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Introduction 
Ø Servers can offer concurrent access to the 

objects/data the service encapsulates 
Ø Application frequently needs to perform 

sequences  of operations as undivided units 
§  => atomic transactions 

Ø The server can offer persistent storage of 
objects/data 
§  => motivation for continued operation after a server 

process has failed 

Ø Service can be provided by a group of servers  
§  => distributed transactions 
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Transactional service 

Ø Offers access to resources via transactions 
§  Cooperation between clients and transactional servers 

Ø Operations of transactional services 
 
OpenTransaction() →  TransId 
CloseTransaction(TransID) →  {commit, abort} 
AbortTransaction (TransID) →  {} 

Ø  All operations between OpenTransaction and 
CloseTransaction are said to be performed in a 
transactional context 
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Completing a transaction 
Ø  Commit point  for transaction T  

§  All operations in T that access the server database are 
successfully performed 

§  The effect of the operations is made permanent (typically by 
recording them in a log) 
 

Ø We say that transaction T is “committed”  
§  The service (or the database system) has put itself under an 

obligation  
§  The results of T are made permanent in the database 
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Desirable properties of 
transactions 
Ø Failure atomicity (all-or-nothing semantics) 

§  The effect is atomic even if the server fails 
Ø Two common implementations: 

§  Private copy 
§  Log file 

Ø Log file: 
§  Updates are written directly to the database 
§  Log file includes an undo record 

–  Transaction id, operation type (read/write), previous 
value, new value 

§  If committed, write commit in log 
§  If abort, roll back transaction 
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Desired properties of 
transactions 
Ø  Isolation 

§  Intermediate results of a transaction must be invisible to 
other transactions 

§  => need for synchronization (concurrency control)  
§  Sequential execution 

–  Ensures isolation but ruins the performance 

§  Serializable execution (“serial equivalence”) 
–  The effect of transactions in an interleaved execution must be 

as if the transactions were executed in some sequential order 
•  The data read as part of the transactions 
•  The eventual state of the database (all data values) 

–  Ensured by concurrency control algorithms 
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Problem caused by lack of 
isolation 

Ø The problem of lost updates 
Ø The problem of visible intermediate 

results (inconsistent retrieval or “dirty 
read”) 

Ø The problem of premature write 
Ø The problem of cascading aborts 
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The problem of lost 
updates 

x: database element 
T1: x = x + 1000 
T2: x = x + 50 

Concurrent execution      Value in the database 
T1:  read(x)             500 

 x = x +1000 
T2:  read(x)             500 

 x = x + 50 
T1:  write(x)            1500 
T2:  write(x)            550 

The performed update of T1 disappears 
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Visible intermediate results 
(inconsistent retrieval) 

Execution (schedule) 
T1:  read(A) 

 read(B) 
  A=A-100 

 write(A) 
T2:  read(A) 

 read(B) 
 sum= A + B 

T1:  B=B+100  
 write(B) 

T2 sees a semi-updated database with the new value of A  
but old value of B. 

T1:  transfer of 100 from A to B 
T2:  calculates A + B 
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Visible intermediate 
results (“premature write”) 

X: database element 
T1: x = x + 1000 
T2: x = x + 50 

Execution        Value in the database 
T1:  read(x)          500 

 x = x +1000 
 write(x)         1500 

T2:  read(x)          1500 
 x = x + 50 
 write(x)         1550 
 commit T2 

T1:  abort T1 
T2 bases its update on a temporary value of x (“dirty read”). 
The transactions that has produced this value aborts 
=> Failure in the execution of T2: not recoverable!! 
=> T2 must delay its commit until T1 has terminated 
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Problem of cascading aborts 
X: database element 
T1: x = x + 1000 
T2: x = x + 50 

Execution        Database value 
T1:  read(x)          500 

 x = x +1000 
 write(x)         1500 

T2:  read(x)          1500 
 x = x + 50 
 write(x)         1550 

T1:  abort 

T2  bases the update on a temporary  
value of x and waits with performing commit. 
The transaction that has produced that value  
(T1) aborts 
=> Failure in the execution of T2  

=> T2 must abort  

If other transactions have seen T2’s 
temporary values 
=> Those must abort too 

This situation is called  
cascading aborts 

Prevent cascading aborts: Transactions can only read data objects from transactions 
                                            that have already performed commit. 
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Summary: 
Desirable properties of transactions 

Ø  Atomicity: All-or-nothing semantics 
Ø  Consistency: Ensures that the data is manipulated 

correctly. Generally assumed to be responsibility of the 
programmer 

Ø  Isolation: Transaction does not make its own updates 
visible to other transactions before it has performed 
“commit”. Implemented by concurrency control 
methods 

Ø Durability: When a transaction has performed “commit”, 
its effect in the database is never lost due to later a 
failure.  

Ø  Collectively called ACID properties ... 
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Distributed transactions 

Z 

Y 

X 

Client 

Client transaction  
that invokes  

operations on  
multiple servers T 
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Component roles 

Ø Distributed system components that are 
involved in a transaction can have a role as: 
 

Ø Transactional client 
Ø Transactional server 
Ø Coordinator 
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Coordinator 

Ø Plays a key role in managing the transaction  
Ø The component that handles begin/commit/abort 

operations  
Ø Allocates globally unique transaction identifiers 
Ø Includes new servers in the transaction  (Join 

operation) and monitors all the participants 
Ø Typical implementation 

§  The first server that the client contacts (by invoking 
OpenTransaction) becomes a coordinator for the 
transaction 
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Transactional server 

Ø  Serves as a proxy for each resource that is accessed or 
modified under transactional control 

Ø  Transactional server must know its coordinator 
§  via parameter in the AddServer operation 

Ø  Transactional server registers its participation in the 
transaction via the coordinator 
§  By invoking the Join operation at the coordinator. 

Ø  Transactional server must implement a commitment 
protocol (such as two-phase commit - 2PC) 
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Transactional client 

Ø  Sees the transaction only through coordinator 
§  Invokes operations at the coordinator 

–  Open Transaction 
–  CloseTransaction 
–  AbortTransaction 

Ø  The implementation of the transaction protocol (such as 
2PC) is transparent for the client 
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BranchZ 
C 

D 

BranchY 

B 

BranchX 

A 

Example 

Client 

1. BranchX.OpenTransaction 

2. A.Withraw(40) 

3. BranchY.AddServer(T,BranchX) 
3a BranchX.Join(T,BranchY) 

4. B.Withdraw(30) 
5. BranchZ.AddServer(T,BranchX) 

5a BranchX.Join(T,BranchZ) 

6. C.Deposit(40) 
7. D.Deposit(30) 

8. BranchX.CloseTransaction(T) 

Coordinator 
9. Starts commitment 
 protocol 

T 
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The non-blocking atomic 
commit problem (intuition) 

Ø Multiple autonomous distributed servers 
Ø Prior to committing the transaction, all the 

transactional servers must verify that they 
can locally perform commit 

Ø If any server cannot perform commit, all 
the servers must perform abort 
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The non-blocking atomic 
commit problem (formal) 

Ø Uniform agreement 
§  All processes that decide, decide on the same value 
§  Decisions are not reversible 

Ø  Validity 
§  Commit can only be reached if all processes vote for commit 

Ø Non-triviality 
§  If all voted commit and there are no (suspicions of) failures, 

then the decision must be commit 

Ø  Termination 
§  If after some time there are no more failures, then eventually all 

live processes decide 
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2-PC protocol 

Ø One-phase protocol is insufficient 
§  Does not allow a server to perform unilateral 

abort 
– E.g., in the case of a deadlock 

Ø Rationale for two phases 
§  Phase one: agreement 
§  Phase two: execution 
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Phase one: agreement 

Ø Coordinator asks all servers if they are able to 
perform commit (CanCommit?(T) call) 

Ø Server response: 
§  Yes: will perform commit if the coordinator requests, 

but the server does not know yet if it will perform 
commit 

–  Determined by the coordinator 
§  No: the server performs immediate abort of the 

transaction 
Ø Servers can unilaterally perform abort, but they 

cannot unilaterally perform commit 
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Phase two: execution 

Ø  Coordinator collects all replies from the servers, 
including itself, and decides to perform 
§  commit, if all replied Yes 
§  abort, if at least one replied No 

Ø  Coordinator propagates its decision to the servers 
Ø  All participants perform  

§  DoCommit(T) call if the decision is commit 
§  AbortTransaction(T) call otherwise 

Ø  If the decision is commit, the servers notify the 
coordinator right after they have performed DoCommit(T)  
§  call HaveCommited(T)back on the coordinator 
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The 2PC protocol 

Coordinator 

step state 

Server (participant) 

step state 

4           committed 

2            Ready to commit 
              (uncertainty) 

3        committed 

1         Ready to commit 
           (waits for replies) 

performed 

CanCommit?(tid) 

Yes 

DoCommit(tid) 

HaveCommited(tid) 
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2PC state diagram 

Init 
(not in transaction) 

Ready to 
commit 

Committed 

Aborted 

Performed 
Coordinator only 
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2PC: when a previously failed 
server recovers 

Coordinator Participant 

Init Nothing Nothing 

Ready AbortTransaction GetDecision(T) 

Committed Sends DoCommit
(T) 

Sends 
HaveCommitted(T) 

Performed Nothing 



INF 5040 14 

INF5040, Roman Vitenberg 29 

2PC: when a process detects 
a failure 

Ø What happens if a coordinator or a participant does not 
receive a message it expects to receive? 

Ø  For a participant in the “Ready” state 
§  Figure out the state of other participants 
§  What if all remaining participants are in the “Ready” state? 

Ø  This is known as blocking 
§  There are more advanced protocols (3PC) that block in fewer 

cases 
–  Impose higher overhead during normal operation 
–  2PC is the most widely used protocol 

§  If the network might partition, blocking is unavoidable 
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3-phase commit protocol 
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3PC state diagram 
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Recovery procedure in 3PC 

Ø  Elect a new coordinator r. 
Ø  r collects the states from all the connected and 

operational servers. 
Ø  r tries to reach a decision as described in next slide. If 

decided, it multicasts a message reflecting the decision. 
Ø Upon receiving a PRE-COMMIT or PRE-ABORT, each 

server sends an ACK to r. 
Ø Upon receiving a majority of ACKs for PRE-COMMIT or 

PRE-ABORT, r multicasts the corresponding decision: 
COMMIT or ABORT. 

Ø Upon receiving a COMMIT or ABORT message, each 
server processes the transaction accordingly. 
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Decision rules for recovery 

Collected states Decision 

∃ ABORTED ABORT 

∃ COMMITTED COMMIT 

∃ majority (servers in WAIT and PRE-
ABORT states) 

PRE-ABORT 

∃PRE-COMMITTED ∧ majority(servers 
in WAIT and PRE-COMMIT states) 

PRE-COMMIT 

Otherwise BLOCK 
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Summary 
Ø  Atomic commitment problem and its solutions 
Ø  CORBA Transaction Service 

§  Implements 2PC 
§  Requires resources to be “transaction-enabled” 

Ø  Transactions and EJB 
§  programmatic & declarative transactions 
§  Container provides support for distributed transactions 

–  based on CORBA OTS and X/Open XA protocol 
§  EJB container/server implements Java Transaction API (JTA) and  

Java Transaction Service (JTS) 

Ø  Extended transaction models & OASIS BTP 
§  B2B transactions 


