

The Second Mandatory Programming Assignment
Part 2:

Zookeeper concepts

INF5040/INF9040 Autumn 2015

Objective
 To understand reliable distributed coordination concepts in Zookeeper.

 To get familiar with the technique of watches in order that is used as a building block in

many solutions for various distributed coordination problems.

Scope

Zookeeper is a centralized service for maintaining configuration information, naming, providing

distributed synchronization and group services. For this part of the assignment, you need to use the

standard client shell to connect to a Zookeeper server. Please follow the instructions in order to

produce correct results while answering the questions.

Development Tools:

1. Integrated Development Environment: Eclipse IDE for Java EE Developers:

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/junor

2. Zookeeper server and client shell:

http://zookeeper.apache.org/releases.html

Deliverable:

 A compressed file (zip) containing:

 A document in the PDF format that contains answers to the questions below with

screenshots illustrating the results you get.

Deadline: November 7, 2016, 23:59

 How to deliver? Via the Devilry system.

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/junor
http://zookeeper.apache.org/releases.html

Zookeeper Laboratory instructions

1. Ephemeral vs Persistent (Regular) znodes

1.1 Create a znode for this exercise /<your group id>/ex1

Example:
[Zookeeper Command line] create /<your group id> data

All znodes that we created so far are regular zNodes.

1.2 (Create Persistent) Create another persistent node (e.g., /<your group id>/ex1/persistent)

1.3 (Create Ephemeral) Now create one ephemeral znode (e.g, /<your group

id>/ex1/ephemeral) using create command with option –e between create and the path

(create –e <path> <data>).

1.4 (List/getChildren) List the children of /<your group id>/ex1 using ls command (Note that ls

in the zkCli.sh corresponds to getChildren in the API)

1.5 (Test Ephemeral) Now quit the client by typing

[Zookeeper Command line] quit

Then restart the client and list the children of /<your group id>/ex1 again using ls command.

Are the results in 1.5 and 1.4 different? Explain your observation.

1.6 (Ephemeral children) Create a new ephemeral znode (e.g, /<your group

id>/ex1/ephemeral1) and try to create a child of this ephemeral node (e.g, /<your group

id>/ex1/ephemeral1/child). What happens?

2. Sequential suffix

2.1 Create the znode for this exercise /<your group id>/ex2

2.2 (Sequential basics) Create a few znodes with SEQUENTIAL suffix (simply called sequential

znodes) as children of /<your group id>/ex2. Try option –s in create

[Zookeeper Command line] create –s /<your group id>/ex2/child someData

Answering the following questions:

- Q1: How is the name of a sequential znode constructed? How long is the suffix?

- Q2: Is it possible to create persistent sequential znodes?

- Q3: Is it possible to create ephemeral sequential znodes?

- Q4: Now create a few non-sequential znodes and then delete them. Create a few sequential

znodes. Explain how the suffix numbers are generated.

- Q5: Assume that right after creating /<your group id>/ex2, you created 20 sequential children of

/<your group id>/ex2, followed by 5 non-sequential children of /<your group id>/ex2, followed by

deleting 3 most recent sequential child znodes. If you’d create another sequential node, what

would be its suffix?

2.3 (Scope of sequence numbers) Are sequence numbers of sequential children of a znode (e.g,

/<your login id>/ex2) and sequence numbers of sequential children of one of ex2 znode’s

children (e.g, /<your login id>/ex2/child1) related?

2.4 (Sequence numbers across multiple clients) Are sequence numbers unique to a given

client? To answer this question, you may want to start two (or more) clients in separate

windows (or on separate machines), both creating sequential znodes as children of /<your

login id>/ex2

3. Watches

All read operations in Zookeeper have the option to set a watch as a side effect. The goal of this

exercise is to understand the behavior of watches in Zookeeper and give you ideas on how watches can

be used in coordinating distributed systems.

3.1 (Init) Create the root znode for this exercise with path

<root_ex3> = /<your login id>/ex3

Start the second client in parallel. In one client, you will set the watches while in the other, you will

make actions that might trigger the watches.

3.2 (First watch)

In client 1, do a get on path <root_ex3> and set a watch.
[Zookeeper Command line] get /zookeeper/ex3 true

Then, in Client 2, modify data for <root_ex3>
[Zookeeper Command line] set /zookeeper/ex3 newData

What happens in Client 1?

3.3 (Durability of watches) Now modify again <root_ex3> in Client 2. What happens in Client 1?

How many times can a watch be triggered in Zookeeper?

3.4 getChildren command can also set a watch. Do this in Client 1 on path <root_ex3>

(Remember getChildren corresponds to ls in the client shell). Now, modify again the data on

<root_ex3> in Client2. Does this trigger the watch at Client 1? Explain why.

3.5 (Child watches) In Client 2 create a child node of <root_ex3>. What happens in Client 1?

Create another child of <root_ex3> in Client 2. What happens in Client 1?

3.6 (Summarizing watch types) Explain the difference between child watches and data watches.

Which command sets which watch?

3.7 (Child watches and nesting) In this exercise we test nested child watches.

In Client 1, create another child of <root_ex3>. Set child watches on both newly created child and

<root_ex3>.

Now, in Client 2, create a grandchild (a child of a child) of <root_ex3>. How many watches are triggered

in Client 1?

Create yet another child of <root_ex3> in Client 2. Does this trigger the watch in Client 1? Do

grandchildren trigger child watches in Zookeeper?

3.8 (Watches and znode deletion) Create a node /<your group id>/ex3/deletetest

Run three clients in parallel:

- In Client 1, set a child watch on deletetest znode.

- In Client 2, set a data watch on deletetest znode.

- Finally, in Client 3, delete the deletetest znode.

Which watches are triggered by a delete?

3.9 More on watches:

 Watches are maintained locally in the Zookeeper server to which the client is connected.

 The order of watch events from Zookeeper corresponds to the order of the updates seen by the

Zookeeper service.

 Due to asynchrony and network delays, different clients may see watches triggered at different

times. The time when a watch triggers cannot be used as synchronization method itself.

