Software Components
and Distributed Systems

INF5040/9040 Autumn 2015

Lecturer: Amir Taherkordi (ifi/UiO) @

Olgac
October 5, 2015 UiO ¢ University of Oslo

Distributed Components
Outline

Introduction to Components
Basic Design Concepts
Distributed Components

hoObd-=

Main Technologies for Distributed
Components

5. Summary

INF5040

INF5040

Distributed Components JiIsiiyels[Sleiile]g)
Long History of Components

= 1968 NATO Workshop on Software Eng.

= D. Mcllroy introduced the
notion of components

m to further industrialize
software industry

¢ ' L
il
\ s

Méliroy’ talk on Components, 196

= His definition:
= Components: families of routines
= with varying degrees of precision, robustness, generality, etc.
® an industry-oriented viewpoint

Distributed Components Jilsiiyels[Sleiile]g)
Software Components

= Some Definitions

= A unit of composition with contractually d
specified interfaces and explicit dependencies. d
(Clemens Szyperski)

= A piece of self-contained, self-deployable code, assembled

with other components through its interface.
(Wang and Qian)

= A nearly independent, and replaceable part of a system with a

clear function, implementing a set of interfaces.
(Philippe Krutchen, Rational Software)

® For example: JavaBeans, COM, CORBA, OSGi

INF5040

Distributed Components JiIsiiyels[Sleiile]g)

Why Components?

® A natural way for building
systems, e.g., automotive
industry

® [ndustrialized viewpoint to
software production?

= Avoid handmade software products

= Main goals:
® Conquering Complexity: increase in software size
® Managing Change
m Software Reuse: black-box, gray-box and white-box reuse

Distributed Components

Three Basic Design Concepts

I. Component Model

Properties (P)
L H]
Methods Component () Methods “yi Interface
(R \A\/ (PM) ‘T*_:,_;;.a 2 Component 2
Events (E)
| C=(PPWRME) | | |= (PM. E) |

= Binding of provided and required interfaces
m Reflects direction of method calls (Not the direction of data flow)
= Required interface
= A set of method calls a component potentially may issue
= Support for distribution?
= When the binding can be made across address spaces and computers

INF5040

Distributed Components

Three Basic Design Concepts — cont’d

Il. Connection Models and Composition

= |[ntegrate components to generate a new component with pre-
defined composition operators.

= Composition is the fundamental method for construction, extension
and reuse of components

® |n contrast to inheritance in object-oriented models
= Main connectors:

= Method-based: composition of components

= Event-based

(H]
Method-based
® 20 Component 2 o
) Q
A\

Event-based

Component 1

lll. Deployment Models

m the process and activities for component installation and any
necessary configuration.

m E.g., EJB produces a XML-based deployment descriptor

Distributed Components [AIslei{e[gR@felglelIe]

Designing a Component Platform

= The underlying foundation to construct, assemble, deploy
and manage components.

® Defines rules for deployment, composition and activation
of components.

= To deliver and deploy components: a standardized archive
format that packages component code and meta-data

= Embraces three design concepts:
= component model, connection model, and deployment model

m designed as a set of contractually specified interfaces

= Contracts agreed between components and a component
platform

INF5040

DI} igloVI =l @felpplelelglsgIEY 2. Design Concepts

Designing a Component Platform — cont’d

» Contracts as the key design element

= What is a contract?

= Set of provided interfaces: Some may be required by the component platform

= Set of required interfaces: must be offered by other components available on
the platform

® Pre and post conditions/invariants
» Extra-functional requirements: transactions, security, performance, ...

= Functions defined both syntactically and semantically
® int add(int a, int b)
® pre: a + b <= Integer.MAXINT
m post:result =a+b
= Extra-functional requirements
® Guarantees: Response within 10 ms
= Conditions: Needs 1000 CPU-cycles

= Transaction requirements: e.g, create new transaction when component is
invoked, serializable, ...

Distributed Components [AIslei{e[gR@felglelIe]

Components vs. Objects

= Objects
® one mission: encapsulation for reusability
® reusable class libraries, e.g., Foundation Classes for Java or C++

® Objects for reuse in the large?
= fine-grained classes with complex relationships and dependencies
= Difficult to take classes out of the lib and reuse

Object-Oriented Component-based

classes and object components

data types and hierarchies interfaces and composition
implementation technology packaging & distribution technology
tightly coupled: low-level reuse loosely coupled: high-level reuse
limited sets of supported services: more support for high-level services:
security, transactions, ... security and transactions, ...

INF5040

DI} igloVI =l @felpplelelglsgIEY 2. Design Concepts

An Example: JavaBeans

= Java-based Component model

= A JavaBean component: Properties, Methods, Events,
Customization, and Persistence.

= Requirements for developing beans:
= implementing the serializable interface to store/retrieve a bean
= Properties: exposed through the “ set” and “ get” methods
= Events: exposed through public “add” and “remove” methods

= Example: JavaBean Events

Trigger an
source: SourceComp XListener
+addXListener(listener: XListener) +handler(event: XEvent)

(2) Register by invoking
source.addXListener(listener);

7

listener: ListenerComp ‘
(1) Alistener object is an instance
of a listener interface

Distributed Components

Distributed Components

® Advantages of distribution
® | oad sharing
® |ncreased availability
m Heterogeneity

= Replication

. -
. . Computer 1 Computer 2

® Distributed components pop rop2

m characteristics of components +
functionality of middleware systems I I

. inter-procesr?_ Congmuréica_tion | Inter-process Comm. (Middleware) l
across machine boundaries

Network

= An evolution of distributed objects

INF5040

3. Distributed Components
Revisit Distributed Objects

= Objects that
= reside in separate address spaces
= their methods are remotely accessible: client & server objects

® Distributed object middleware
= |nfrastructure for access to remote objects transparently
= bhased on the Remote Procedure Call (RPC)

- ——— 0
. Object \;::\\ API Driver

S VN 0 Security

E Q i ‘\\ API Service

E """ Q“" Skeleton || e

\] Server

....................................... ' API
Explicit Middleware

security, persistence, etc.

= Object developer
= particular implementations of services for particular settings

= Application logic entangled with logic for life cycle management, transactions,

[DJEE]tglelVic=To M@ elpglelelgl=gIY 3. Distributed Components

Issues with Object-Oriented Middleware

= Implicit dependencies
m |t is not clear what dependencies an object have on other objects

® [nteraction with the middleware
= Many low-level details

® | ack of separation of distributed concerns
m Security, transactions, coordination, etc.

= No support for deployment
= For example in CORBA and Java-RMI

= How to deploy the components of my application?
= Which services will be available on a given host?
= Who activates my objects?

= \WWho manages the life-cycle of my objects?

INF5040

DJEE]tglelVic=To M@ elpglelelgl=1gIY 3. Distributed Components

{

Implicit Middleware

m Better support for “separation of concerns”:

Application
Logic

Management

Life Cycle

Persistence

Security

1

e —— G \.

Distributed
Component

Request

?

Interceptor |*

N,
.,

Implicit Middleware

)

® Changing middleware services separately without
changing the application code

Database
Driver

Security
Service

Transaction
Server

[DJEE]tglelVic=To M@ elpglelelgl=gIY 3. Distributed Components

= To realize implicit middleware: How?
m Distributed Components + Container

Component-based Middleware

Distributed Component

D The designer only focuses on the component logic, @

D not burdened with the implementation of location, @
persistence, transactional capabilities and security.

Container

m Responsibilities of the container
= |ife cycle management, system services (e.g., transactions), security

= dynamic deployment and activation of new components

= e.g., resolve dependencies dynamically or activate components requested in
method calls

= Front-end for remote communication including interception of incoming invocations

(cf. implicit middleware)

= Middleware that supports the container pattern: Application
Server

INF5040

DJEE]tglelVic=To M@ elpglelelgl=1gIY 3. Distributed Components

Application Servers: Key Players

Technology Developed by Further details
WebSphere Application Server 1BM [www.ibm.com]
Enterprise JavaBeans SUN [java.sun.com XII]
Spring Framework SpringSource [www.springsource.org]
(a division of VMware)
JBoss JBoss Community [www.jboss.org]
CORBA Component Model OMG [Wang et al. 2001]
JOnAS OW?2 Consortium [jonas.ow2.org]
GlassFish SUN [glassfish.dev.java.net]

Distributed Components

Distributed Components- Main Technologies

2Sun
= Sun/Oracle

= defined the Enterprise Java Beans (EJB) specification as part
of their Enterprise Edition of the Java 2 platform.

= OMG !
= defined the CORBA Component Model (CCM), providing a
distributed component model for languages other than Java.

® Microsoft & microsoft

= defined the Distributed Component Object Model (DCOM),
extending Microsoft's COM and supporting distributed
communication under Microsoft's COM+ application server.

INF5040

Distributed Components [ZZSar=Yelslgle]lels[(-Xl =N]=}

Enterprise JavaBeans

m A server-side component model

Web Container

Servlet
g |g

<ol
HHE]

EJB Container

= Three-tier architecture

Application Client
ontainer

Application

= Beans in EJB: to capture business logic

= EJB container: supporting key distribution services: transactions,
security and lifecycle
= container-managed: injecting calls to the associated services
= bean-managed: developer takes more control over these services

4. Technologies: EJB
EJB Component Model

®Bean: a component offering business interfaces
(remote and local)

m Session beans: stateless and stateful
® Message-driven beans: listener-style interface

® Bean implementation
® Plain Old Java Object (POJO) with annotations, e.g.:

@Stateful public class eShop implements Orders {...}
QRemote public interface Orders {...}

® A significant number of annotations for container services

20

10

INF5040

Distributed Components [ZZSar=Yelslgle]lels[(-Xl =N]=}

An Example: Transactions

@Stateful
@TransactionManagement (BEAN)

public class eShop implements Orders {

@Resource javax.transaction.UserTransaction ut;
public void MakeOrder (...) {

ut.begin() ;

ut.commit () ;
}

} Bean-Managed

@Stateful
@TransactionManagement (Container)

public class eShop implements Orders {
@TransactionAttribute (TransactionAttributeType.REQUIRED)

public void MakeOrder(...){

}

Container-Managed

21

Distributed Components [ZZSar=Yelslgle]lelo[(-Xl =N]=}

Other Aspects of EJB

® Dependency injection in container:

® managing and resolving the relationships between a
component and its dependencies, e.g.

‘@Resource javax.transaction.UserTransaction ut;

= EJB Interception:
= {0 associate particular action(s) with an incoming call on a
business interface, e.g.

public class eShop implements Orders {
public void MakeOrder (...) {...}

@AroundInvoke
public Object log(InvocationContext ctx)
System.out.println (“invoked method:“ +
ctx.getMethod () .getName ()) ;

return invocationContext.proceed();

throws Exception {

}

22

11

Distributed Components [ZZSar=Yelslgle][els]{=1

Fractal Component Model

= A lightweight component model

® Programming with interfaces

= Uniform model for provided and required interfaces
m Explicit representation of the architecture

= No support for deployment, container patterns, etc.
= Configurable and reconfigurable at runtime

® Programming language agnostic model

= |mplementations of the model available in several programming
languages (Java, C, C#, Smalltalk, Python)

23

[DIES]iglolVI =l N @felpylelelglsgIEY 4. Technologies: Fractal

Fractal Component Model — cont’d

= Server (provided) and Client (required) interfaces

= Composition: bindings between interfaces
= Primitive Binding: client and server within the same address space
= Composite Binding: arbitrarily complex architectures (consisting of
components and bindings) implementing communication between two
or more interfaces potentially on different machines
= Component model is hierarchical
= 3 component: subcomponents and associated bindings
= subcomponents may themselves be composite

m System is fully configurable and reconfigurable: including
components and their interconnections

24

INF5040

INF5040

DIE]iglolVI =l N @elpylelelglsgIEY 4. Technologies: Fractal

Fractal: Example

® Describing components through Architecture

Description Language (ADL)

<definition name="HelloWorld">
<interface name=“r" role="server" signature=“Runnable"/>
<component name="client">
<interface name=“r" role="server" signature=“Runnable"/>
<interface name="s" role="client" signature="Service"/>

<content class="ClientImpl"/>
</component>
<component name="server">

<content class="ServerImpl"/>
</component>
<binding client="this.r" server="client.r"/>
<binding client="client.s" server="server.s"/>
</definition>

<interface name="s" role="server" signature="Service"/>

25

[DIES]iglolVI =l N @felpylelelglsgIEY 4. Technologies: Fractal

Fractal: Example — cont’d

® Resulting Architecture

HelloWorld

r r client server

b= -l i_f@ e

26

13

INF5040

DIE]iglolVI =l N @elpylelelglsgIEY 4. Technologies: Fractal

Fractal: Component Structure
Control interfaces
nE T 2l
Q O Q Controllers
—]
Client interface
— Server interface
Content —
Membrane
27
Distributed Components
Summary
Other
Models CEE
i| Component ||

Programming Component _’ Model |
Models Based ; :
| Component |
Object Framework |1
Oriented

Distributed Llzirioze

@~ | Components

Systems

Container

DCOM

Distributed Distribution
Objects) Challenges

28

14

