
INF 5040 1

INF5040, Roman Vitenberg 1

Time and Coordination in
Distributed Systems

INF 5040 autumn 2011

 lecturer: Roman Vitenberg

INF5040, Roman Vitenberg 2

Time in Distributed Systems

Ø Uses of time
§  Real-time synchronization
§  Relative order of events

–  The only way to infer in an asynchronous system is through
causality

Ø Logical time
§  Attempts to capture dependencies due to message

exchange and local process ordering
–  Possible false positives
–  Does not capture dependencies that are due to a cause

other than message exchange

INF 5040 2

INF5040, Roman Vitenberg 3

“Happened-before” relation

Ø Notation
§  x →p y: x happened before y at process p
§  x → y: x happened before y

Ø Condition 1
§  If ∃ process p : x →p y, then x → y

Ø Condition 2
§  For each process m : send(m)→ rcv(m)

Ø Condition 3
§  If x, y, and z are events such that x → y and
y → z, then x → z

INF5040, Roman Vitenberg 4

“Happened-before” illustrated

Ø  Events that are not related by the “happened-before”
relation are called concurrent: a || e

p2

p1

p3

a

f

b

e

d c

m1

m2

INF 5040 3

INF5040, Roman Vitenberg 5

Logical clock
Ø  Each process p maintains its own logical clock Cp

§  Monotonically increasing counter
§  Used to timestamp events

Ø  Cp(a) : the timestamp of event a at process p
Ø  Rules for logical clock

§  LC1:
–  Cp is incremented by 1 before each event is issued at process p

§  LC2:
–  When a process p sends a message m, it piggybacks Cp on m
–  When (m,t) is received by q, q computes Cq:=max(Cq,t)and

applies LC1 before timestamping the event rcv(m).

INF5040, Roman Vitenberg 6

Example for Logical Clocks

p2

p1

p3

a

f

b

e

d c

m1

m2

1

1 2

3 4

5

x → y ⇒ C(x) < C(y) (not equivalent!!)

INF 5040 4

INF5040, Roman Vitenberg 7

Vector clocks

Ø  Assumption: N processes whose ids are totally ordered
Ø  Each process p maintains its vector clock Vp of size N
Ø  Vp(a) : the timestamp of event a at process p
Ø  Rules for vector clock

§  VC1: Vp [j] is initially 0 for all j
§  VC2:

–  p sets Vp[p]:=Vp[p]+1 before timestamping each event
§  VC3:

–  When p sends a message m, it piggybacks Vp on m
§  VC4: When (m,t) is received by q, q computes Vq[j]:=max
(Vq[j],t[j])for all j and applies VC2

INF5040, Roman Vitenberg 8

Example for Vector Clocks

p2

p1

p3

a

f

b

e

d c

m1

m2

(0,0,1)

(1,0,0) (2,0,0)

(2,1,0) (2,2,0)

(2,2,2)

x → y ⇔ V(x) < V(y) (equivalent)

INF 5040 5

INF5040, Roman Vitenberg 9

Local events and states

,,,, 3322110
iiiiiiii sesesesh ↔↔↔=

The history (h) of a process is modelled as a
sequence of events and corresponding states:"

Sometimes we are only interested in the events:"

,,, 321
iiii eeeh =

Sometimes it is assumed that sending a message
does not alter the local state"

INF5040, Roman Vitenberg 10

Ø Global history: a collection of local histories, one
from each process

Ø Cut: union of prefixes of process histories
§  May be consistent or not

Global histories and cuts

p2

p1

p3

a

f

b

e

d c

m1

m2

INF 5040 6

INF5040, Roman Vitenberg 11

Consistent cuts

When reasoning about system execution, we are
only interested in consistent cuts!"

Cut C is consistent if

CfefCe ∈⇒→∧∈)(

INF5040, Roman Vitenberg 12

Global state

P1 P2 P3 ……… Pn

…… ……… ……… ………

0
1s
1
1s

3
1s

2
1s

0
2s

1
2s

3
2s

2
2s

0
3s
1
3s

3
3s

2
3s

0
ns
1
ns

3
1s

2
ns

…consistent states
correspond to
consistent cuts...

If local states do not
include message
sends, we
additionally need to
capture messages
in transition

INF 5040 7

INF5040, Roman Vitenberg 13

Reasoning about global
states and its applications

Ø Linearization is a full ordering of events in a
global history that preserves →

Ø State S’ is reachable from state S if there is a
linearization that starts in S and ends in S’

Ø Property: a global state predicate
§  Stable property: if true in S, true in every state

reachable from S
§  Safety property: true in every state reachable from S0

§  Liveness property: in every linearization, there is a
state reachable from S0 in which it is true

INF5040, Roman Vitenberg 15

The snapshot problem

Ø  Finds a consistent global state that may have occurred

Ø  Consistent state reachable from S1 so that S3 is
reachable from it

S1 Snapshot starts"

S2

The state represented by the snapshot"

S3 Snapshot ends"

What actually occurs: e1, e2, …"

INF 5040 8

INF5040, Roman Vitenberg 16

Assumptions for the snapshot
algorithm

Ø No process or network link fails
Ø Network links preserve FIFO
Ø Full network: each pair of processes

connected by two network links, one in
each direction

INF5040, Roman Vitenberg 17

Responsibility of the
processes

Ø Every process can initiate a snapshot
§  A process takes initiative to log its own state and

sends a marker message on all output channels.

Ø Each process has responsibility for
§  Logging its own state,
§  Logging the incoming messages on input channels,
§  Sending or forwarding the marker.

Ø Upon termination, the collection of local states
of processes and recorded states of channels
should give us a consistent global state

INF 5040 9

INF5040, Roman Vitenberg 18

The first attempt

P sends a marker over all outgoing links…

P waits until it receives a marker on all input channels
P logs its own state

When another process Q receives a marker
 Q logs its own state
 Q sends the marker back to P…

INF5040, Roman Vitenberg 19

Is the protocol correct?

Ø The captured state may be inconsistent
Ø It does not capture messages in transit

p2

p1

p3

marker

m

marker

INF 5040 10

INF5040, Roman Vitenberg 20

Correct snapshot protocol

Ø [Chandy,Lamport 1985]
Ø The procedure to start the snapshot

P logs its own state.
P sends a marker over all outgoing links.
P starts to log incoming messages on all
 input channels

INF5040, Roman Vitenberg 21

The procedure upon
marker reception

When P receives a marker over channel c
 IF P has not recorded its state
 P records its state.
 P forwards the marker over all output channels
 P sets the state of c to the empty set
 P starts to record incoming messages
 on all other input channels
 ELSE
 P records the state of c:
 all the messages that have been

 received on c since P recorded
 its own state, which are said to be
 in transition over the channel
 END

INF 5040 11

INF5040, Roman Vitenberg 22

Proof of protocol correctness

Ø The recorded state is consistent.
§  If x → y, and y occurred at p before p

recorded its state, then x must have
occurred at q before q recorded its state."

Ø State S2 must be reachable from S1."
Ø State S3 must be reachable from S2.!

INF5040, Roman Vitenberg 23

Distributed consensus

Ø N processes out of which at most f can be faulty
Ø Two possible input values, 0 or 1
Ø Agreement (also called correctness)

§  No two non-faulty processes decide on different values
Ø Termination

§  If there are non-faulty processes, at least one of them
decides

Ø Integrity (or validity or non-triviality)
§  if all non-faulty processes start with the same initial

value v, then v is the only possible decision value for a
non-faulty process

INF 5040 12

INF5040, Roman Vitenberg 24

Other agreement problems

Ø Reliable multicast (also called terminating
reliable broadcast)

Ø Group membership
Ø Leader election
Ø Distributed locking
Ø Mutual exclusion
Ø Atomic transactions
Ø Resource allocation

INF5040, Roman Vitenberg 25

Reliable broadcast

Ø One sender that sends a single message
Ø Termination: Every non-faulty process

delivers a message (possibly ⊥)
Ø Agreement: No two non-faulty processes

deliver different messages
Ø Validity: no spurious messages
Ø Integrity: If the sender is non-faulty, it

delivers the message it sent

INF 5040 13

INF5040, Roman Vitenberg 26

Group membership

Ø Each process starts with a list of
processes it considers correct

Ø Agreement on the list of participating
processes

Ø Validity 1: If a process is in all input lists,
then it will be in the decided list

Ø Validity 2: If a process is in no input list,
then it will not be in the decided list

INF5040, Roman Vitenberg 27

Known impossibility results
for distributed consensus

Ø Impossible to solve if at least a third of all
processes are malicious
§  Can be alleviated by using digital signatures

Ø Impossible to solve in asynchronous systems
§  Can be circumvented by masking faults
§  Or by designating the process that adds to

asynchrony as faulty
§  Or by using randomization

INF 5040 14

INF5040, Roman Vitenberg 28

Mutual exclusion problem
Ø  Safety:

§  At most one process can be in a critical section at a time

Ø  Liveness:
§  Each request to enter or exit the critical section eventually

succeeds (as long as the process that executes in the critical
section eventually requests to leave it)

Ø Ordering:
§  Entrance to the CS must observe the “happened-before” relation

p2

p1 b

c

m1

Request to
enter CR Request to enter CR

INF5040, Roman Vitenberg 29

p1
p2

p3

p4

4

Central server algorithm
Ø  Central server that grants entrance to the critical section
Ø  protocol

§  enter() -- enter critical section - blocks if necessary
exit() -- leaves critical section - other processes can now enter

2

Queue of requests

has token

Release
 token

Request
token

Grant token

INF 5040 15

INF5040, Roman Vitenberg 30

Evaluation of the
central server algorithm

Ø  Are safety and liveness satisfied?
Ø  Is ordering satisfied?

§  How to ensure it?

Ø  Shortcomings of the algorithm
Ø  Performance bottleneck
Ø  The server can fail

Ø  We can make one of the clients a new server
Ø  Requires distributed election
Ø  How to ensure that the old order preceding the failure is preserved?

Ø  Client with the token may fail
§  How to ensure that the token becomes accessible again?

INF5040, Roman Vitenberg 31

Ring-based algorithm

Ø A token rotating in one direction
Ø A process can enter the critical section

when it has the token
Ø When a process that has not requested to

enter receives a token, it passes the token
on

INF 5040 16

INF5040, Roman Vitenberg 32

Evaluation of the ring-
based algorithm

Ø No central bottleneck
§  Redundant messages are sent if no process attempts

to enter the critical section
§  A process may have to wait a long time for a token

Ø Safety and liveness are trivially satisfied in
absence of failures, but ordering requires an
additional mechanism

Ø Fault-tolerance
§  Problematic when a node crashes

– Mend the ring
–  Ensure that the ring contains exactly one token

INF5040, Roman Vitenberg 33

Distributed algorithm based
on logical clocks

Ø  Basic idea [Ricart & Agrawala, 1981]:
§  A process that wishes to enter a critical section, multicasts a

message to all the processes
§  A process can enter a CS when it gets acks from all the processes
§  Rules wrt when to send an ack in order to ensure fulfillment of

the requirements

Ø  Assumptions
§  Processes know each other addresses
§  Every sent message will eventually be delivered

Ø  Properties
§  Each process maintains a logical clock
§  Timestamps include processId: <T,p> (i.e., total ordering)
§  Each process maintains its state wrt token possession

–  RELEASED, WANTED, HELD

INF 5040 17

INF5040, Roman Vitenberg 34

Ricart & Agrawala algorithm
Upon initialization

 state := RELEASED;
To enter the critical section

 state:= WANTED;
 Multicast a timestamped request to all the processes
 T := the current timestamp;
 wait until ((n-1) acks are received);
 state := HELD;

Upon receiving a request with <Ti,pi> at pj (i ≠ j)
 if (state=HELD or (state=WANTED and (T,pj) < (Ti,pi)))
 queue the request from pi without replying
 else
 send an ack to pi
 end if

Upon exiting from the critical section
 state := RELEASED
 reply to all queued messages

INF5040, Roman Vitenberg 35

Evaluation of the
Ricart & Agrawala algorithm

Ø  Are safety and liveness satisfied?
Ø  Is ordering satisfied?
Ø  Shortcomings

Ø  Many messages are sent in order to enter critical section
Ø  2(n-1) messages without HW support for multicast
Ø  n messages with HW support for multicast

Ø  Not resilient to process crashes

INF 5040 18

INF5040, Roman Vitenberg 36

Summary of distributed
mutual exclusion algorithms

Ø Little resilience to failures
§  Can be improved by additional mechanisms
§  But it will never be perfect in an

asynchronous system

Ø Central server requires the lowest number
of messages but can become a bottleneck

INF5040, Roman Vitenberg 37

Requirements for
distributed leader election

Ø  In many distributed algorithms, one of the participating
processes will play the role of a central coordinator
§  Central server in the mutual exclusion algorithms
§  Coordinator of a distributed transaction

Ø  If a coordinator fails, one of the remaining processes
can be elected to take over the central role
§  In order to provide better fault-tolerance

Ø  The main requirements
§  Safety: only one leader may exist at a time
§  Liveness: a leader will eventually be elected

INF 5040 19

INF5040, Roman Vitenberg 38

The “Bully” algorithm
Ø  [Silberschatz et al, 1993]
Ø  Prerequisites

§  The processes know each other identities and addresses
§  Process identifiers are totally ordered
§  The algorithm selects the process with the biggest identifier

Ø Message types
§  election: announces an election
§  answer: is sent as a reply to the election message
§  coordinator: announces the identity of the new coordinator

INF5040, Roman Vitenberg 39

The “Bully” algorithm II
Ø  Election procedure

Ø  The process (that detects that the coordinator has failed)
sends the election message to the processes that have a
bigger identifier

Ø  It then waits a limited amount of time for the answer
message

Ø  If no answer message is received, the process considers itself
as a new coordinator and sends a coordinator message to
all the processes with smaller identifiers

Ø  If an answer message is received, the process waits a limited
amount of time for a coordinator message. If none arrives,
it starts a new election.

INF 5040 20

INF5040, Roman Vitenberg 40

The “Bully” algorithm III
Ø  Election procedure (continued)

Ø  If a process receives a coordinator message, it memorizes
the identifier included in the message and considers the
process as the new coordinator

Ø  If a process receives an election message, it sends back an
answer message and starts a new election - unless the
process has already started one

Ø  When a process recovers or joins the system, it starts a new
election. If it has the biggest identifier, it makes itself a
coordinator and announces it, even if there is another
functioning coordinator

INF5040, Roman Vitenberg 41

Illustration for the
“bully” algorithm

election

election

answer
answer

p1 p2 p3 p4 Phase 1

C

p1 p2 p3 p4 Phase 3

C

p1 p2 p3 p4 Phase 2
C

C

timeout

answer
election

election

election

p1 p2 p3 p4 Phase 4

After a while ……

coordinator

INF 5040 21

INF5040, Roman Vitenberg 42

Evaluation of the
“bully” algorithm

Ø  Best case: n-2 coordinator messages
§  Occurs when the process with the second highest id detects that

the coordinator has failed

Ø Worst case: O(n2) messages
§  Occurs when the process with the lowest id detects that the

coordinator has failed
§  => (n-1) processes start an election

Ø  Ring-based algorithm is more efficient wrt the number of
messages

INF5040, Roman Vitenberg 43

The ring-based algorithm

5

16

12

6

21

3

<El. 5>

<El. 16> <El. 16>

<El. 21>

<El. 21> <El. 21>

<El. 21>

<El. 21> <El. 21>

When a message has made a
full circle without changing
the id, the process will know
that it has the highest number

Then it must inform all other
processes that it is the leader

<C. 21>

<C. 21> <C. 21>

<C. 21>

<C. 21> <C. 21>

…it is possible to handle
multiple elections that have
been started concurrently

