
Second Assignment –

Tutorial lecture

INF5040 (Open Distributed Systems)

Faraz German (farazg@ulrik.uio.no)

Department of Informatics University of Oslo

October 17, 2016

mailto:dattl@ifi.uio.no

Group Communication System

 Services provided by group communication systems:

o Abstraction of a Group

o Multicast of messages to a Group

o Membership of a Group

o Reliable messages to a Group

o Ordering of messages sent to a Group

o Failure detection of members of the Group

o A strong semantic model of how messages are handled when changes

to the Group membership occur

2

Spread

 An open source toolkit that provides a high performance messaging

service that is resilient to faults across local and wide area networks.

 Does not support very large groups, but does provide a strong model of

reliability and ordering

 Integrates a membership notification service into the stream of messages

 Supports multiple link protocols and multiple client interfaces

 The client interfaces provided with Spread include native interfaces for

Java and C.

o Also non native Pearl, Python and Ruby interfaces

Spread

 Provides different types of messaging services to

applications

o Messages to entire groups of recipients

o Membership information about who is currently alive and

reachable

 Provides both ordering and reliability guarantees

Level of service

 When an application sends a Spread message, it chooses a level of service

for that message.

 The level of service selected controls what kind of ordering and reliability

are provided to that message.

Spread Service Type Ordering Reliability

UNRELIABLE MESS None Unreliable

RELIABLE MESS None Reliable

FIFO MESS FIFO by Sender Reliable

CASUAL MESS Casual (Lamport) Reliable

AGREED MESS Total Order (Consistent w/ Casual) Reliable

SAFE MESS Total Order Safe

Ordering

 None

o No ordering guarantee

o Any other message sent with “None” ordering can arrive before or after this message

 FIFO by Sender

o All messages sent by this connection of FIFO ordering are delivered in FIFO order

 Causal (Lamport) – See TvS 6.2

o All messages sent by all connections are delivered in an order consistent with
“Causal” order (Lamport)

o Consistent with FIFO ordering

 Total Order (Consistent w/Causal)

o All messages sent by all connections are delivered in the exact same order to all
recipients

o Consistent with Causal order

Reliability

 Unreliable

o The message may be dropped or lost

o The message will not be recovered by Spread

 Reliable

o The message will be reliably delivered to all recipients who are members of the
group to which the message was sent

o Spread will recover message to overcome any network losses

 Safe

o The message will only be delivered to a recipient if the daemon that recipient is
connected has the message

o → The daemon should knows all other Spread daemons in the network

o If a membership change occurs, and as a result the daemon cannot determine
whether all daemons in the old membership have the message, then the
daemon will deliver the Safe message after a TRANSITIONAL_MEMBERSHIP
message.

Download and Installation

 Spread can be downloaded from:

o http://www.spread.org/

o http://www.cnds.jhu.edu/

 I recommend you to download both the binaries and source

o Binaries contains the daemon distribution for different architecture

o Source contains the Spread source code and example apps

o Example of configuration file (sample.spread.conf) in the docs folder.

 Run the Spread daemon

o You can use the Spread monitor to check the status of your daemon :

./spread –l y –c spread.conf and ./spmonitor

http://www.spread.org/
http://www.cnds.jhu.edu/

Java Interface to Spread Toolkit

 The Spread library consists of a package, “spread”

o 10 classes.

o Eclipse: Import the classes into a new Java project or use the Ant

build file

 Main classes:

o SpreadConnection, which represents a connection to a daemon,

o SpreadGroup, which represents a spread group

o SpreadMessage, which represents a message that is either being

sent or being received with spread.

Connecting/Disconnecting

 To establish a connection to a spread daemon

SpreadConnection connection = new SpreadConnection();

connection.connect(InetAddress.getByName(

"daemon.address.com"),

1010, "privatename", false, false);

Server Address Port Unique Connection name

 To terminate the connection to the daemon,

connection.disconnect();

Joining/Leaving

 To join a group on the connection

Spread connection on Name of the group to join

Which the group is joined

 To leave a group:

group.leave();

SpreadGroupgroup = new

group.join(connection,

SpreadGroup();

"group");

Multicasting

 To multicast a message to one or more groups:

 To send the message:

connection.multicast(message);

SpreadMessage message = new SpreadMessage();

message.setData(data);

message.addGroup("group");

message.setReliable(); This creates a new outgoing
message

Receiving

 To receive a message

SpreadMessage message = connection.receive();

receive() will block until a
message is available

if(message.isRegular())

System.out.println("New message from " +

message.getSender());

else

System.out.println("New membership message

message.getMembershipInfo().getGroup());

return a MembershipInfo object, which provides
information about the membership change

Message Factory

 A utility included with the java interface to spread

 An object of the MessageFactory class is used to generate any

number of outgoing messages based on a default message.

messageFactory = new MessageFactory(message);

 To change the default at a later time

messageFactory.setDefault(message);

 To get a message from the message factory

SpreadMessage message = messageFactory.createMessage();

Listeners

 An alternative way of receiving messages

o Interfaces:

 BasicMessageListener

 AdvancedMessageListener

connection.add(listener);

 After being added to a connection, the listener will be alerted whenever a
new message is received on the connection.

 To remove a listener from the connection

connection.remove(listener);

Exceptions

 When an error occurs in a Spread method, a SpreadException is thrown

o E.g. receive() is called on a SpreadConnection() object before connect() is

called on that object

 Any method that is declared as throwing a SpreadExceptionmust be

placed within a try‐catch block

try{

connection.multicast(message);

}catch(SpreadException e){

e.printStackTrace ();

System.exit(1);

}

Second Programming Assignment

 A distributed application that models a replicated bank account

 Implementation

o “Replicated state machine” paradigm

o Group communication

 System Architecture

o A standard Spread server (daemon)

o A set of clients representing the replicas

Tasks

 Create a connection to a Spread server.

 Initialize the balance on the account to 0.0.

 Join a group whose name is <account name>.

 Wait until it detects that <number of replicas> clients have joined

the group.

o Application starts from this point, but should handle the dynamic

addition of new replicas.

 The client should receive and analyze messages about

membership changes.

Commands to be accepted by the client

 balance

o Print the current balance on the account.

 deposit <amount>

o Increase or decrease the balance by <amount>.

o On all the replicas in the group.

 addinterest <percent>

o Increase the balance by <percent> percent of the current value.

o On all the replicas in the group.

 exchange <from> <to>

o Change the currency of the account from e.g. NOK to USD.

o Check currency table in assignment description for exchange rates.

 memberinfo

o Prints the names of the current members of the group.

 sleep <duration>

o Let the client to do nothing for <duration> seconds. It is only useful in a batch file.

 exit

Testing environment

 Spread is installed in all linux ifi computers

o /local i.e. /local/bin, /local/lib etc.

 Daemon configuration/addresses for the assignment

o You can use any ifi machine to start your own server:

o spread -l y -c spread.conf

o Example address:

 rubin.ifi.uio.no 4333

o You can run the server and the clients in the same machine but it is a good idea to
test your application in a distributed environment with more than 3 distributed
clients.

Synopsis of running the client

 For Java

 You can also develop a graphical user interface if you do not want to use

the command line.

java accountReplica <server address> <account

name> <number of replicas> [file name]

