
INF5040	 1	

System Models for
Distributed Systems

INF5040/9040 Autumn 2015
Lecturer: Amir Taherkordi (ifi/UiO)

August 31, 2015

2

System Models for DS

1.  Introduction
2.  Physical Models
3.  Architectural Models
4.  Fundamental Models

Outline

INF5040	 2	

3

System Models for DS

¡ Purpose:

¡ Three types of models
¡  Physical models: capture the hardware composition of a system in

terms of computers and other devices and their interconnecting
network

¡ Architectural models:
¡  software architecture: the main components of the system + their roles +

how they interact
¡  system architecture: how they are deployed in an underlying network of

computers
¡  Fundamental models: formal description of the properties that are

common to architecture models. Three fundamental models:
¡  interaction models, failure models and security models

System Models
1. Introduction

To illustrate/describe common properties and design choices
for distributed systems in a single descriptive model

4

System Models for DS

Physical Models
Distributed
Systems

Early Internet-scale Contemporary

Scale Small (10-100) Large Ultra-large

Heterogeneity Limited (typically
relatively
homogeneous
configurations)

Significant in terms of
platforms, languages
and middleware

Added dimensions introduced
including radically different
styles of architecture

Openness Not a priority Significant priority
with rage of
standards introduced

Major challenge with existing
standards: not yet able to
embrace complex systems

Quality of
Service

Not a priority Significant priority
with range of
services introduced

Major challenge with existing
services: not yet able to
embrace complex systems

LAN (1970s) Internet (1980s–1990s) Cloud computing (2000s)

INF5040	 3	

5

System Models for DS

1. Communicating entities
§  Objects
§  Components
§  Web services

2. Communication paradigms
§  Interprocess communication
§  Remote invocation
§  Indirect communication

3. Roles and responsibilities
4.  Placement Strategies

¡  To master the complexity of distributed systems, it is crucial that they
are properly organized

¡ Concern the logical organization of distributed systems into:

Architectural Models

Communicating
Entity

Communicating
Entity

Communicating
Entity

1
2

3

4

Object-based DS
Distributed Components

Web-Based Systems

Communication Paradigms

6

System Models for DS

¡ Distributed shared data space

Indirect Communication Example
3. Architectural Models

Emergency area
without
communication
infrastructure

Information sharing through a
database-like distributed system
called MIDAS Data Space

Application
Select, Insert, …

Implementation
challenges:
-  Availability
-  Fault-tolerance
-  Scalability
-  Consistency
-  Efficiency

INF5040	 4	

7

System Models for DS

Server

¡ Component view of client-server model

¡ Peer-to-peer

Server

Client

Client

Roles and Responsibilities
3. Architectural Models

Process Computer

request

response

App

Peer 1 App

App

Peer 2

Peer 3

Shareable
Objects

8

System Models for DS

¡ Multiple server processes:
¡ service realized as a number of server-processes
¡ several access points

Placement Strategies - 1
3. Architectural Models

Client

Client
Server

Server

Server

service

INF5040	 5	

9

System Models for DS

¡ Client/server model with proxy-server:
¡  Cache: stores recently-used data objects that are closer to the client than

the original objects themselves.
¡  Proxy server: cache that is shared between several clients

Placement Strategies - 2
3. Architectural Models

Client

Client

Proxy
Server

Web
Server

Web
Server

10

System Models for DS

¡ Mobile code (applets)
¡ Enables e.g., “push-model”: the server invokes the client, or

more advanced user interfaces

Placement Strategies - 3
3. Architectural Models

Client Web
Server Applet

Code

Web
Server Client Applet

Code

INF5040	 6	

11

System Models for DS

¡ Mobile agents:
¡ Program (code + data) that migrates between computers

and executes a task on behalf of someone.

Placement Strategies - 4
3. Architectural Models

Client Server

Client Server Mobile
Agent

Client Server Mobile
Agent

Client Mobile
Agent Server

12

System Models for DS

¡ Build on more primitive architectural elements
¡ Recurring structures that have been shown to work well
¡ Layering Architecture
¡ Tiered Architecture
¡ Thin Clients (Cloud Clients)
¡ Among other patterns: Proxy, Brokerage and Reflection

Architectural Patterns – 1
3. Architectural Models

INF5040	 7	

13

System Models for DS

¡ Layered

Architectural Patterns – 2
3. Architectural Models

¡ Tiered

Computer and
Network Hardware

Operating System

Middleware

Applications and
Services

User View
and Control Application

Logic
Database
Manager

User View
and Control

Application
Logic

PC

Mobile Device

Application Server

DB Server

Tier 1 Tier 2 Tier 3

P
latform

14

System Models for DS

¡ Support to architectural models
¡ Categories:
¡ Distributed Objects, Distributed Components, Publish-subscribe,

Message queues, Web services, Peer-to-peer

¡ Limitations:
¡ Dependability aspects
¡ End-to-end argument
¡ Context-aware and adaptive solutions

Middleware Solutions
3. Architectural Models

INF5040	 8	

15

System Models for DS

¡ Thin Clients
¡ Move complexity away from end-user devices

¡ For example:
¡  Virtual Network Computing (VNC): graphical desktop sharing

system to remotely control another computer

Architectural Patterns – 3
3. Architectural Models

Thin
Client

Application
Process Network

Computer Server Networked device

16

System Models for DS

¡ Properties shared by all architecture models
¡  communicates by sending messages across a network
¡  requirements of performance, reliability, and security

¡ Fundamental models
¡  abstracts over unnecessary details
¡  used to address questions like

¡  what are the most important entities in the system?
¡  how do they interact?
¡  what are the characteristics that affect their individual and collective behaviour?

¡ The purpose of fundamental models
¡  to make explicit all relevant assumptions about the modeled

system
¡  to find out what is generally feasible and not feasible under the

given assumptions

Fundamental Models

INF5040	 9	

17

System Models for DS

¡ Aspects of distributed systems we want to express
¡ Interaction model
¡  processes, messages, coordination (synchronization and ordering)
¡ must reflect that messages are subject to delays, and that delay

limits exact coordination and maintenance of global time
¡ Failure model
¡  defines and classifies failures that can occur in a DS
¡  basis for analysis of effects of failures and for design of fault-

tolerant systems
¡ Security model
¡  defines and classifies security attacks that can occur in a DS
¡  basis for analysis of threats to a system and for design of systems

that are able to resist them

Fundamental Models
4. Fundamental Models

18

System Models for DS

¡ Performance of communication:
¡ Latency – delay between the start of the transmission and the

beginning of reception
¡ Bandwidth – Total amount of information that can be

transmitted
¡ Jitter – Variation in the time taken to deliver a series of

messages: relevant for multimedia data
¡ Computer Clocks:
¡ Each computer: its own clock
¡ Two processes running on different computers: timestamps?
¡ Even reading at the same time: different timestamps!
¡ Clock drift: rate for deviation from reference clock
¡ How to correct time: from GPS or reference computer in the

network

Significant Factors
4. Fundamental: Interaction Models

INF5040	 10	

19

System Models for DS

¡ Synchronous distributed systems
¡  the time to execute each step of a process: known lower and

upper bounds
¡  each message transmitted over a channel is received within a

known bounded time
¡  local clock’s drift rate from real time has a known bound

¡ Asynchronous distributed systems
¡  the time to execute each step of a process can take arbitrarily long
¡  each message transmitted over a channel can be received after an

arbitrarily long time
¡  local clock’s drift rate from real time can be arbitrarily large

Two Variants
4. Fundamental: Interaction Models

20

System Models for DS

¡ Many coordination problems have a solution in synchronous
distributed systems, but not in asynchronous

¡  e.g., “The two army problem” or “Agreement in Pepperland” (see
[Coulouris])

¡ Often we assume synchrony even when the underlying
distributed system in essence is asynchronous

¡  Internet is in essence asynchronous but we use timeouts in
protocols over Internet to detect failures

¡  based on estimates of time limits
¡  but: design based on time limits that can not be guaranteed, will

generally be unreliable

Significance of Syn. vs Asyn. DS
4. Fundamental: Timing

INF5040	 11	

21

System Models for DS

¡ distributed coordination protocols have a need for
ordering of events in time (“happened before”-
relationship)
¡ events: sending and receiving messages
¡ example: update of replicated data must generally be done in

the same order in all replica

¡ difficult to use physical clocks in computers for
coordination (e.g., clock values in messages)
¡ have limited time resolution and ticks with different rates (clock

drift)
¡ basic properties of message exchange limit the accuracy of the

synchronization of clocks in a DS [Lamport 78]

Ordering of Events
4. Fundamental: Timing

22

System Models for DS

¡ Example: e-mail exchange

Example: E-mail Exchange
4. Fundamental: Timing

Y

X

Z

send(m)

rcv(m)

m1

m2

rcv(m)

A

send(Re:m)

rcv(Re:m)
send(Re:re:m)

rcv(Re:m) rcv(Re:re:m)

rcv(Re:re:m)

m1 m3 m2

Time

m3

INF5040	 12	

23

System Models for DS

¡ Possible to describe logical ordering of events even
without accurate clocks by using logical clocks

¡ Principle
¡  If two A and B happen in the same process, then they occur in

the same order: A → B
¡  if A is sending of a message by one process and B is the

receipt of the same message by another process, then A → B

¡ Happened-before relationship
¡  is derived by generalizing the two relationships above such that

if A, B and C are events and A → B and B → C, then A → C

¡ Logical clocks extends the idea above
¡ more later in the course

Logical Clocks
4. Fundamental: Timing

Time and Coordination in DS

24

System Models for DS

¡ Is a definition of in which way failures may occur in
distributed systems

¡ Provides a basis for understanding the effects of failures

¡ Definition of the failure model of a service enables
construction of a new service that hides the faulty
behavior of the service it builds upon
¡  example: TCP on top of IP
¡  TCP: reliable byte-stream service
¡  IP: unreliable datagram service

A Failure Model
4. Fundamental: Failure

INF5040	 13	

25

System Models for DS

¡ Specification of failure models requires a way to describe
failures

¡ One approach is to classify failure types (Cristian, 1991)
(Hadzilacos & Toueg, 1994)
¡ Omission failures
¡ Arbitrary failures
¡  Timing failures

¡ System model:

Specification of a Failure Model
4. Fundamental: Failure

Send m Receive m

outgoing message buffer

communication channel

incoming message buffer

Process p Process q

26

System Models for DS

¡ A process or channel fails to perform actions that it is
supposed to do

Omission Failures
4. Fundamental: Failure

Failure class Affects Description

Fail-stop Process Process halts and remains halted.
 Other processes may detect this state.

Crash Process Process halts and remains halted.
 Other processes may not be able to detect
 this state.

Omission Channel A message inserted in an outgoing message
 buffer never arrives in the other end’s

 incoming buffer.
Send Process A process completes a send-operation, but
omission the message is not put into the outgoing

 message buffer.
Receive- Process A message is put into a process’s incoming
-omission message buffer, but the process does not

 receive it.

INF5040	 14	

27

System Models for DS

¡ Process or channel may exhibit arbitrary behavior when
failing,
¡  send/receive arbitrary messages at arbitrary intervals
¡  a process may halt or perform “faulty” steps
¡  a process may omit to respond now and then

¡ By adopting a byzantine failure model, we can attempt to
make systems that are “ultra-reliable” (handles HW
failures, and provide guaranteed response times)
¡  control systems in air planes
¡  patient monitoring systems
¡  robot control systems
¡  control systems for nuclear power plants

Arbitrary failures (Byzantine failures)
4. Fundamental: Failure

28

System Models for DS

¡ Applicable in synchronous distributed systems
¡  responses that are not available to clients in a specified time interval
¡  timing guarantees requires guaranteed access to resources when

they are needed

¡ Examples:
¡ control and monitoring systems, multimedia systems

Timing Failures
4. Fundamental: Failure

Failure class Effects Description

Clock Process Process’s local clock exceeds the bounds on
 its rate of drift from real time

Performance Process Process exceeds the bounds on the interval
 between two processing steps

Performance Channel A message’s transmission takes longer than
 the stated bounds

INF5040	 15	

29

System Models for DS

¡ Masking a failure by
¡ hiding it all together or
¡  e.g., message retransmission: hiding omission failures

¡ converting it into a more acceptable type of failure
¡  e.g., checksums for masking corrupted messages: in fact

an arbitrary failure => an omission failure

¡ Reliable 1-to-1 communication
¡ To mask some communication omission failures
¡ Defined in terms of:
¡  Validity – Any message in the outgoing message buffer is eventually

delivered to the incoming message buffer
¡  Integrity – The message received is identical to the one sent, and no

messages are delivered twice
¡ Threats:
¡  Retransmission with no duplicate detection
¡  Malicious injection of messages

Masking Failures
4. Fundamental: Failure

30

System Models for DS

¡ Three types of system models
¡  Physical models: capture the hardware composition of a system in

terms of computers and other devices and their interconnecting
network

¡ Architecture models: defines the components of the system, the way
they interact, and the way the are deployed in a network of computers
¡  Architectural elements (entities, communication paradigms)
¡  Architectural patterns (layering, tiered)
¡  Middleware solutions

¡  Fundamental models: formal description of the properties that are
common to all architecture models
¡  interaction models
¡  failure models
¡  Security models (not covered in this course)

Summary

