Apa che Zookee per &\

http://zookeeper.apache.org

What is a Distributed System?
%99

A distributed system ‘ a ‘
consists of multiple

computers that ‘ a a ‘
communicate through a ’ ‘

computer network and
interact with each other to
achieve a common goal. !’3 Et

a®®

e
L
' %

-—

Automated Coordination

Coordination in a Distributed System

e Coordination: An act that multiple nodes must perform
together.

e Examples:

o Group membership
o Locking
o Leader Election

o Synchronization.
o Publisher/Subscriber

Getting node coordination correct is very hard!

Introducing ZooKeeper

ZooKeeper is a Distributed Coordination Service for
Distributed Applications. ZooKeeper allows distributed
processes to coordinate with each other through a shared
hierarchical name space of data registers.

- ZooKeeper Wiki

What is ZooKeeper ?

® An open source, high-performance coordination service for
distributed applications.

® Exposes common services in simple interface:
O nhaming
o configuration management
o locks & synchronization
O group services

... developers don't have to write them from scratch
e Build according to your requirement for specific needs.

/ooKeeper Use Cases

Configuration Management

o Cluster member nodes bootstrapping configuration from
a centralized source in unattended way

o Easier, simpler deployment/provisioning
Distributed Cluster Management

o Node join / leave

o Node status in real time

Naming service —e.g. DNS

Distributed synchronization - locks, barriers, queues.
Leader election in a distributed system.

Centralized and highly reliable (simple) data registry.

The ZooKeeper SerV|ce

ZooKeeper Service

Server Server ‘ !erver\ Server Server

\ / ”
~ ‘ _d

‘| |
{ [\
l ! . | ;] [)]) | 1
’ Client ‘ l Client ‘ Client ‘ Client ‘ ‘ Client ’ Client ’ Client | ’ Client ‘

ZooKeeper Service is replicated over a set of machines
All machines store a copy of the data (in memory)|
A leader is elected on service startup

Clients only connect to a single ZooKeeper server & maintains a TCP
connection.

Client can read from any Zookeeper server, writes go through the leader
& needs majority consensus.

The ZooKeeper Data Model

ZooKeeper has a hierarchical name space.
Each node in the namespace is called as a
ZNode.
Every ZNode has data (given as byte[]) and
can optionally have children.

ZNode paths:

— canonical, absolute, slash-separated

— no relative references.

— names can have Unicode characters
ZNodes
Maintain a stat structure with version

numbers for data changes, ACL changes
and timestamps.

Version numbers increases with changes
Data is read and written in its entirety

/Zo0o/
Duck

Goat

[2]

/Zo0/
Goat

/Zo0/
Cow

/Node Types

® Persistent Nodes
o exists till explicitly deleted

e Ephemeral Nodes
o exists as long as the session is active
o can’t have children

e Sequence Nodes (Unique Naming)

o append a monotonically increasing counter to the end of
path

o applies to both persistent & ephemeral nodes

/Node Operations

create Write
delete Write
exists Read
getChildren Read
getData Read
setData Write
getACL Read
setACL Write
sync Read

All these operations can be sync as well as async

/Node Watches

Clients can set watches on znodes:
o NodeChildrenChanged
o NodeCreated
o NodeDataChanged
o NodeDeleted
Changes to a znode trigger the watch and ZooKeeper sends the client a
notification.
Watches are one time triggers.
Watches are always ordered.
Client sees watched event before new znode data.

Client should handle cases of latency between getting the event and
sending a new request to get a watch.

/Node Reads & Writes

® Read requests are o
processed locally at the
ZooKeeper server to
which the client is
currently connected

® \Write requests are
forwarded to the
leader and go through
majority consensus
before a response is
generated.

read read

Consistency Guarantees

Sequential Consistency: Updates are applied in order
Atomicity: Updates either succeed or fail

Single System Image: A client sees the same view of the
service regardless of the ZK server it connects to.

Reliability: Updates persists once applied, till overwritten by
some clients.

Timeliness: The clients’ view of the system is guaranteed to
be up-to-date within a certain time bound. (Eventual
Consistency)

Example #1: Cluster Management

Cluster

Each Client Host i, i:=1.. N
Watch on /members

Create /members/host-S
{i} as ephemeral nodes

Node Join/Leave
generates alert

Keep updating / host-2
members/host-5{i} ost
periodically for node

status changes

(load, memory, CPU
etc.)

/members

host-1

host-N

Example #2: Leader Election

A znode, say “/svc/election-path"

All participants of the election process
create an ephemeral-sequential node on — Crestes Zookeeper Ensemble
the same election path. Watches

/svc/election-path

The node with the smallest sequence

number is the leader.
Instance 1

Each “follower” node listens to the node Leader
with the next lower seq. number

Upon leader removal go to T
' :
election-path and find a new leader, Folower J/

or become the leader if it has the lowest

sequence number.
. L. Instance 3
Upon session expiration check the Solkonat

election state and go to election if
needed

Recipe #3: Distributed Exclusive Lock

Assuming there are N clients trying to

acquire a lock ZK
* Clients creates an ephemeral, |---Cluster
sequential znode under the path / +---config

Cluster/_locknode

e Clients requests a list of children for
the lock znode (i.e. _locknode) +---_locknode_

* The client with the least ID according to +---host1-3278451
natural ordering will hold the lock.

* Other clients sets watches on the +-=host2-3278452
znode with id immediately preceding +---host3-3278453
its own id b

e Periodically checks for the lock in case
of notification. \---hostN-3278XXX

* The client wishing to release a lock
deletes the node, which triggering the
next client in line to acquire the lock.

+---memberships

/ooKeeper In Action @ Twitter

Used within Twitter for service discovery
How?
Services register themselves in ZooKeeper

Clients query the production cluster for service
“A” in data center “XYZ”

An up-to-date host list for each service is
maintained

Whenever new capacity is added the client will
automatically be aware

Also, enables load balancing across all servers.
Reference: http://engineering.twitter.com/

A few points to remember

Watches are one time triggers

Continuous watching on znodes requires reset of watches after every
events / triggers

Too many watches on a single znode creates the “herd effect” - causing
bursts of traffic and limiting scalability

If a znode changes multiple times between getting the event and setting
the watch again, carefully handle it!

Keep session time-outs long enough to handle long garbage-collection
pauses in applications.

Dedicated disk for ZooKeeper transaction log

Reference

» Zookeeper site: http://zookeeper.apache.org/

e Slides:

— http://www.slideshare.net/sauravhaloi/
introduction-to-apache-zookeeper

