
INF 5040 autumn 2011 1

Software components and
distributed systems

INF 5040/9040 autumn 2011

Frank Eliassen, SRL & Ifi/UiO 1

lecturer: Lucas Provensi

Literature
 G. T. Heineman, W.T. Councill, "Component-based

Software Engneering" - Putting the Pieces Together, g g g g ,
Addison Wesley 2001, ch 1 and 3

– copies available at
http://heim.ifi.uio.no/~frank/inf5040/CBSE/

 Coulouris chap 8.4, 8.5 and 8.6
 Recommended

– Szyperski, C., Gruntz, D., Murer, S., ”Component Software –

Frank Eliassen, SRL & Ifi/UiO 2

yp , , , , , , p
Beyond Object-Oriented Programming”, Second Edition,
Addison Wesley/ACM Press, 2002

INF 5040 autumn 2011 2

A history of middleware
First generation middleware
 Exclusively based on client server model Exclusively based on client-server model
 Examples include Open Group’s DCE

Second generation middleware
 Based on distributed object technology
 Examples include CORBA and Java RMI

Frank Eliassen, SRL & Ifi/UiO 3

Third generation middleware
 Based on component technology

Issues with object-oriented
middleware

Implicit dependenciesImplicit dependencies
 It is not clear the dependencies that a object

has on other objects

Interaction with the middleware
 Many low-level details

 Lack of separation of distributed concerns
 Security, transactions, coordination, etc.

No support for deployment
Frank Eliassen, SRL & Ifi/UiO 4

INF 5040 autumn 2011 3

Background for Java and
CORBA platforms

Known problems with CORBA and Java-RMIp
 How to deploy the components of my application?
 Which services will be available on a given host?
 Who activates my objects?
 Who manages the life-cycle of my objects?

Frank Eliassen, SRL & Ifi/UiO 5

=> We need a standard development, deployment and
runtime environment for distributed objects (CORBA, Java)

Explicit middleware: lack of
“separation of concerns”

 Programs directly towards a middleware API
 Application logic entangled with logic for life cycle

management, transactions, security, persistence, etc.

Client

Database
driver

Database API

Security
service

Security APIDistr
object

Frank Eliassen, SRL & Ifi/UiO 6

Trans.
serverTransaction API

Stub Skeleton

INF 5040 autumn 2011 4

Implicit middleware: better support
for “separation of concerns”
 Logic for life cycle management, transactions, security, persistence,

etc. managed by the middleware
 Requirements for middleware services declared separately and can Requirements for middleware services declared separately and can

later be changed without changing the application code
 Middleware can be changed without changing the application code

Client Database
driver

Database API

Security
service

Security API

Distr
object

Frank Eliassen, SRL & Ifi/UiO 7

service

Trans.
serverTransaction API

Stub Skeleton

Request
interceptor

Component technologies

What is a component [Szyperski]?What is a component [Szyperski]?

“ a unit of composition with contractually specified
interfaces and explicit context dependencies only”

“in this context, a component can be deployed

Frank Eliassen, SRL & Ifi/UiO 8

independently and is subject to third-party
composition”

INF 5040 autumn 2011 5

Rationale for components
Time to marked

Improved productivity/ reduced complexity Improved productivity/ reduced complexity
 Focus on reuse

 Programming by assembly rather than by
engineering
 Reduced requirements to knowledge

Most important advantage: development of

Frank Eliassen, SRL & Ifi/UiO 9

p g p
server side?
 (cf. EJB/JEE or CORBA Component Model - later)

Component platform

 A standard development, deployment and runtime p p y
environment can be designed as a set of contractually
specified interfaces

 Contracts agreed between components and a component
platform

 Component platform defines the rules for deployment
(installation), composition and activation of components.

Frank Eliassen, SRL & Ifi/UiO 10

(installation), composition and activation of components.
 For delivering and deploying a component is required a

standardized archive format that packages component
code and meta-data

INF 5040 autumn 2011 6

Contracts
 What is in a contract?

 Set of provided interfaces.
Some of these may be required by the component platforms– Some of these may be required by the component platforms

 Set of required interfaces.
– These must be offered by other components available in the container

 Pre and post conditions/invariants
 Extra-functional requirements: transactions, security, performance, ...

 Functions defined both syntactically and semantically
 int add(int a, int b)
 pre: a + b <= Integer.MAXINT
 post: result’ = a + b

Frank Eliassen, SRL & Ifi/UiO 11

p
 Extra-functional requirements

 Guarantees: Response within 10 ms
 Conditions: Needs 1000 CPU-cycles
 Transaction requirements: e.g, create new transaction when component is

invoked, serializable, ...

Composition
Components and composition
 Composition is the fundamental method for Composition is the fundamental method for

construction, extension and reuse of
component-based software development
 In contrast to (implementation) inheritance

in object-oriented approaches

Frank Eliassen, SRL & Ifi/UiO 12

“Components are made for composition”

INF 5040 autumn 2011 7

Connection-oriented
programming
 Composition of pre-manufactured components
 Binding of incoming and outgoing interfacesg g g g

 provided/required interfaces
 Reflects direction of method calls

– Not the direction of data flow

 Outgoing interface
– The method calls a component potentially may issue

 Support for distribution?

Frank Eliassen, SRL & Ifi/UiO 13

pp
 When the binding can be made across address spaces and

computers

C1 C2

Third party composition
 The composition can be done by a third party external to

the components themselves (loading and binding)
 Example

 Connections (bindings), outgoing and ingoing interfaces
 Connects (binds) “matching” interfaces
 Can be done during run time by a third party

– Can typically be realized by setting an appropriate attribute of the
component with the outgoing interface (for C1, methods: setB, setV)

U B

Frank Eliassen, SRL & Ifi/UiO 14

C1 C2
A

AB

X

V Y

INF 5040 autumn 2011 8

Composition: Reuse and
assembly of components

Offered
interface

Required

Decoder Buffer

Queue

Audio
Source

RTP
Sink

Audio Decoder

Frank Eliassen, SRL & Ifi/UiO 15

interface
interface

Queue

An implementation of a component
platform is often called a container

Responsibilities of the container
life cycle management, system services, securityy g , y , y
dynamic deployment and activation of new components

e.g., resolve dependencies dynamically or activate
components requested in method calls
when a component has a need for a service, the container
will load the component that offers the service, dynamically

Middleware that supports the container pattern: Application Server

Frank Eliassen, SRL & Ifi/UiO 16

Components

Contractually specified
interfaces

specified by component
platform

Container/Application server

INF 5040 autumn 2011 9

Application Servers

AdvantageAdvantage
 Comprehensive support for one style of distributed

programming

Disadvantages
 Mandates a particular architectural style

– E.g. three-tier architecture

 Large and complex systems that works best on high-
end servers

– Performance and resources overhead

Frank Eliassen, SRL & Ifi/UiO 17

Key players

OMG and components
 CORBA v3 standard with CORBA Component

Model (CCM)

Microsoft and components

Frank Eliassen, SRL & Ifi/UiO 18

 Development of COM/DCOM, COM+ and .NET

SUN and components
 Development of Java Beans and EJB

INF 5040 autumn 2011 10

Enterprise Java Beans (EJB)
 Component architecture for deployable server side components in Java.
 EJB 3 0: based on Metadata facility in Java 5 EJB 3.0: based on Metadata facility in Java 5

 annotations in source code
 EJB is managed

 Container handles: transactions, security and lifecycle;
 Component Model

 A bean is a component offering one or more business interfaces (provided
interfaces)

– Session Beans and Message-driven beans
 Plain Old Java Objects (POJOS)

Frank Eliassen, SRL & Ifi/UiO 19

j ()
 Annotations for Dependency injection (required interfaces)
 Interception

– Method Invocations
– Lifecycle events (Creation and deletion of components)

Lightweight Component
Model

Component Models as EJB are heavyweight and Co po e t ode s as J a e ea y e g t a d
prescriptive
 Cannot be used for different classes of DS, such as

peer-to-peer
 Not suitable for constrained and embedded devices

Need for a more stripped-down, domain-
independent and minimal component model
 Fractal
 OpenCOM
 OSGi

Frank Eliassen, SRL & Ifi/UiO 20

INF 5040 autumn 2011 11

Fractal

Programming with interfacesProgramming with interfaces
 Uniform model for provided and required

interfaces
 Explicit representation of the architecture

No support for deployment, full container
patterns, etc.
Configurable and reconfigurable at

runtime

Frank Eliassen, SRL & Ifi/UiO 21

Fractal

Component ModelCo po e t ode
 Server (provided) and Client (required) interfaces
 Composition: bindings between interfaces

– Primitive Binding: client and server interfaces within the
same address space

– Composite Binding: arbitrarily complex architectures
(consisting of components and bindings)(g p g)

 Component model is hierarchical
 System is fully configurable and reconfigurable:

including components and their interconnections

Frank Eliassen, SRL & Ifi/UiO 22

INF 5040 autumn 2011 12

Fractal

Architecture Description Language (ADL)Architecture Description Language (ADL)
<definition name="HelloWorld">

<interface name=“r" role="server" signature=“Runnable"/>
<component name="client">

<interface name=“r" role="server" signature=“Runnable"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>

</component>
<component name="server">

Frank Eliassen, SRL & Ifi/UiO 23

p
<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

</component>
<binding client="this.r" server="client.r"/>
<binding client="client.s" server="server.s"/>

</definition>

Fractal

Resulting architectureResulting architecture

client serverS SRR

HelloWorld

Client

Impl

Server

Impl

Frank Eliassen, SRL & Ifi/UiO 24

INF 5040 autumn 2011 13

Composing adaptive software
using components

 Importance and interest in adaptive software is
increasing dramaticallyg y
 mobile, ubiquitous and autonomic computing

 Components play a major part
 Compositional adaptation

 dynamic adaptation of
architecture of component-
based application

– change component impl

Frank Eliassen, SRL & Ifi/UiO 25

change component impl
– redeploy component
– parameter adaptation
– change overall

architectural framework
– combinations of the above

MUSIC middleware: Adaptability
through component frameworks

AudioUI

Nav
App

Normal
UI

Ctrl

UI

Map Loc

Audio
UIctl

textTo
Speech

Nav app impl

Builtin
GPS

Audio UI
imp

= type

client

F

Metro
loc

TTS
impl

TTS
service

Frank Eliassen, SRL & Ifi/UiO 26

= alternative implementations
of a type

= implementation

= parameterised implementation

Free
map

Com
Map

INF 5040 autumn 2011 14

Summary
Components

P og amming acco ding to LEGO p inciple Programming according to LEGO-principle
 Contractually specified interfaces and composition
 Support for connection oriented programming

Component architecture
 Contractually specified interfaces between

components and application servers

Frank Eliassen, SRL & Ifi/UiO 27

components and application servers
 Realizes ”implicit middleware”
 Java: EJB, CORBA: CCM, Microsoft: COM+/.NET

