & Ifi/lUiO 10

INF 5040 autumn 2011

g [l

Contracts

What is in a contract?

Set of provided interfaces.
Some of these may be required by the component platforms
Set of required interfaces.
These must be offered by other components available in the container
Pre and post conditions/invariants
Extra-functional requirements: transactions, security, performance, ...

Functions defined both syntactically and semantically

int add(int a, int b)
pre: a + b <= Integer.MAXINT
post: result =a + b

Extra-functional requirements

Guarantees: Response within 10 ms
Conditions: Needs 1000 CPU-cycles

Transaction requirements: e.g, create new transaction when component is
invoked, serializable, ...

Frank Eliassen, SRL & Ifi/lUiO 11

Composition

Components and composition

Composition is the fundamental method for
construction, extension and reuse of
component-based software development

In contrast to (implementation) inheritance
in object-oriented approaches

I %
_C

“Components are made for composition”™
Frank Eliassen, SRL & Ifi/UiO 12

INF 5040 autumn 2011

Connection-oriented
programming

Composition of pre-manufactured components

Binding of incoming and outgoing interfaces
provided/required interfaces
Reflects direction of method calls
Not the direction of data flow
Outgoing interface
The method calls a component potentially may issue
Support for distribution?

When the binding can be made across address spaces and
computers '

Frank Eliassen, SRL & Ifi/lUiO 13

Third party composition

The composition can be done by a third party external to
the components themselves (loading and binding)

Example
Connections (bindings), outgoing and ingoing interfaces
Connects (binds) “matching” interfaces
Can be done during run time by a third party

Can typically be realized by setting an appropriate attribute of the
component with the outgoing interface (for C1, methods: setB, setV)

A
B¢
Y

Frank Eliassen, SRL & Ifi/lUiO

INF 5040 autumn 2011

Composition: Reuse and
assembly of components
Audio Audio Decoder RTP
Source ﬁ/nk
Decoder —C — Buffer
e
Offered H\ \ .
| Required
interface Queue .
interface
Frank Eliassen, SRL & Ifi/UIO 15

An implementation of a component
platform is often called a container

Responsibilities of the container
life cycle management, system services, security
dynamic deployment and activation of new components

e.g., resolve dependencies dynamically or activate
components requested in method calls

when a component has a need for a service, the container
will load the component that offers the service, dynamically
Middleware that supports the container pattern: Application Server

Container/Application server

Contractually specified
Components — interfaces
specified by component
platform

Frank Eliassen, SRL & Ifi/lUiO 16

INF 5040 autumn 2011

Application Servers

Advantage
Comprehensive support for one style of distributed
programming

Disadvantages

Mandates a particular architectural style

E.g. three-tier architecture
Large and complex systems that works best on high-
end servers

Performance and resources overhead

Frank Eliassen, SRL & Ifi/lUiO 17

Key players

AC YaX BaX oK X4
OMG and components h\ Q Q" L
CORBA v3 standard with CORBA Component

Model (CCM)

Microsoft and components
Development of COM/DCOM, COM+ and .NET

SUN and components
Development of Java Beans and EJB

Frank Eliassen, SRL & Ifi/lUiO 18

INF 5040 autumn 2011

Enterprise Java Beans (EJB)

Component architecture for deployable server side components in Java.
EJB 3.0: based on Metadata facility in Java 5
annotations in source code
EJB is managed
Container handles: transactions, security and lifecycle;
Component Model

A bean is a component offering one or more business interfaces (provided
interfaces)

Session Beans and Message-driven beans
Plain Old Java Objects (POJOS)
Annotations for Dependency injection (required interfaces)
Interception

Method Invocations

Lifecycle events (Creation and deletion of components)

Frank Eliassen, SRL & Ifi/lUiO 19

Lightweight Component
Model

Component Models as EJB are heavyweight and
prescriptive

Cannot be used for different classes of DS, such as
peer-to-peer

Not suitable for constrained and embedded devices
Need for a more stripped-down, domain-
independent and minimal component model

Fractal

OpenCOM

OSGi

Frank Eliassen, SRL & Ifi/lUiO 20

INF 5040 autumn 2011

10

Fractal

Programming with interfaces

Uniform model for provided and required
interfaces

Explicit representation of the architecture

No support for deployment, full container
patterns, etc.

Configurable and reconfigurable at
runtime

Frank Eliassen, SRL & Ifi/lUiO 21

Fractal

Component Model
Server (provided) and Client (required) interfaces

Composition: bindings between interfaces
Primitive Binding: client and server interfaces within the
same address space
Composite Binding: arbitrarily complex architectures
(consisting of components and bindings)

Component model is hierarchical

System is fully configurable and reconfigurable:
including components and their interconnections

Frank Eliassen, SRL & Ifi/lUiO 22

INF 5040 autumn 2011

11

Fractal

Architecture Description Language (ADL)

<definition name="HelloWorld">

<interface name=“r" role="server" signature=“Runnable"/>

<component name="" ">
<interface name=“r" role="server" signature=“Runnable"/>
<interface name="s" role="client" signature="Service'/>
<content class="Clientimpl"/>

</component>

<component name="" ">

<interface name="s" role="server" signature="Service'/>
<content class="Serverlmpl"/>

</component>

<binding client="this.r" server=" r'/>

<binding client=" .s" server=" .s"/>
</definition>

Frank Eliassen, SRL & Ifi/lUiO 23

Fractal

Resulting architecture

HelloWorld

server

__>Server
Impl

R client

- - R l—

|:I;U
|:U)

Frank Eliassen, SRL & Ifi/lUiO 24

INF 5040 autumn 2011

12

Composing adaptive software
using components

Importance and interest in adaptive software is
increasing dramatically

mobile, ubiquitous and autonomic computing
Components play a major part
Compositional adaptation

dynamic adaptation of
architecture of component-
based application

change component impl

change overall

. Compile Time Run Time
architectural framework
combinations of the above
Frank Eliassen, SRL & Ifi/UIO 25

-] B

~
redeploy componerlt >/, ﬂawa
parameter adaptation * 5

MUSIC middleware: Adaptability
through component frameworks

Nav
App

Nav app impl

textTo
)

s |

imp_l_ -
P TTS
senvice: Buitin
GRS .,
| Metro
[=ore 2] ! loc
+ Free o = =
|
[C& = implementaton L mae s, Ly 5
1 Com
| Map
= alternative implementations =777
of atype
@ = parameterised implementation
Frank Eliassen, SRL & Ifi/UiO 26

INF 5040 autumn 2011

13

sSsummary

Components
Programming according to LEGO-principle
Contractually specified interfaces and composition
Support for connection oriented programming

Component architecture

Contractually specified interfaces between
components and application servers

Realizes "implicit middleware”
Java: EJB, CORBA: CCM, Microsoft: COM+/.NET

Frank Eliassen, SRL & Ifi/lUiO

27

INF 5040 autumn 2011

14

