Object-Based
Distributed Systems

INF5040/9040 Autumn 2015

Lecturer: Amir Taherkordi (ifi/UiO) @

Olgac
September 14, 2015 UiO ¢ University of Oslo

Object-Based DS

Outline

Local Procedure Call
Remote Procedure Call
Distributed Objects
Remote Method Invocation
Object Server

CORBA

Java RMI

Summary

© No g kDb~

INF5040

INF5040

Object-Based DS

Local Procedure Call

® Many distributed systems:
® based on explicit message exchange between processes
® How is it done in a single machine?

Local Procedure Call, e.g.:
count = read(fd, buf, nbytes);

Stack pointer

= Parameter passing in Jooa varablos. / looalvarables

a local procedure call < e
= Parameter passing: e

read's local
® call-by-value: £d and nbytes variables <
= call-by-reference: buf
stack before the stack while the called
callto read procedure is active

3

Object-Based DS

Remote Procedure Call (1)

u [deally:
® make a remote call look as a local one
m in other words: achieving access transparency

® The basic idea:

Wait for result

ST === Call remote Return

procedure from call
Request Reply
Server —---mooo oo ooooooooooo-
..ae====="="-Call local procedure Time >
Server Stub_guy and return results

Object-Based DS

Remote Procedure Call (2)

A RPC occurs in the following 10 steps:

Client Server

Server

Client Routines
Routines

Local procedure [)
call (1) (10) (6) (5)
Client Stub Server Stub
4
System call (2) (9) (7) (4)
(8)
Network Network
Routines Routines
Network
Local kernel communication (3) Remote kernel

Object-Based DS

Remote Procedure Call (3)

® The net effect of these steps:

To convert the local call by the client procedure to a local call to
the server procedure without either client or server being aware
of the intermediate steps or the existence of the network

® These steps seem straightforward?
® how about taking parameters by the client stub, packing
them, and sending them to the server stub?
® passing value parameters
® passing reference parameters

INF5040

INF5040

(O] J[leig =L lBRY 2. Remote Procedure Call
Passing Value Parameters (1)

m Parameter marshaling: packing parameters in a

message
madd (i, j) example:
Client machine Server machine
Client process : Server process
1. Client call to i
procedure Implementation 6. Stub makes
of add local call to "add"
, SEenEC
= Client stub
proc: "add" proc: "add"
int: val(i) 2. Stub builds int: val(i) 5. Stub unpacks
int: _val(j) message int._ val(j) message
A
. proc: "add" 4. Server OS
Client 0S int__va() Server OS hands message
int:_val()) to server stub

3. Message is sent
across the network

(O] J[leig =R lBRY 2. Remote Procedure Call
Passing Value Parameters (2)

® This model works as log as:
® client and server machines are identical

m all parameters and results are scalar/base types (int, char,
boolean, ...)

® Challenges:

= in DS: each machine has its own representation of data: e.g.,
IBM mainframe: EBCDIC code, while IBM pc: ASCII

= byte numbering; left-to-right or other way

18] i2] 1] o] [or [1I [21 8! D 20 |8
o Jo o |5 || 5| o] of ol of of ol s
7] ie] is| i4] [al 5] [el [z] | |4l |5i |&} |7
R R N I J | Ll L Ll L] J
Sent from Intel Pentium Received by SPARC After being inverted

INF5040

(O] J[leig =L lBRY 2. Remote Procedure Call
Passing Reference Parameters

® How to pass references (pointers)?
® pointers are meaningful within the address space of the process
® not possible to pass only the address of parameter

= One solution:
1. copy the array into the message and send to the server
2. server stub calls the server with a pointer to this array
3. server makes changes to the array
4. message will be sent back to the client stub
5. client stub copies it back to the client

= How about pointers to arbitrary data structures:
® e.g., complex graph

® solution: passing pointer to server and generating special code for
using pointers, e.g., code to make requests to client to get the data

(O] J[leig =R lBRY 2. Remote Procedure Call
Stub Generation

® \What we understood so far:
= the same protocol for both client and server: e.g.,
® agree on the format of messages

= representation of simple data structure message
foobar's local
m A complete example: variables
X
y
foobar (char x; float y; int z[5] {..} 5
z[0]
Z[1]
z[2]
2[3]
z[4]

® Next step after defining RPC protocol:
® implementing client and server stubs

= stubs for the same protocol but different procedures
= Differ only in in their interface

10

INF5040

Object-Based DS

Outline

BT

Middleware Services

" RMI and RPC

request-response protocols

marshalling and external
data representation

UDP og TCP

3. Distributed Objects
Characteristics of Distributed Objects (1)

mDistributed objects execute in different
processes:

m each object has a remote interface for controlling
access to its methods and attributes that can be
accessed from other objects in other processes
located on the same or other machines
® declared via an “Interface Definition Language” (IDL)

= Remote Method Invocation (RMI)

= method call from an object in one process to a (remote)
object in another process

12

INF5040

3. Distributed Objects
Characteristics of Distributed Objects (2)

" Remote Object Reference (ROR): unique identity of
distributed objects

m other objects that want to invoke methods of a remote object
needs access to its ROR

® RORs are “first class values”
® can occur as arguments and results in RMI
® can be assigned to variables

m Distributed objects are encapsulated by interfaces

m Distributed objects can raise “exceptions” as a result
of method invocations

m Distributed objects have a set of named attributes
that can be assigned values

3. Distributed Objects
The Type of a Distributed Object

= Type of an object:

Attributes, methods and exceptions are properties
that objects can export to other objects

m several objects can export the same properties (same
type of objects)

m the type is defined once

mThe object type is defined by the interface
specification of the object

INF5040

(@] J[leig =L lBRY 3. Distributed Objects

Declaration of Remote Methods

m A remote method is declared by its signature
®|n CORBA the signature consists of

"3 name

m 3 list of in, out, and inout parameters

® 3 return value type

m 3 list of exceptions that the method can raise

mvoid select (in Date d) raises (AlreadySelected);

15

Object-Based DS

Remote Method Invocations (1)

= Closely related to RPC but extended into the world of
distributed objects

= Commonalities
= both support programming with interfaces
= both typically constructed on top of request-reply protocols
= both offer a similar level of transparency

m Differences

= in RMI: using the full expressive power of object-oriented
programming: use of objects, classes and inheritance

= jn RMI: all objects have unique references => object references
can also be passed as parameters => richer parameter-
passing semantics than in RPC

16

INF5040

Object-Based DS

Remote Method Invocations (2)

= A client obg'ect can request the execution of a
method of a distributed, remote object

® Remote methods are invoked by sending a
message (including method name and arguments)
to the remote object

® The remote object is identified and located using
the remote object reference (ROR)

m Clients must be able to handle exceptions that the
method can raise

17

O] Jleig =R BN 4. Remote Method Invocations
Remote Interfaces

remote
interface
m1
e m

m3

“Temoteobject

m [ocal objects can invoke: the methods in the
remote interface + other methods implemented by
a remote object

18

INF5040

(O] J[leig =R BN 4. Remote Method Invocations
Implementation of RMI

®Three main tasks:
= Interface processing

= integration of the RMI mechanism into a programming
language.

® basis for realizing access transparency
= Communication

® message exchange (request-reply protocol)
= Object location, binding and activation

m |ocate the server process that hosts the remote object and
bind to the server

® gctivate an object-implementation
® basis for realizing location transparency

O] Jleig =R BN 4. Remote Method Invocations
RMI Interface Processing

mRole of proxy and skeleton

client
object A proxy for B Request

SIS

server
I remote
skeleton object B
& dispatcher
for B’s class

servant

—

Remote Communication Communication Remote reference
reference module module module module

20

10

INF5040

(O] J[leig =R BN 4. Remote Method Invocations

Elements of the RMI Software (1)

mRMI interface processing: Client proxy

m |ocal “proxy” object for each remote object and holds a
ROR (“stand-in” for remote object).

m the class of the proxy-object has the same interface as
the class of the remote object

® can perform type checking on arguments

m performs marshalling of requests and unmarshalling of
responses

® transmits request-messages to the server and receive
response messages.
® Makes remote invocation transparent to client

21

O] Jleig =R BN 4. Remote Method Invocations

Elements of the RMI Software (2)

mRMI interface processing: Dispatcher

mA server has one dispatcher for each
class representing a remote object:
Ereceives requests messages

myses method id in the request message to
select the appropriate method in the
skeleton (provides the methods of the class)
and passes on the request message

22

11

INF5040

(O] J[leig =R BN 4. Remote Method Invocations

Elements of the RMI Software (3)

® one skeleton for each class repres
object

object.

mRMI interface processing: Skeleton

® provides the methods of the remote interface

= unmarshals the arguments in the request message
and invokes the corresponding method in the remote

= waits for the invocation to complete and then

® marshals the result, together with any exceptions, in
a reply message to the sending proxy’s method.

enting a remote

23

O] Jleig =R BN 4. Remote Method Invocations

Elements of the RMI Software (4)

® Remote object reference module

server
client
Proxy Remote
Obies A e skeleton & Y
request . f)
- - = dispatcher faor '
- - < B’s class
reply
\\ ‘
/o)
servant
Client ROR ; o
module ::g;:.t @ object (r:;':;jm:mcatlon Server ROR remote object table:
MAP(.ROR proxy) module MAP(ROR,servant)

24

12

INF5040

(O] J[leig =R BN 4. Remote Method Invocations
Generation of Proxies, Dispatchers and Skeletons

- h Skeletons@

Client code *~» Proxie
\
Add server code

@ Compile
010110
110011
101000,

Client implementation %) o
Server implementation®®”

25

O] Jleig =R BN 4. Remote Method Invocations
Server and Client Programs

m Server program contains
m the classes for the dispatchers and skeletons
® the implementation classes of all the servants
® an initialization section
= creates and initializes at least one servant

m additional servants (objects) may be created in response to
client requests

m register zero or more servants with a binder
m potentially one or more factory methods that allow clients
to request creation of additional servants (objects)
= Client program contains

m the classes and proxies for all the remote objects that it
will invoke

26

13

INF5040

(O] J[leig =R BN 4. Remote Method Invocations
RMI Name Resolution, Binding, and Activation

= Name resolution
® mapping a symbolic object name to an ROR
m performed by a name service (or similar)

= Binding in RMI
® Jocating the server holding a remote object based on the

ROR of the object and placing a proxy in the client
process’s address space

m Activation in RMI

= creating an active object from a corresponding passive object
(e.g., on request).
= register passive objects that are available for activation
= activate server processes (and activate remote object within them)

27

O] Jleig =R BN 4. Remote Method Invocations
RMI Sequence Diagram

. Name
X . : register
1 1
' —_—

1
Lookup 1 1

L

: _—
]

. Qeturn ref to servant g———

1
. 1 ORB;locates server
invoke - hostihg the servant

Cd

v

A

return

N

28

14

INF5040

0[Sl g=EEEEBISY 4. Remote Method Invocations

Implicit and Explicit Binding

Distr_object* obj_ref;
obj_ref = lookup(obj_name);

obj_ref->do_something();

Distr_object* obj_ref;
Local_object* obj_ptr

obj_ref = lookup(obj_name);
obj_ptr = bind(obj_ref);
obj_ptr->do_something();

/I Declare a system wide object reference
/I Initialize the reference to a distrb. obj

/I Implicit bind and invoke method

// Declare a system wide object reference
// Declare a pointer to a local object

// Initialize the reference to a distrb. obj
// Explicitly bind and get pointer to local prg
// Invoke a method on the local proxy

29

Object-Based DS

Object Server

m The server

needs to know

the invocation

® is designed to host distributed objects

m provides the means to invoke local objects, based on
requests from remote clients

®For an object to be invoked, the object server

= which code to execute
= which data it should operate
m whether it should start a separate thread to take care of

30

15

INF5040

(O]o)[lagl=EEEI DY 5. Object Server

Activation Policies

® Transient objects: creating object at the first invocation
request and destroying it when no clients are bound to it
anymore
= advantage: object uses server’s resources only it really needs
= drawback: taking time to make an invocation (object needs to be created first)
= an alternative policy: creating all transient objects during server initialization,

at the cost of consuming resources even when no client uses the object.
= Data and Code Sharing:
® sharing neither code nor data: e.g., for security reasons.
m Sharing objects’ code: e.g., a database containing objects that belong
to the same class
® Policies with respect to threading:

= single thread

= several threads, one for each of its objects: how to assi_gn threads to objects
and requests? One thread per object? One per request?

31

5. Object Server
Object Adaptor/Wrapper

= A mechanism to group objects per policy.
m software implementing a specific activation policy

Server with three objects

® Upon receiving invocation request: SEnRinecie

m it is first dispatched to the (skeleton)
appropriate object adapter

m gdaptor extracts an object reference
from an invocation request
‘ Object adapter | | Object adapter ‘

m gdaptor dispatches the request to]hﬁl\

the referenced object, but now
following a specific activation policy,

A
Local OS

e.g., single-threaded or multithreaded mode

32

16

INF5040

Object-Based DS

Outline

Middleware Services

RMI and RPC

request-response protocols

marshalling and external
data representation

UDP og TCP

33

Object-Based DS

Common Object Request Broker Architecture
(CORBA)

5%

.
CORBA

34

17

INF5040

CORBA Middleware (1)

m Offers mechanisms that allow objects to invoke
remote methods and receive responses in a
transparent way

® |]ocation transparency
m access transparency

mThe core of the architecture is the Object
Request Broker (ORB)

m Specification developed by members of the
Object Management Group (www.omg.org)

35

CORBA Middleware (2)

m Clients may invoke methods of remote objects
without worrying about:

®m object location, programming language, operating system
platform, communication protocols or hardware.

X Y V4 .
vele Z s Different
method foo() foo() programming languages
I (or object models)

[[\F e Y
Common object model

Object Request Broker (ORB) RMI over IIOP

36

18

INF5040

(O][-leicl 2B 6. CORBA
Supporting Language Heterogeneity

® CORBA allows interacting objects to be
implemented in different programming languages

= |nteroperability based on a common object model
provided by the middleware

= Need for advanced mappings (language
bindings) between different object implementation
languages and the common object model

37

Object-Based DS [se10]3{=7\
Elements of the Common Object Model

® Metalevel model for the type system of the middleware

m Defines the meaning of e.g.,
m object identity
® object type (interface)
® operation (method)
m attribute
= method invocation
= Exception
® subtyping / inheritance

= Must be general enough to enable mapping to common
programming languages

= CORBA Interface Definition Language (IDL)

38

19

INF5040

(O][-leicl 2B 6. CORBA
CORBA IDL

m | anguage for specifying CORBA object types
(i.e. object interfaces)

m Can express all concepts in the CORBA
common object model
= CORBAIDL is

® not dependent on a specific programming language
m syntactically oriented towards C++
= not computationally complete

m Different bindings to programming languages
available

39

Object-Based DS [se10]3{=7\
CORBA Architecture

implementation, [interface
repository repository

Request

client @
program/| for A

or dynamic invocation or dynamic skeleton

skeleton

Reply

40

20

INF5040

(O][-leicl 2B 6. CORBA

CORBA Services
Domain . . CORBA
Application objects Interfaces EU(S:IFIGSS objects Facilities
-Lommerce Compound doc
Financial Domain Help
‘ . , ’ Healthcare ’ , Printing
| Telecomm

Object Request Broker (ORB)

N.aming Concurrency
Lifecycle Relationships

I Persistence Externalization
0 ® 00 .. o
Transactions | jcensing
Object services Trading Security
- . Time Properties
Description of the services:
Coulouris ch. 8, Figure 8.6 M

Object-Based DS

Java Remote Method Invocation (RMI)

)
S
—

Java

42

INF5040

Object-Based DS
Java RMI

= Remote Method Invocation (RMI) supports
communication between different Java Virtual
Machines (VM), and possibly over a network

® Provides tight integration with Java
®= Minimizes changes in the Java language/VM
® Works for homogeneous environments (Java)

m Clients can be implemented as applet or
application

43

Object-Based DS AREVERV!
Java Object Model

® [nterfaces and Remote Objects
mClasses

m Attributes

m Operations/methods

m Exceptions

® [nheritance

44

22

INF5040

Object-Based DS AREVERV!
Java Interfaces to Remote Objects

m Based on the ordinary Java interface concept

m RMI does not have a separate language (IDL)
for defining remote interfaces

» pre-defined interface Remote

® All RMI communication is based on interfaces
that extends java.rmi.Remote

® Remote classes implement java.rmi.Remote
® Remote objects are instances of remote class

45

Object-Based DS AREVERV!
Example

interface name declares the Team interface as “remote”

/

interface Team extends Remote {
String name () throws RemoteException;
Trainer[] trained by () throws RemoteException;
Club club () throws RemoteException;
Player[] player () throws RemoteException;
void chooseKeeper (Date d) throws RemoteException;
void print () throws RemoteException;

b

remote operation

46

23

INF5040

Object-Based DS AREVERV!
Parameter Passing

® Atomic types transferred by value
® Remote objects transferred by reference
= Non-remote objects transferred by value

class Address {
public String street;
public String zipcode;
public String town;

b7

interface Club extends Organisation, Remote {
public Address addr () throws RemoteException/,

}; \ Returns a copy of the Address-object

47

Object-Based DS AREVERV!
Architecture of Java RMI

K/ _—

Stub Reglstry Generlc Activation
Interfaces Dlspatcher Interfaces

RMI Runtime (rmid, RMIregistry)

Non-persistent
name server

48

24

INF5040

Summary (1)

mRemote Procedure Calls

mDistributed objects executes in different
processes.

® remote interfaces allow an object in one process to
invoke methods of objects in other processes located
on the same or on other machines

mObject-based distribution middleware:

= middleware that models a distributed application as a
collection of interacting distributed objects (e.g.,
CORBA, Java RMI)

49

Summary (2)

= [mplementation of RMI

® proxies, skeletons, dispatcher

m interface processing, binding, location, activation
® Object servers

® object adapters and activation policies

= Principles of CORBA

m clients may invoke methods of remote objects without worrying
about: object location, programming language, operating system
platform, communication protocols or hardware.

® Principles of Java RMI
m similar to CORBA but limited to a Java environment

50

25

