
INF 5040 1

INF5040, Roman Vitenberg 1

Transactional data processing

INF 5040 autumn 2015

 lecturer: Roman Vitenberg

INF5040, Roman Vitenberg 2

Introduction
Ø Servers can offer concurrent access to the

objects/data the service encapsulates
Ø Application frequently needs to perform

sequences of operations as undivided units
§  => atomic transactions

Ø The server can offer persistent storage of
objects/data
§  => motivation for continued operation after a server

process has failed

Ø Service can be provided by a group of servers
§  => distributed transactions

INF 5040 2

INF5040, Roman Vitenberg 3

Transactional service

Ø Offers access to resources via transactions
§  Cooperation between clients and transactional servers

Ø Operations of transactional services

OpenTransaction() → TransId
CloseTransaction(TransID) → {commit, abort}
AbortTransaction (TransID) → {}

Ø  All operations between OpenTransaction and
CloseTransaction are said to be performed in a
transactional context

INF5040, Roman Vitenberg 4

Completing a transaction
Ø  Commit point for transaction T

§  All operations in T that access the server database are
successfully performed

§  The effect of the operations is made permanent (typically by
recording them in a log)

Ø We say that transaction T is “committed”
§  The service (or the database system) has put itself under an

obligation
§  The results of T are made permanent in the database

INF 5040 3

INF5040, Roman Vitenberg 5

Desirable properties of
transactions
Ø Failure atomicity (all-or-nothing semantics)

§  The effect is atomic even if the server fails
Ø Two common implementations:

§  Private copy
§  Log file

Ø Log file:
§  Updates are written directly to the database
§  Log file includes an undo record

–  Transaction id, operation type (read/write), previous
value, new value

§  If committed, write commit in log
§  If abort, roll back transaction

INF5040, Roman Vitenberg 6

Desired properties of
transactions
Ø  Isolation

§  Intermediate results of a transaction must be invisible to
other transactions

§  => need for synchronization (concurrency control)
§  Sequential execution

–  Ensures isolation but ruins the performance

§  Serializable execution (“serial equivalence”)
–  The effect of transactions in an interleaved execution must be

as if the transactions were executed in some sequential order
•  The data read as part of the transactions
•  The eventual state of the database (all data values)

–  Ensured by concurrency control algorithms

INF 5040 4

INF5040, Roman Vitenberg 7

Problem caused by lack of
isolation

Ø The problem of lost updates
Ø The problem of visible intermediate

results (inconsistent retrieval or “dirty
read”)

Ø The problem of premature write
Ø The problem of cascading aborts

INF5040, Roman Vitenberg 8

The problem of lost
updates

x: database element
T1: x = x + 1000
T2: x = x + 50

Concurrent execution Value in the database
T1: read(x) 500

 x = x +1000
T2: read(x) 500

 x = x + 50
T1: write(x) 1500
T2: write(x) 550

The performed update of T1 disappears

INF 5040 5

INF5040, Roman Vitenberg 9

Visible intermediate results
(inconsistent retrieval)

Execution (schedule)
T1: read(A)

 read(B)
 A=A-100

 write(A)
T2: read(A)

 read(B)
 sum= A + B

T1: B=B+100
 write(B)

T2 sees a semi-updated database with the new value of A
but old value of B.

T1: transfer of 100 from A to B
T2: calculates A + B

INF5040, Roman Vitenberg 10

Visible intermediate
results (“premature write”)

X: database element
T1: x = x + 1000
T2: x = x + 50

Execution Value in the database
T1: read(x) 500

 x = x +1000
 write(x) 1500

T2: read(x) 1500
 x = x + 50
 write(x) 1550
 commit T2

T1: abort T1
T2 bases its update on a temporary value of x (“dirty read”).
The transactions that has produced this value aborts
=> Failure in the execution of T2: not recoverable!!
=> T2 must delay its commit until T1 has terminated

INF 5040 6

INF5040, Roman Vitenberg 11

Problem of cascading aborts
X: database element
T1: x = x + 1000
T2: x = x + 50

Execution Database value
T1: read(x) 500

 x = x +1000
 write(x) 1500

T2: read(x) 1500
 x = x + 50
 write(x) 1550

T1: abort

T2 bases the update on a temporary
value of x and waits with performing commit.
The transaction that has produced that value
(T1) aborts
=> Failure in the execution of T2

=> T2 must abort

If other transactions have seen T2’s
temporary values
=> Those must abort too

This situation is called
cascading aborts

Prevent cascading aborts: Transactions can only read data objects from transactions
 that have already performed commit.

INF5040, Roman Vitenberg 12

Summary:
Desirable properties of transactions

Ø  Atomicity: All-or-nothing semantics
Ø  Consistency: Ensures that the data is manipulated

correctly. Generally assumed to be responsibility of the
programmer

Ø  Isolation: Transaction does not make its own updates
visible to other transactions before it has performed
“commit”. Implemented by concurrency control
methods

Ø Durability: When a transaction has performed “commit”,
its effect in the database is never lost due to later a
failure.

Ø  Collectively called ACID properties ...

INF 5040 7

INF5040, Roman Vitenberg 14

Distributed transactions

Z

Y

X

Client

Client transaction
that invokes

operations on
multiple servers T

INF5040, Roman Vitenberg 16

Component roles

Ø Distributed system components that are
involved in a transaction can have a role as:

Ø Transactional client
Ø Transactional server
Ø Coordinator

INF 5040 8

INF5040, Roman Vitenberg 17

Coordinator

Ø Plays a key role in managing the transaction
Ø The component that handles begin/commit/abort

operations
Ø Allocates globally unique transaction identifiers
Ø Includes new servers in the transaction (Join

operation) and monitors all the participants
Ø Typical implementation

§  The first server that the client contacts (by invoking
OpenTransaction) becomes a coordinator for the
transaction

INF5040, Roman Vitenberg 18

Transactional server

Ø  Serves as a proxy for each resource that is accessed or
modified under transactional control

Ø  Transactional server must know its coordinator
§  via parameter in the AddServer operation

Ø  Transactional server registers its participation in the
transaction via the coordinator
§  By invoking the Join operation at the coordinator.

Ø  Transactional server must implement a commitment
protocol (such as two-phase commit - 2PC)

INF 5040 9

INF5040, Roman Vitenberg 19

Transactional client

Ø  Sees the transaction only through coordinator
§  Invokes operations at the coordinator

–  Open Transaction
–  CloseTransaction
–  AbortTransaction

Ø  The implementation of the transaction protocol (such as
2PC) is transparent for the client

INF5040, Roman Vitenberg 20

BranchZ
C

D

BranchY

B

BranchX

A

Example

Client

1. BranchX.OpenTransaction

2. A.Withraw(40)

3. BranchY.AddServer(T,BranchX)
3a BranchX.Join(T,BranchY)

4. B.Withdraw(30)
5. BranchZ.AddServer(T,BranchX)

5a BranchX.Join(T,BranchZ)

6. C.Deposit(40)
7. D.Deposit(30)

8. BranchX.CloseTransaction(T)

Coordinator
9. Starts commitment
 protocol

T

INF 5040 10

INF5040, Roman Vitenberg 21

The non-blocking atomic
commit problem (intuition)

Ø Multiple autonomous distributed servers
Ø Prior to committing the transaction, all the

transactional servers must verify that they
can locally perform commit

Ø If any server cannot perform commit, all
the servers must perform abort

INF5040, Roman Vitenberg 22

The non-blocking atomic
commit problem (formal)

Ø Uniform agreement
§  All processes that decide, decide on the same value
§  Decisions are not reversible

Ø  Validity
§  Commit can only be reached if all processes vote for commit

Ø Non-triviality
§  If all voted commit and there are no (suspicions of) failures,

then the decision must be commit

Ø  Termination
§  If after some time there are no more failures, then eventually all

live processes decide

INF 5040 11

INF5040, Roman Vitenberg 23

2-PC protocol

Ø One-phase protocol is insufficient
§  Does not allow a server to perform unilateral

abort
– E.g., in the case of a deadlock

Ø Rationale for two phases
§  Phase one: agreement
§  Phase two: execution

INF5040, Roman Vitenberg 24

Phase one: agreement

Ø Coordinator asks all servers if they are able to
perform commit (CanCommit?(T) call)

Ø Server response:
§  Yes: will perform commit if the coordinator requests,

but the server does not know yet if it will perform
commit

–  Determined by the coordinator
§  No: the server performs immediate abort of the

transaction
Ø Servers can unilaterally perform abort, but they

cannot unilaterally perform commit

INF 5040 12

INF5040, Roman Vitenberg 25

Phase two: execution

Ø  Coordinator collects all replies from the servers,
including itself, and decides to perform
§  commit, if all replied Yes
§  abort, if at least one replied No

Ø  Coordinator propagates its decision to the servers
Ø  All participants perform

§  DoCommit(T) call if the decision is commit
§  AbortTransaction(T) call otherwise

Ø  If the decision is commit, the servers notify the
coordinator right after they have performed DoCommit(T)
§  call HaveCommited(T)back on the coordinator

INF5040, Roman Vitenberg 26

The 2PC protocol

Coordinator

step state

Server (participant)

step state

4 committed

2 Ready to commit
 (uncertainty)

3 committed

1 Ready to commit
 (waits for replies)

performed

CanCommit?(tid)

Yes

DoCommit(tid)

HaveCommited(tid)

INF 5040 13

INF5040, Roman Vitenberg 27

2PC state diagram

Init
(not in transaction)

Ready to
commit

Committed

Aborted

Performed
Coordinator only

INF5040, Roman Vitenberg 28

2PC: when a previously failed
server recovers

Coordinator Participant

Init Nothing Nothing

Ready AbortTransaction GetDecision(T)

Committed Sends DoCommit
(T)

Sends
HaveCommitted(T)

Performed Nothing

INF 5040 14

INF5040, Roman Vitenberg 29

2PC: when a process detects
a failure

Ø What happens if a coordinator or a participant does not
receive a message it expects to receive?

Ø  For a participant in the “Ready” state
§  Figure out the state of other participants
§  What if all remaining participants are in the “Ready” state?

Ø  This is known as blocking
§  There are more advanced protocols (3PC) that block in fewer

cases
–  Impose higher overhead during normal operation
–  2PC is the most widely used protocol

§  If the network might partition, blocking is unavoidable

INF5040, Roman Vitenberg 30

3-phase commit protocol

INF 5040 15

INF5040, Roman Vitenberg 31

3PC state diagram

INF5040, Roman Vitenberg 33

Recovery procedure in 3PC

Ø  Elect a new coordinator r.
Ø  r collects the states from all the connected and

operational servers.
Ø  r tries to reach a decision as described in next slide. If

decided, it multicasts a message reflecting the decision.
Ø Upon receiving a PRE-COMMIT or PRE-ABORT, each

server sends an ACK to r.
Ø Upon receiving a majority of ACKs for PRE-COMMIT or

PRE-ABORT, r multicasts the corresponding decision:
COMMIT or ABORT.

Ø Upon receiving a COMMIT or ABORT message, each
server processes the transaction accordingly.

INF 5040 16

INF5040, Roman Vitenberg 34

Decision rules for recovery

Collected states Decision

∃ ABORTED ABORT

∃ COMMITTED COMMIT

∃ majority (servers in WAIT and PRE-
ABORT states)

PRE-ABORT

∃PRE-COMMITTED ∧ majority(servers
in WAIT and PRE-COMMIT states)

PRE-COMMIT

Otherwise BLOCK

INF5040, Roman Vitenberg 36

Summary
Ø  Atomic commitment problem and its solutions
Ø  CORBA Transaction Service

§  Implements 2PC
§  Requires resources to be “transaction-enabled”

Ø  Transactions and EJB
§  programmatic & declarative transactions
§  Container provides support for distributed transactions

–  based on CORBA OTS and X/Open XA protocol
§  EJB container/server implements Java Transaction API (JTA) and

Java Transaction Service (JTS)

Ø  Extended transaction models & OASIS BTP
§  B2B transactions

