
INF 5040 autumn 2011 1

Software components and
distributed systems

INF 5040/9040 autumn 2011

Frank Eliassen, SRL & Ifi/UiO 1

lecturer: Lucas Provensi

Literature
 G. T. Heineman, W.T. Councill, "Component-based

Software Engneering" - Putting the Pieces Together, g g g g ,
Addison Wesley 2001, ch 1 and 3

– copies available at
http://heim.ifi.uio.no/~frank/inf5040/CBSE/

 Coulouris chap 8.4, 8.5 and 8.6
 Recommended

– Szyperski, C., Gruntz, D., Murer, S., ”Component Software –

Frank Eliassen, SRL & Ifi/UiO 2

yp , , , , , , p
Beyond Object-Oriented Programming”, Second Edition,
Addison Wesley/ACM Press, 2002

INF 5040 autumn 2011 2

A history of middleware
First generation middleware
 Exclusively based on client server model Exclusively based on client-server model
 Examples include Open Group’s DCE

Second generation middleware
 Based on distributed object technology
 Examples include CORBA and Java RMI

Frank Eliassen, SRL & Ifi/UiO 3

Third generation middleware
 Based on component technology

Issues with object-oriented
middleware

Implicit dependenciesImplicit dependencies
 It is not clear the dependencies that a object

has on other objects

Interaction with the middleware
 Many low-level details

 Lack of separation of distributed concerns
 Security, transactions, coordination, etc.

No support for deployment
Frank Eliassen, SRL & Ifi/UiO 4

INF 5040 autumn 2011 3

Background for Java and
CORBA platforms

Known problems with CORBA and Java-RMIp
 How to deploy the components of my application?
 Which services will be available on a given host?
 Who activates my objects?
 Who manages the life-cycle of my objects?

Frank Eliassen, SRL & Ifi/UiO 5

=> We need a standard development, deployment and
runtime environment for distributed objects (CORBA, Java)

Explicit middleware: lack of
“separation of concerns”

 Programs directly towards a middleware API
 Application logic entangled with logic for life cycle

management, transactions, security, persistence, etc.

Client

Database
driver

Database API

Security
service

Security APIDistr
object

Frank Eliassen, SRL & Ifi/UiO 6

Trans.
serverTransaction API

Stub Skeleton

INF 5040 autumn 2011 4

Implicit middleware: better support
for “separation of concerns”
 Logic for life cycle management, transactions, security, persistence,

etc. managed by the middleware
 Requirements for middleware services declared separately and can Requirements for middleware services declared separately and can

later be changed without changing the application code
 Middleware can be changed without changing the application code

Client Database
driver

Database API

Security
service

Security API

Distr
object

Frank Eliassen, SRL & Ifi/UiO 7

service

Trans.
serverTransaction API

Stub Skeleton

Request
interceptor

Component technologies

What is a component [Szyperski]?What is a component [Szyperski]?

“ a unit of composition with contractually specified
interfaces and explicit context dependencies only”

“in this context, a component can be deployed

Frank Eliassen, SRL & Ifi/UiO 8

independently and is subject to third-party
composition”

INF 5040 autumn 2011 5

Rationale for components
Time to marked

Improved productivity/ reduced complexity Improved productivity/ reduced complexity
 Focus on reuse

 Programming by assembly rather than by
engineering
 Reduced requirements to knowledge

Most important advantage: development of

Frank Eliassen, SRL & Ifi/UiO 9

p g p
server side?
 (cf. EJB/JEE or CORBA Component Model - later)

Component platform

 A standard development, deployment and runtime p p y
environment can be designed as a set of contractually
specified interfaces

 Contracts agreed between components and a component
platform

 Component platform defines the rules for deployment
(installation), composition and activation of components.

Frank Eliassen, SRL & Ifi/UiO 10

(installation), composition and activation of components.
 For delivering and deploying a component is required a

standardized archive format that packages component
code and meta-data

INF 5040 autumn 2011 6

Contracts
 What is in a contract?

 Set of provided interfaces.
Some of these may be required by the component platforms– Some of these may be required by the component platforms

 Set of required interfaces.
– These must be offered by other components available in the container

 Pre and post conditions/invariants
 Extra-functional requirements: transactions, security, performance, ...

 Functions defined both syntactically and semantically
 int add(int a, int b)
 pre: a + b <= Integer.MAXINT
 post: result’ = a + b

Frank Eliassen, SRL & Ifi/UiO 11

p
 Extra-functional requirements

 Guarantees: Response within 10 ms
 Conditions: Needs 1000 CPU-cycles
 Transaction requirements: e.g, create new transaction when component is

invoked, serializable, ...

Composition
Components and composition
 Composition is the fundamental method for Composition is the fundamental method for

construction, extension and reuse of
component-based software development
 In contrast to (implementation) inheritance

in object-oriented approaches

Frank Eliassen, SRL & Ifi/UiO 12

“Components are made for composition”

INF 5040 autumn 2011 7

Connection-oriented
programming
 Composition of pre-manufactured components
 Binding of incoming and outgoing interfacesg g g g

 provided/required interfaces
 Reflects direction of method calls

– Not the direction of data flow

 Outgoing interface
– The method calls a component potentially may issue

 Support for distribution?

Frank Eliassen, SRL & Ifi/UiO 13

pp
 When the binding can be made across address spaces and

computers

C1 C2

Third party composition
 The composition can be done by a third party external to

the components themselves (loading and binding)
 Example

 Connections (bindings), outgoing and ingoing interfaces
 Connects (binds) “matching” interfaces
 Can be done during run time by a third party

– Can typically be realized by setting an appropriate attribute of the
component with the outgoing interface (for C1, methods: setB, setV)

U B

Frank Eliassen, SRL & Ifi/UiO 14

C1 C2
A

AB

X

V Y

INF 5040 autumn 2011 8

Composition: Reuse and
assembly of components

Offered
interface

Required

Decoder Buffer

Queue

Audio
Source

RTP
Sink

Audio Decoder

Frank Eliassen, SRL & Ifi/UiO 15

interface
interface

Queue

An implementation of a component
platform is often called a container

Responsibilities of the container
life cycle management, system services, securityy g , y , y
dynamic deployment and activation of new components

e.g., resolve dependencies dynamically or activate
components requested in method calls
when a component has a need for a service, the container
will load the component that offers the service, dynamically

Middleware that supports the container pattern: Application Server

Frank Eliassen, SRL & Ifi/UiO 16

Components

Contractually specified
interfaces

specified by component
platform

Container/Application server

INF 5040 autumn 2011 9

Application Servers

AdvantageAdvantage
 Comprehensive support for one style of distributed

programming

Disadvantages
 Mandates a particular architectural style

– E.g. three-tier architecture

 Large and complex systems that works best on high-
end servers

– Performance and resources overhead

Frank Eliassen, SRL & Ifi/UiO 17

Key players

OMG and components
 CORBA v3 standard with CORBA Component

Model (CCM)

Microsoft and components

Frank Eliassen, SRL & Ifi/UiO 18

 Development of COM/DCOM, COM+ and .NET

SUN and components
 Development of Java Beans and EJB

INF 5040 autumn 2011 10

Enterprise Java Beans (EJB)
 Component architecture for deployable server side components in Java.
 EJB 3 0: based on Metadata facility in Java 5 EJB 3.0: based on Metadata facility in Java 5

 annotations in source code
 EJB is managed

 Container handles: transactions, security and lifecycle;
 Component Model

 A bean is a component offering one or more business interfaces (provided
interfaces)

– Session Beans and Message-driven beans
 Plain Old Java Objects (POJOS)

Frank Eliassen, SRL & Ifi/UiO 19

j ()
 Annotations for Dependency injection (required interfaces)
 Interception

– Method Invocations
– Lifecycle events (Creation and deletion of components)

Lightweight Component
Model

Component Models as EJB are heavyweight and Co po e t ode s as J a e ea y e g t a d
prescriptive
 Cannot be used for different classes of DS, such as

peer-to-peer
 Not suitable for constrained and embedded devices

Need for a more stripped-down, domain-
independent and minimal component model
 Fractal
 OpenCOM
 OSGi

Frank Eliassen, SRL & Ifi/UiO 20

INF 5040 autumn 2011 11

Fractal

Programming with interfacesProgramming with interfaces
 Uniform model for provided and required

interfaces
 Explicit representation of the architecture

No support for deployment, full container
patterns, etc.
Configurable and reconfigurable at

runtime

Frank Eliassen, SRL & Ifi/UiO 21

Fractal

Component ModelCo po e t ode
 Server (provided) and Client (required) interfaces
 Composition: bindings between interfaces

– Primitive Binding: client and server interfaces within the
same address space

– Composite Binding: arbitrarily complex architectures
(consisting of components and bindings)(g p g)

 Component model is hierarchical
 System is fully configurable and reconfigurable:

including components and their interconnections

Frank Eliassen, SRL & Ifi/UiO 22

INF 5040 autumn 2011 12

Fractal

Architecture Description Language (ADL)Architecture Description Language (ADL)
<definition name="HelloWorld">

<interface name=“r" role="server" signature=“Runnable"/>
<component name="client">

<interface name=“r" role="server" signature=“Runnable"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>

</component>
<component name="server">

Frank Eliassen, SRL & Ifi/UiO 23

p
<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

</component>
<binding client="this.r" server="client.r"/>
<binding client="client.s" server="server.s"/>

</definition>

Fractal

Resulting architectureResulting architecture

client serverS SRR

HelloWorld

Client

Impl

Server

Impl

Frank Eliassen, SRL & Ifi/UiO 24

INF 5040 autumn 2011 13

Composing adaptive software
using components

 Importance and interest in adaptive software is
increasing dramaticallyg y
 mobile, ubiquitous and autonomic computing

 Components play a major part
 Compositional adaptation

 dynamic adaptation of
architecture of component-
based application

– change component impl

Frank Eliassen, SRL & Ifi/UiO 25

change component impl
– redeploy component
– parameter adaptation
– change overall

architectural framework
– combinations of the above

MUSIC middleware: Adaptability
through component frameworks

AudioUI

Nav
App

Normal
UI

Ctrl

UI

Map Loc

Audio
UIctl

textTo
Speech

Nav app impl

Builtin
GPS

Audio UI
imp

= type

client

F

Metro
loc

TTS
impl

TTS
service

Frank Eliassen, SRL & Ifi/UiO 26

= alternative implementations
of a type

= implementation

= parameterised implementation

Free
map

Com
Map

INF 5040 autumn 2011 14

Summary
Components

P og amming acco ding to LEGO p inciple Programming according to LEGO-principle
 Contractually specified interfaces and composition
 Support for connection oriented programming

Component architecture
 Contractually specified interfaces between

components and application servers

Frank Eliassen, SRL & Ifi/UiO 27

components and application servers
 Realizes ”implicit middleware”
 Java: EJB, CORBA: CCM, Microsoft: COM+/.NET

